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SYMMETRIC TWO-STEP RUNGE-KUTTA

COLLOCATION METHODS FOR STIFF SYSTEMS

OF ORDINARY DIFFERENTIAL EQUATIONS

D. G. YAKUBU1, U. I. HUOMA AND A. M. KWAMI

ABSTRACT. Symmetric two-step Runge-Kutta collocation
methods have been derived for solution of stiff and oscillatory
differential equations. The methods are of orders six and eight
with five and seven stages respectively and hence substantial im-
provements in efficiency and flexibility are achieved when using
them. They are shown to be A-stable, self-starting, convergent
and cope effectively with stable systems of initial value problems
with large Lipschitz constants. These methods as compared,
for example, with some other recently derived methods of the
same order, provide approximations of high accuracy to solu-
tions of systems of initial value problems in ordinary differential
equations over the entire interval of integration. The analytic
discussion is confirmed by numerical examples.
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1. Introduction

Generally, Runge-Kutta methods have acceptable computational
properties for a variety of problems in ordinary differential equa-
tions. For example, the family of the Gauss-Legendre methods, are
self-adjoint, meaning that they provide the same solutions when
integrating forward and backward, in time. Runge-Kutta methods
compute the first derivatives, f several times per step. They have
both advantages and disadvantages. They are stable and easy to
adapt for variable stepsize and order. However, they have difficul-
ties in achieving high accuracy at reasonable cost. The general form
of the Runge-Kutta method with s-stage is defined by

Yi = yn−1 + h
s∑

j=1

aijf(xn−1 + hcj, Yj), i = 1, 2, 3, · · · , s (1)
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yn = yn−1 + h
s∑

i=1

bif(xn−1 + hcj, Yj), (2)

where the quantities Y1, Y2, Y3, · · · , Ys are called internal stage
values and yn is the update at the nth step, that is, the numerical
approximation to the solution y(x) at x = xn. They are approxi-
mations to the solution values y(xn−1+cih) at the points xn−1+cih.
The integer s is the number of stages of the method. The ci repre-
sents the position of the internal stages within one-step and h de-
notes the step size xn−xn−1, which is sometimes constant or varied
during integration. Also aij, bj and cj are the constant coefficients
which can be constructed so that yn is a good approximation to the
solution y(xn) = y(xn−1+h). For convenience, the stage derivatives
f(xn−1 + cjh, Yj) are often written as Fj. For Runge-Kutta method
to be consistent such that it will be suitable for solving differential
equations the following consistency condition is required:

s∑
j=1

bj = 1. (3)

Further, another condition,
s∑

i=1

aij = cj, j = 1, 2, 3, · · · , s (4)

is necessary to guarantee that the correct value is obtained at each
of the stages. Runge-Kutta method can be characterized using the
s× s matrix A and s× 1 vectors b and c,

A =

 a11 · · · a1s
...

. . .
...

as1 · · · ass

 , b =

 b1
...
bs

 , c =

 c1
...
cs

 .
The Runge-Kutta method can be conveniently represented by the
following Butcher Tableau,

c A
bT

where A = {aij}, bT = {bi} and c = {ci}. The set of numbers aij
are coefficients used to find the internal stages using linear combi-
nations of the stage derivatives. The components of the vector bT

are coefficients which represent how the numerical solution at this
step depends on the derivatives of the internal stages. The vector
c = [c1, c2, c3, · · · , cs] is called the abscissae. If the matrix A in the
Butcher’s Tableau, is strictly lower triangular, that is, the internal
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stages can be calculated without depending on later stages, then the
method is called an explicit Runge-Kutta method. Otherwise the
internal stages depend not only on the previous stages but also on
the current stage and later stages, and then the method is called im-
plicit Runge-Kutta method. Implicit Runge-Kutta method involves
Newton’s iterations to evaluate the stage values. The implicit meth-
ods have an algebraic nicety not possessed by the explicit methods
in that the set of implicit methods under a very natural operation
is homomorphic to certain group whereas the subset corresponding
to explicit methods is only a semigroup[1].

