
Journal of the Vol. 33, pp. 205-230, 2014

Nigerian Mathematical Society c©Nigerian Mathematical Society

A COMPARISON OF THE IMPLICIT DETERMINANT
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ABSTRACT. It is well known that if the largest or smallest
eigenvalue of a matrix has been computed by some numerical
algorithms and one is interested in computing the correspond-
ing eigenvector, one method that is known to give such good
approximations to the eigenvector is inverse iteration with a
shift. However, in a situation where the desired eigenvalue is
defective, inverse iteration converges harmonically to the eigen-
value close to the shift. In this paper, we extend the implicit
determinant method of Spence and Poulton [13] to compute a
defective eigenvalue given a shift close to the eigenvalue of in-
terest. For a defective eigenvalue, the proposed approach gives
quadratic convergence and this is verified by some numerical
experiments.
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1. INTRODUCTION

Inverse iteration was first discovered by Wielandt in his paper [16]
and later studied extensively by Wilkinson in ([17], [18]). Given
that an eigenvalue of a matrix has been computed by QR factoriza-
tion or any other algorithm, inverse iteration is used to calculate the
corresponding eigenvector. Inverse iteration can also be used to find
an eigenvalue and its corresponding eigenvector, infact, Wilkinson
linked it with Newton’s method.

Consider the nonlinear eigenvalue problem

Aφ = λφ, φ ∈ Rn, φ 6= 0 and λ ∈ R. (1)

equation Inverse iteration is an iterative method for computing the
eigenvalue and corresponding eigenvector of A simultaneously [18].
Let α be a shift or an approximation to an eigenvalue of A, inverse
iteration is also used to compute an eigenvector associated with an
eigenvalue closest to α. Inverse iteration can also be described as
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applying the Power method to (A− αI)−1 in exact arithmetic [8].
However, in situations where the desired eigenvalue is defective,
inverse iteration converges harmonically to the eigenvalue close to
the shift. It is as a result of this that in this article, we extend the
implicit determinant method of Spence and Poulton [13] to com-
pute a defective eigenvalue given a shift close to the eigenvalue of
interest. For a defective eigenvalue, the proposed approach gives
quadratic convergence. In otherwords, we give the nonsymmetric
version of inverse iteration and then extend the implicit determi-
nant method of Spence and Poulton (in their case, they considered
a parameter-dependent Hermittian matrix) to a nonsymmetric ma-
trix. We conclude by comparing the nonsymmetric version of the
implicit determinant method with inverse iteration. The discussion
on inverse iteration in this paper is a special case of [5] for the
standard eigenvalue problem.

The implicit determinant method is actually an application of
Newtons method in finding the zeros of a nonlinear function f(λ)
(to be described shortly). The main crux of this article centres
around the theory of Jordan blocks and precisely two-dimensioal
Jordan blocks.

Two-dimensional Jordan blocks arise when one considers the prob-
lem of computing the nearest defective matrix from a simple one.
Alam and Bora [2] developed a numerical algorithm for computing
the distance of a simple matrix from the set of matrices having a
Jordan block of at least dimension two. Jordan blocks appear in
Freitag and Spence [6], who computed the distance of a stable ma-
trix to the set of unstable matrices by computing a 2-dimensional
Jordan block in a special class of parameter-dependent Hamiltonian
matrices. Next, we define some Linear Algebra terms and summa-
rize the theory of Jordan blocks.

We first define what a Jordan block is, algebraic and geometric
multiplicities of the eigenvalue of a matrix, as well as what it means
for a matrix to have a 2-dimensional Jordan block.

Let A ∈ R be a real n by n matrix and λ ∈ C an eigenvalue of
A corresponding to the nonzero eigenvector φ ∈ Cn, such that

Aφ = λφ. (2)

The vector φ is often referred to as a right eigenvector [11]. A
left eigenvector corresponding to the eigenvalue λ is defined as any
nonzero vector ψ that satisfies ψTA = λψT . The term geometric
multiplicity of an eigenvalue λ of A is defined as the dimension of
the nullspace of (A−λI). The algebraic multiplicity of an eigenvalue
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λ of A is its multiplicity as a root of the characteristic polynomial
of A (see, for example, [15, p. 184]). We say λ is algebraically
simple if it is a simple root of the characteristic polynomial. If λ is
algebraically simple, then its corresponding left and right eigenvec-
tors are not orthogonal, that is ψTφ 6= 0 (see, for example, [5, p.
29, equation 2.2]).