2. Derivation of the STRK Collocation Methods

We describe the construction of the Symmetric Two-Step Runge-
Kutta (STRK) Collocation Methods by considering the following
form of a multistep collocation approach of [11] which was an ex-
tension of [10] of the form

y(x) =
t−1∑
j=0

φj(x)yn+j + h
m−1∑
j=0

ψj(x)f(xj, y(xj)) (5)

where t denotes the number of interpolation points xn+j, j = 0, 1, 2
, ..., t − 1 taken from {xn, xn+1}; and m denotes the distinct col-
location points xj, j = 0, 1, 2, ...,m − 1 chosen from the interval
(xn, xn+1). Here φj(x) and ψj(x) are parameters of the methods
which are to be determined. They are assumed polynomials of the
form

φj(x) =
t+m−1∑
i=0

φj,i+1x
i, hψj(x) =

t+m−1∑
i=0

hψj,i+1x
i. (6)

The order of the collocation method(5)-(6) is given by p = t+m-
1. The proof of this result follows from [10]. When a collocation
point xj ∈ (xn, xn+1) is a Gaussian point then it is counted twice
for the order of the method. Thus, if all the m collocation points
are Gaussian points we have that p = t+2m-1, which gives super-
convergence method of [10], see also [12, 14, 15, 16]. The numerical
constant coefficients φj,i+1 and ψj,i+1 in (6) are to be determined.
They are selected so that accurate approximations of well behaved
problems are obtained efficiently.
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From (5) and (6) following [14] we have,

y(x) =
t−1∑
j=0

t+m−1∑
i=0

φj,i+1x
iyn+j + h

m−1∑
j=0

t+m−1∑
i=0

hψj,i+1x
if(xj, y(xj))

=
t+m−1∑
i=0

{
t−1∑
j=0

φj,i+1yn+j +
m−1∑
j=0

hψj,i+1f(xj, y(xj))

}
xi

=
t+m−1∑
i=0

aix
i (7)

where

ai =

{
t−1∑
j=0

φj,i+1yn+j +
m−1∑
j=0

hψj,i+1f(xj, y(xj))

}
.

From (7) we have

y(x) =

{
t−1∑
j=0

φj,1yn+j +
m−1∑
j=0

hψj,1fn+j,

t−1∑
j=0

φj,2yn+j +
m−1∑
j=0

hψj,2fn+j, (8)

...
...,

t−1∑
j=0

φj,t+m−1yn+j +
m−1∑
j=0

hψj,t+m−1fn+j

}(
1, x, ., xt+m−1)T .

Thus, expanding (8) fully, we have the propose continuous scheme
as,

y(x) = (yn, · · · , yn+t−1, fn, · · · , fn+m−1)C
T
(
1, x, · · · , xt+m−1)T

(9)
where T denotes transpose of the matrix C and the vector (1, x, · · · ,
xt+m−1).
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Thus,

C =



φ0,1 · · · φt−1,1 hψ0,1 · · · hψm−1,1
φ0,2 · · · φt−1,2 hψ0,2 · · · hψm−1,2

...
. . .

...
...

. . .
...

φ0,t · · · φt−1,t hψ0,t · · · hψm−1,t
φ0,t+1 · · · φt−1,t+1 hψ0,t+1 · · · hψm−1,t+1

...
. . .

...
...

. . .
...

φ0,t+m · · · φt−1,t+m hψ0,t+m · · · hψm−1,t+m


≡ D−1

(10)
and

D =



1 xn x2n · · · xt+m−1
n

1 xn+1 x2n+1 · · · xt+m−1
n+1

...
...

...
. . .

...
1 xn+t−1 x2n+t−1 · · · xt+m−1

n+t−1
0 1 2x0 · · · (t+m− 1)xt+m−2

0
...

...
...

. . .
...

0 1 2xn+m · · · (t+m− 1)xt+m−2
n+m


. (11)

The matrices D and C are both of dimensions (t + m) × (t + m).
We call D the multistep collocation and interpolation matrix which
has a very simple structure. From (10), the columns of C, which
give the continuous coefficients φj(x) and ψj(x) can be obtain from
the corresponding columns of D−1. As can be seen the entries
of C are the constant coefficients of the polynomial given in (5)
which are to be determined. The matrix C is the solution vector
(output)and D is termed the Data (input), which is assumed to
be non-singular for the existence of the inverse matrix C. An ef-
ficient algorithm for obtaining the elements of the inverse matrix
C is found in [11]. We now derive the continuous formulation of
the symmetric two-step Runge-Kutta collocation methods follow-
ing the derivation techniques discussed in this section.

Definition 1.1: The method in (5) has the order of consistency
p ≥ 1 provided that there exists an error constant Cp+1 such that
the local truncation error (LTE) satisfies

‖ LTE ‖= Cp+1h
p+1 +©(hp+2),
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where ‖ . ‖ is the maximum norm.

3. Symmetric Two-Step Runge-Kutta Collocation Method of Order Six

To obtain better stability and greater flexibility of the Runge-Kutta
methods, we consider the construction of the methods based on the
nodal points of Chebyshev polynomials .These Chebyshev polyno-
mials were chosen because of their superior convergence rate and
stiffly accurate characteristic properties in relation to the approxi-
mation of functions [7]. For the symmetric two-step Runge-Kutta
collocation methods in this paper, we consider specific methods
with high order of accuracy for the numerical integration of sys-
tems of initial value problems of the form,

{
dy
dx

= f(x, y), (a ≤ x ≤ b),

y(0) = y(x0).
(12)

Here the unknown y is a mapping [a, b] → Rd, the right-hand side
function f maps [a, b]× Rd → Rd and the initial vector y0 is given
in Rd. It is assumed that f satisfies some conditions that guarantee
the existence and uniqueness of a solution y(x) ∈ C1[a, b] as an Ini-
tial Value Problem (IVP) or as a Boundary Value Problem (BVP).
For the solution of equation (12) we shall derive single symmetric
continuous scheme for accurate solution of the problem everywhere
in the interval of integration, based on Chebyshev nodal points. We
consider for the first method the case m = 5, t = 1 and ξ = (x−xn)
and we let the collocation points m be xn, xn+u, xn+1, xn+v and xn+2

in (5) where u and v are zeros of p2(x) = 0 Chebyshev polynomial
of degree 2 in the standard symmetric interval [-1, 1], which were
transformed into the interval [xn, xn+2] by means of the following
linear transformation x ∈ [−1, 1]→ [xn, xn+2]. Hence we have,

x0 = xn+u, u =

(
2−
√

2

2

)

x1 = xn+v, v =

(
2 +
√

2

2

)
 (13)
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and are valid in the interval [xn, xn+2]. The proposed continuous
scheme (9) takes the following form,

y(x) = φ0(x)yn + [ψ0(x)fn + ψ1(x)fn+u + ψ2(x)fn+1

+ψ3(x)fn+v + ψ4(x)fn+2], (14)

where

φ0(x) = −1,

ψ0(x) = [(408− 288
√

2)ξ5 − (2550− 1800
√

2)hξ4

+(5780− 4080
√

2)h2ξ3 − (5610− 3960
√

2)h3ξ2

+(2040− 1440
√

2)h4ξ]/(h4(2040− 1440
√

2)

ψ1(x) = [−(96− 72
√

2)ξ5 + (390− 300
√

2)hξ4 − (440−
360
√

2)h2ξ3 + (120− 120
√

2)h3ξ2]/(h4(240− 180
√

2)