Organization of the Paper

The plan of this paper is as follows. In Section 1.1, we describe
two mathematical tools used: the ’ABCD’ Lemma and the implicit
determinant method. Furthermore, in Section 1.2, we give the non-
symmetric version of inverse iteration and then extend the implicit
determinant method of Spence and Poulton to a nonsymmetric ma-
trix. We also compare this nonsymmetric version of the implicit
determinant method with inverse iteration. Numerical experiments
are given which confirms and backs up our theoretical discussion
and we used Matlabr Version 7.9.0.529 (R2009b). As mentioned
earlier in the introduction, since the implicit determinant method
is an application of Newton’s method, we give a ’rigorous’ proof on
the quadratic convergence of Newton’s method in Appendix A.

In the next section, we present a review on the implicit determi-
nant method of Spence and Poulton for the solution of a nonlinear
eigenvalue problem arising from photonic crystals [13] as well as
Keller’s [10] ABCD Lemma.

1. PRELIMINARY

1.1. Background: ABCD Lemma and the Implicit Deter-
minant
Method. In this section, we present two key mathematical tools
that will be of great use in this paper. In the first case, we present
Keller’s [10] ABCD Lemma. Secondly, we review the implicit de-
terminant method of Spence and Poulton [13] which makes use of
a special case of the ABCD Lemma and Cramer’s rule. The key
results in this section are Lemmas 1.1 and 1.2.

We begin by defining what it means for a matrix to have a 2-
dimensional Jordan block. But before we do that, it is important
to know what a Jordan block is first.

Definition 1.1. [12, p. 358] A square upper-triangular matrix J(λ)
that satisfies the following properties

(a). all its main diagonal entries equal λ,
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(b). all its entries on the first superdiagonal equal to one,
(c). all other entries are zero,

is called a Jordan block.

The following result explains the relationship between the Jordan
decomposition of A and the Jordan block of A.

Theorem 1.1. [7, p. 317] If A ∈ Cn×n, then there exists a non-
singular Y ∈ Cn×n such that

J = Y−1AY = diag
(
J(λ1),J(λ2), . . . ,J(λt)

)
,

where

J(λi) =


λi 1 · · · 0

0 λi
. . .

...
. . . . . . . . .

...
. . . . . . 1

0 · · · 0 λi

 ,
is a m(λi) by m(λi) and m(λ1) +m(λ2) + · · ·+m(λt) = n, m(λi) is
the algebraic multiplicity of λi and t is the number of linearly inde-
pendent eigenvectors of A corresponding to the number of blocks.

A way to recognise if the matrix A(γ) has a 2-dimensional Jordan
block is given in the next definition.

Definition 1.2. [6] Let λ∗ be an eigenvalue of A. A has a 2-
dimensional Jordan block corresponding to the eigenvalue λ∗ if λ∗

has algebraic multiplicity 2 and geometric multiplicity 1.

An immediate consequence of λ∗ being algebraically double and
geometrically simple in the above definition is explained as follows.

If φ∗ ∈ N
(
A− λ∗I

)
\{0} and ψ∗ ∈ N

(
A− λ∗I

)T\{0}, then

ψ∗Tφ∗ = 0, (3)

and there exists a generalised eigenvector φ̂∗ corresponding to λ∗

which satisfies(
A− λ∗I

)
φ̂∗ = φ∗, and ψ∗T φ̂∗ 6= 0. (4)

We have used the Jordan chain equations (see, for example [12, pp.

359]) to arrive at the last equation and the condition ψ∗T φ̂∗ 6= 0
ensures that the dimension of the Jordan block is exactly 2. After
premultiplying both sides of (4) by

(
A− λ∗I

)
, we obtain(

A− λ∗I
)2
φ̂∗ =

(
A− λ∗I

)
φ∗ = 0.
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This shows that the algebraic multiplicity of λ∗ is at least two and
that φ̂∗ is indeed a generalised eigenvector. Before we continue, we
give some further definitions in use.

Definition 1.3. [2] An n × n matrix is simple if it has n distinct
eigenvalues.

Definition 1.4. [15, p. 185] An eigenvalue is said to be defective if
its algebraic multiplicity is greater than its geometric multiplicity.
A matrix is said to be defective if it has one or more defective
eigenvalues.

First, we present the one-dimensional version of Keller’s [10] ABCD
Lemma.

Lemma 1.1. The ”ABCD” Lemma
Let A be an n by n matrix, b, c ∈ Rn and d ∈ R. Let

M =

[
A b
cT d

]
, (5)

be an (n+ 1) by (n+ 1) real matrix.

(a). Suppose that A is nonsingular, then there exists the follow-
ing decomposition of M,[

A b
cT d

]
=

[
I 0

cTA−1 1

] [
A b
0T d− cTA−1b

]
. (6)

The matrix M is nonsingular if and only if d−cTA−1b 6= 0.
(b). If A is singular of rank(A) = n−1, then M is nonsingular if

and only if ψTb 6= 0, for all ψ ∈ N (AT )\{0} and cTφ 6= 0,
for all φ ∈ N (A)\{0}. Where N (A) is the nullspace of A.