ψ2(x) = [24ξ5 − 120hξ4 + 180h2ξ3 − 60h3ξ2]/60h4

ψ3(x) = [−(96− 72
√

2)ξ5 + (570− 420
√

2)hξ4 − (1160

−840
√

2)h2ξ3 + (840− 600
√

2)h3ξ2]/[h4(240

−180
√

2)]

ψ4(x) = [12ξ5 − 45hξ4 + 50h2ξ3 − 15h3ξ2]/60h4

Evaluating the continuous scheme y(x) in (14) at the points x =
xn+2, xn+u, xn+1 and xn+v to obtain symmetric two-step block hy-
brid scheme,

yn+2 = yn +
h

15
[fn + 8fn+u + 12fn+1 + 8fn+v + fn+2], (15)

yn+u = yn +
h

240
[(23 + 4

√
2)fn + (64− 13

√
2)fn+u + (96

−72
√

2)fn+1 + (64− 43
√

2)fn+v + (−7 + 4
√

2)fn+2],

yn+1 = yn +
h

60
[2fn + (16 + 15

√
2)fn+u + 24fn+1 + (16

−15
√

2)fn+v + 2fn+2],

yn+v = yn +
h

240
[(23− 4

√
2)fn + (64 + 43

√
2)fn+u + (96

+72
√

2)fn+1 + (64 + 13
√

2)fn+v − (7 + 4
√

2)fn+2].
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Converting the block hybrid scheme (15), into symmetric two-step
Runge-Kutta collocation method,

yn = yn−2 + h

(
1

15

)
F1 + h

(
8

15

)
F2

+h

(
12

15

)
F3 + h

(
8

15

)
F4 + h

(
1

15

)
F5 (16)

where the stage values at the nth step are computed as,

Y1 = yn−2,

Y2 = yn−2 + h

(
23

240
+

√
2

60

)
F1 + h

(
4

15
−

13
√
2

240

)
F2

+h

(
2

5
−

3
√
2

10

)
F3 + h

(
4

15
−

43
√
2

240

)
F4 − h

(
7

240
−
√
2

60

)
F5,

Y3 = yn−2 + h

(
1

30

)
F1 + h

(
4

15
+

√
2

4

)
F2

+h

(
2

5

)
F3 + h

(
4

15
−
√

2

4

)
F4 + h

(
1

30

)
F5,

Y4 = yn−2 + h

(
23

240
−
√
2

60

)
F1 + h

(
4

15
+

43
√
2

240

)
F2

+h

(
2

5
+

3
√
2

10

)
F3 + h

(
4

15
+

13
√
2

240

)
F4 − h

(
7

240
+

√
2

60

)
F5,

Y5 = yn−2 + h

(
1

15

)
F1 + h

(
8

15

)
F2 + h

(
4

5

)
F3

+h

(
8

15

)
F4 + h

(
1

15

)
F5,

with the stage derivatives as follows:

F1 = f (xn−2 + h(0), Y1),

F2 = f

(
xn−2 + h

(
2−
√

2

2

)
, Y2

)
,

F3 = f (xn−2 + h(1), Y3),

F4 = f

(
xn−2 + h

(
2 +
√

2

2

)
, Y4

)
,

F5 = f(xn−2 + h(2), Y5).
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The symmetric two-step Runge-Kutta collocation method (16) has
order p = 6 and error constant:

C7 =
1

37800
h7y(7)(x0).

4. Symmetric Two-Step Runge–Kutta Collocation Method of Order Eight

For the higher order method we consider the proposed continuous
scheme (9) where u, q and v are zeros of Chebyshev polynomial of
the form p3(x) = 0 obtained in the same manner as in (13), given
as,

x0 = xn+u, u =

(
2−
√

3

2

)
x1 = xn+q, q = 1

x2 = xn+v, v =

(
2 +
√

3

2

)


(17)

and are valid in the interval [xn, xn+2]. With w = 1
2

and r = 3
2
, we

obtain the following symmetric continuous scheme,

y(x) = φ0(x)yn + [ψ0(x)fn + ψ1(x)fn+u + ψ2(x)fn+w

+ψ3(x)fn+1 + ψ4(x)fn+r + ψ5(x)fn+v (18)

+ψ6(x)fn+2]

where

φ0(x) = −1,

ψ0(x) = [(119016000− 68713920
√

3)ξ7

−(971964000− 561163680
√

3)hξ6

+(3165825600− 1827790272
√

3)h2ξ5

+(5206950000− 3006234000
√

3)h3ξ4

+(4495333500− 2595382020
√

3)h4ξ3

−(1900536750− 1097275410
√

3)h5ξ2

+(312417000− 180374040
√

3)h6ξ]/

1260(247950− 143154
√

3)h6
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ψ1(x) = [−(2085120− 1203840
√

3)ξ7

+(12489120− 7210560
√

3)hξ6

−(27498240− 15876000
√

3)h2ξ5

+(27083700− 15636600
√

3)h3ξ4

−(11371920− 6565440
√

3)h4ξ3

+(1466640− 846720
√

3)h5ξ2]/

1260(2172− 1254
√

3)h6

ψ2(x) = [960ξ7 − 7280hξ6 + 21168h2ξ5

−28770h3ξ4 + 17080h4ξ3 − 2520h5ξ2]/1260h6

ψ3(x) = [−960ξ7 + 6720hξ6 − 17472h2ξ5

+20160h3ξ4 − 9380h4ξ3 + 1260h5ξ2]/1260h6

ψ4(x) = [960ξ7 − 6160hξ6 + 14448h2ξ5

−14910h3ξ4 + 6440h4ξ3 − 840h5ξ2]/1260h6

ψ5(x) = [−(2085120− 1203840
√

3)ξ7

+(16702560− 9643200
√

3)hξ6

−(52778880− 30471840
√

3)h2ξ5

+(82385100− 47565000
√

3)h3ξ4

−(64039920− 36973440
√

3)h4ξ3

+(20427120− 11793600
√

3)h5ξ2]

/1260(2172− 1254
√

3)h6

ψ6(x) = [480ξ7 − 2800hξ6 + 6048h2ξ5

−5880h3ξ4 + 2450h4ξ3 − 315h5ξ2]/1260h6.

We evaluate the continuous scheme y(x) in (18) at the points x =
xn+2, xn+u, xn+w, xn+1, xn+r and xn+v to obtain the symmetric
block hybrid scheme,

yn+2 = yn + h[9fn + 80fn+u + 144fn+w + 164fn+1 + 144fn+r

+80fn+v + 9fn+2]/315 (19)
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yn+u = yn + h[(424− 72
√

3)fn + (1280− 235
√

3)fn+u

+(2269− 1368
√

3)fn+w + (2624− 1488
√

3)fn+1

+(2339− 1368
√

3)fn+r + (1280− 725
√

3)fn+v

−(136− 72
√

3)fn+2]/10080

yn+w = yn + h[504fn + (10360 + 6615
√

3)fn+u + 14679fn+w

−2576fn+1 + 1449fn+r + (10360− 6615
√

3)fn+v

+504fn+2]/70560

yn+1 = yn + h[53fn + (160 + 70
√

3)fn+u + 638fn+w + 328fn+1

−62fn+r + (160− 70
√

3)fn+v − 17fn+2]/1260

yn+r = yn + h[24fn + (120 + 105
√

3)fn+u + 489fn+w

+624fn+1 + 279fn+r + (120− 105
√

3)fn+v

+24fn+2]/1120

yn+v = yn + h[(424− 72
√

3)fn + (1280 + 725
√

3)fn+u + (2269

+1368
√

3)fn+w + (2624 + 1488
√

3)fn+1 + (2339

+1368
√

3)fn+r + (1280 + 235
√

3)fn+v − (136

+72
√

3)fn+2]/10080.

As usual, converting the block hybrid scheme to symmetric two-step
Runge-Kutta collocation method:

yn = yn−2 + h

(
9

315

)
F1 + h

(
80

315

)
F2 + h

(
144

315

)
F3 + h

(
164

315

)
F4

+h

(
144

315

)
F5 + h

(
80

315

)
F6 + h

(
9

315

)
F7. (20)

The stage values at the nth step are calculated as,

Y1 = yn−2,

Y2 = yn−2 + h

(
53

1260
−
√

3

140

)
F1 + h

(
8

63
− 47

√
3

2016

)
F2 + h

(
2269

10080
− 19

√
3

140

)
F3

+h

(
82

315
− 31

√
3

210

)
F4 + h

(
2339

10080
− 19

√
3

140

)
F5 + h

(
8

63
− 145

√
3

2016

)
F6

−h
(

17

1260
−
√

3

140

)
F7,
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Y3 = yn−2 + h

(
1

140

)
F1 + h

(
259

1764
− 147

√
3

1568

)
F2 + h

(
233

1120

)
F3

−h
(

23

630

)
F4 + h

(
23

1120

)
F5 + h

(
259

1764
− 147

√
3

1568

)
F6 + h

(
1

140

)
F7,

Y4 = yn−2 + h

(
53

1260

)
F1 + h

(
8

63
−
√

3

18

)
F2 + h

(
319

630

)
F3 + h

(
82

315

)
F4

−h
(

31

630

)
F5 + h

(
8

63
−
√

3

18

)
F6 − h

(
17

1260

)
F7,

Y5 = yn−2 + h

(
3

140

)
F1 + h
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with the stage derivatives as follows,

F1 = f (xn−2 + h(0), Y1),

F2 = f

(
xn−2 + h

(
2−
√

3

2

)
, Y2

)
,

F3 = f

(
xn−2 + h

(
1

2

)
, Y3

)
,

F4 = f (xn−2 + h(1), Y4),

F5 = f

(
xn−2 + h

(
3

2

)
, Y5

)
,

F6 = f

(
xn−2 + h

(
2 +
√

3

2

)
, Y6

)
,

F7 = f(xn−2 + h(2), Y7).

The order of the method is p = 8 and error constant:

C9 =
1

50803200
h9y(9)(x0).
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Fig. 1. Regions of Absolute Stability of the STRK Collocation
Methods

We plotted the regions of absolute stability of the symmetric two-
step Runge-Kutta collocation methods using the method used in
[4] as shown in Figure 1. Remark 1.1
It is obvious from equations (16) and (20) that the methods de-
rived using Chebyshev nodal-points have smaller error constants
compared to the one in [8] of the same order of convergence. Fur-
ther, the coefficients of the methods obtained are convenient to use
(in programs) and analyze.

5. Numerical Experiments

We have applied the newly derived methods in sections 3 and 4
of the paper to a variety of well-known problems which have ap-
peared in the literature. All the numerical experiments were done
in Matlab and carried out at the Mathematical Sciences Research
and Development Laboratory, Abubakar Tafawa Balewa University,
Bauchi, Nigeria. The test examples are systems of ordinary differ-
ential equations written as first order initial value problems. We
plotted these solutions and compared the graphs with the graphs of
the exact solutions and graphs from some existing methods of the
same order and similar derivation, for example, the Block Adams-
Moulton’s Methods (BAMMs) of [8] and [13]. We also compared
the computed solutions side by side in Tables with the solutions
from some existing methods [8]and [13]. In each of the computa-
tion the number of function evaluations (nfe) is indicated.
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Example 1: For the first test example, we consider a well-known
classical system,

y′1 = 998y1 + 1998y2, y1(0) = 1,

y′2 = −999y1 − 1999y2, y2(0) = 1.

It is a mildly stiff problem composed of two first order equations
and the exact solutions given by the sum of two decaying exponen-
tial components, {

y1(x) = 4e−x − 3e−1000x,

y2(x) = −2e−x + 3e−1000x.

The stiffness ratio is R = 1000 and the problem is solved numeri-
cally on the interval [0,100].

Table 1. Absolute errors of numerical solutions of example 1

Mesh BAMM[13] Method (16) BAMM[8] Method (20)
values y1 component y1 component y1 component y1 component

10.0 2.8418× 10−1 1.0999× 10−1 1.0532× 10−1 4.8945× 10−2

20.0 1.4474× 10−2 1.8266× 10−3 1.8513× 10−3 1.0130× 10−5

30.0 7.5062× 10−4 3.1753× 10−5 3.2542× 10−5 2.0969× 10−7

40.0 3.8937× 10−5 5.5334× 10−7 5.7202× 10−7 4.3403× 10−9

50.0 2.0198× 10−6 9.6439× 10−9 1.0054× 10−8 8.9836× 10−11

60.0 1.0477× 10−7 1.6808× 10−10 1.7674× 10−10 1.8594× 10−14

70.0 5.4353× 10−9 2.9294× 10−12 3.1067× 10−12 3.8487× 10−16

80.0 2.8195× 10−10 5.1056× 10−14 5.4609× 10−14 7.9663× 10−18

90.0 1.4626× 10−11 3.9588× 10−16 9.5991× 10−16 1.6488× 10−21

100.0 7.5871× 10−13 1.5508× 10−17 1.6873× 10−17 3.4129× 10−23

Example 2:

y′1 = 3y1 − 0.002y1y2, y1(0) = 1000

y′2 = 0.0006y1y2 − 0.5y2, y2(0) = 200.

In the second example we consider a real life problem of mathemat-
ical models for predicting the population dynamics of competing
species [3]. The problem is concerned with two species competing
for food supply. The number of the species alive at time t are de-
noted by y1(x) and y2(x). It is often assumed that, while the birth
rate of each of the species is simply proportional to the number of
the species alive at that time, the death rate of each species depends
upon the population of both species. In Figure 3, we displayed the
graphical outputs of the problem.



SYMMETRIC TWO-STEP RUNGE-KUTTA COLLOCATION METHODS . . .199

Fig. 2. Graphical Plots of Example 1 Using BAMMs and STRK
Collocation Methods

Fig. 3. Graphical Plots of Example 2 Using BAMMs and STRK
Collocation Methods

Example 3:

y′1 = (−1− y22)y1 + 20y2, y1(0) = 0

y′2 = (−1− y21)y2 − 20y1, y2(0) = 1.

This example is solved using the newly derived methods and the
block Adams-Moulton methods of the same order of convergence,
we found out that the solutions have highly oscillatory component
and asymptotic values of zeros [9].
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Table 2. Absolute errors of numerical solutions of example 3

Mesh BAMM[13] Method (16) BAMM[8] Method (20)
values y1 component y1 component y1 component y1 component

10.0 1.7570× 10−2 6.2137× 10−2 1.1713× 10−2 2.9821× 10−3

20.0 7.1850× 10−3 2.9715× 10−3 2.1916× 10−4 8.2112× 10−5

30.0 8.6465× 10−5 1.4011× 10−4 3.1866× 10−6 1.9070× 10−7

40.0 4.2600× 10−5 6.5083× 10−6 9.9200× 10−9 3.3966× 10−9

50.0 4.0594× 10−7 2.9741× 10−7 1.8300× 10−9 2.3927× 10−11

60.0 2.5232× 10−7 1.3344× 10−8 1.0659× 10−10 7.3506× 10−14

70.0 1.7779× 10−9 5.8618× 10−10 4.4197× 10−12 1.5290× 10−15

80.0 1.4929× 10−9 2.5094× 10−11 1.6042× 10−13 2.6332× 10−18

90.0 6.8384× 10−12 1.0393× 10−12 5.4139× 10−15 6.7082× 10−20

100.0 8.8245× 10−12 4.1147× 10−14 1.7432× 10−16 4.1469× 10−22

Fig. 4. Graphical Plots of Example 3 Using BAMMs and STRK
Collocation Methods

Example 4:

y′1 = −y1, y1(0) = 1

y′2 = y1 − y22, y2(0) = 0

y′3 = y22, y3(0) = 0.

The fourth experiment displayed in Figure 5, compares the graph-
ical outputs of the new methods and the block Adams Moulton’s
methods. The problem is a system of nonlinear chemical reaction
equations. These results show that the newly derived methods are
very promising and certainly have the potential to be competitive
solvers of odes.
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Table 3. Absolute errors of numerical solutions of example 4

Mesh BAMM[13] Method (16) BAMM[8] Method (20)
values y1 component y1 component y1 component y1 component

10.0 1.6222× 10−1 6.9735× 10−2 6.5367× 10−2 1.0600× 10−2

20.0 2.1502× 10−2 3.6174× 10−3 3.1557× 10−3 6.7927× 10−5

30.0 2.8500× 10−3 1.8765× 10−4 1.5234× 10−4 4.3489× 10−7

40.0 3.7776× 10−4 9.7344× 10−6 7.3549× 10−6 2.7843× 10−9

50.0 5.0071× 10−5 5.0496× 10−7 3.5507× 10−7 1.7826× 10−11

60.0 6.6364× 10−6 2.6194× 10−8 1.7141× 10−8 1.1413× 10−13

70.0 8.7966× 10−7 1.3599× 10−9 8.2755× 10−10 7.3070× 10−16

80.0 1.1659× 10−7 7.0488× 10−11 3.9951× 10−11 4.6782× 10−18

90.0 1.5454× 10−8 3.6565× 10−12 1.9287× 10−12 2.9951× 10−20

100.0 2.0483× 10−9 1.8967× 10−13 9.3113× 10−14 1.9175× 10−22

Fig. 5. Graphical Plots of Example 4 Using BAMMs and STRK
Collocation Methods

Example 5: The integral surface of a TORUS,

y′1 = −y2 −
y1y3√
y21 + y22

, y1(0) = 3

y′2 =
y1 − y2y3√
y21 + y22

, y2(0) = 0

y′3 =
y1√
y21 + y22

, y3(0) = 0.

The fifth experiment is a very good standard test example of the
integral surface of a TORUS which is one of the DETEST prob-
lem set of [6]. Graphs of the plots exhibit excellent computations
of the newly derived methods displayed in Figure 6.
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Fig. 6. Graphical Plots of Example 5 Using BAMMs and STRK
Collocation Methods

Example 6: Almost periodic initial value problem.
We consider the almost periodic initial value problem which was
earlier studied by some eminent authors, for example [5] and the
references therein,

y′′ + y′ = 0.001eix, y(0) = 0, y′(0) = 0.9995i, y ∈ R1 (a)

whose theoretical solution is
y(x) = u(x) + iv(x), u, v ∈ R1,

u(x) = cosx+ 0.0005xsinx,

v(x) = sinx− 0.0005xcosx.

(b)

The initial value problem in (a) can be expressed as
y′1 = −y2, y1(0) = 1

y′2 = −y1 + 0.001cos(x), y2(0) = 0

y′3 = y4, y3(0) = 0

y′4 = −y3 + 0.001sin(x), y4(0) = 0.9995.

(c)

We solved the system in (c) and all the solutions generated by our
new methods trace the paths of the theoretical or exact solutions,
see Figure 7.
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Fig. 7. Graphical Plots of Example 6 Using BAMMs and STRK
Collocation Methods

6. Concluding Remarks

For the symmetric two-step Runge-Kutta collocation methods we
have evaluated their performance on a set of challenging systems of
first order initial value problems and compared their performance
with some existing codes or theoretical solutions. The numerical
results are quite satisfactory and suggest that these methods may
have a useful role in the solution of systems of first order initial
value problems in ordinary differential equations.
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