Proof: See [10].

Next, we describe Spence and Poulton’s implicit determinant method
as formulated in [13]. The aim of presenting the implicit determi-
nant method is because we want to extend it to the parameter-
dependent nonsymmetric matrix case to find a 2-dimensional Jor-
dan block.

The implicit determinant method of Spence and Poulton [13] is a
method of converting a nonlinear problem for square matrices into
an equivalent scalar problem. We can solve the scalar problem in a
number of ways, for example, using the bisection method. The fact
that it is efficient to implement Newton’s method is an added ad-
vantage. In Spence and Poulton (2005), the theory of the implicit
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determinant method was given for the case in which A(γ) is Hermit-
ian, and comparisons were made on the convergence of the implicit
determinant method and nonlinear inverse iteration applied to a
nonlinear eigenvalue problem arising in a photonic crystal problem.

Given a parameter-dependent Hermittian matrix A(γ). In addi-
tion, let A(γ) be a smooth function of γ. Let [13, p. 69]

A(γ)x = 0, where x 6= 0, (7)

be a parameter-dependent eigenvalue problem.
Consider the following (n+ 1) by (n+ 1) bordered linear system

of equations [13, p. 70],[
A(γ) b
bH 0

] [
x
f

]
=

[
0
1

]
, (8)

which shows that the eigenvector x is normalised using bHx = 1.
The following result is the main mathematical tool of Spence and
Poulton’s implicit determinant method.

Lemma 1.2. [13, pp. 70] Let (x∗, γ∗) solve (7) with A(γ) Her-
mitian. Assume that zero is a simple eigenvalue of A(γ∗), such
that

(a). dimN
[
A(γ∗)

]
= 1.

(b). For some b ∈ Cn\{0}, assume

bHx∗ 6= 0. (9)

Then the (n+ 1) by (n+ 1) matrix M(γ) defined by

M(γ) =

[
A(γ) b
bH 0

]
,

is nonsingular at γ = γ∗.

Proof: See [10].

From the result of Lemma 1.2, M(γ) is nonsingular at the root.
Following [13], this means that by an application of the implicit
function theorem (see, for example, [14, p. 186]) M(γ) is nonsingu-
lar for γ near γ∗ because A(γ) is a smooth function of γ. Therefore,
from equation (8), x and f are smooth functions of γ and we can
write x = x(γ) and f = f(γ). So that (8) becomes[

A(γ) b
bH 0

] [
x(γ)
f(γ)

]
=

[
0
1

]
. (10)
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Now, by applying Cramer’s rule (see [9, p. 414]) to (10), we obtain

f(γ) =
det A(γ)

det M(γ)
. (11)

Observe that because A(γ) and M(γ) are both Hermitian, this
means that f(γ) is real. We conclude by saying that the main
idea behind the implicit determinant method is that if M(γ) is
nonsingular, then f(γ) = 0 if and only if A(γ) is singular. So we
seek zeros of f(γ) as a way of finding the zeros of the determinant
of A(γ). Spence and Poulton continue by finding the solution of
f(γ) = 0 using Newton’s method, which requires the calculation of
f ′(γ), where f ′(γ) = d

dγ
f(γ). This is accomplished by solving[

A(γ) b
bH 0

] [
x′(γ)
f ′(γ)

]
= −

[
A′(γ)x(γ)

0

]
,

obtained by differentiating both sides of (10) with respect to γ.
After which the sequence of γ iterates is computed by γ(k+1) =
γ(k) − f(γ(k))/f ′(γ(k)), for k = 0, 1, 2, . . .. Using the above ma-
trix equation, f ′(γ∗) was shown to be equal to −x∗HA′(γ∗)x(γ∗).
Hence, f ′(γ∗) is nonzero provided x∗HA′(γ∗)x(γ∗) is nonzero.

In the next section, we present the implicit determinant method
for a nonsymmetric matrix and compare it with inverse iteration.

3. THE HEART OF THE MATTER

1.2. A Comparison of the Implicit Determinant Method
and Inverse Iteration. Let A be a real n by n nonsymmetric
matrix. In this section, we give the nonsymmetric version of in-
verse iteration and then extend the implicit determinant method of
Spence and Poulton to a nonsymmetric A. We conclude by com-
paring this version of the implicit determinant method with inverse
iteration. The discussion on inverse iteration in this section is a
special case of [5] for the standard eigenvalue problem.

Recall from (2) that (A − λI)φ = 0. So, if we add to (2) the
eigenvector normalization cTφ = 1, then the extended system of
nonlinear equations becomes: (see, also [5, p. 29])

F(w) =

[
(A− λI)φ
cTφ− 1

]
= 0, (12)
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where w = [φT , λ]. Using the ABCD Lemma [10], it can be shown
that the Jacobian Fw(w) is nonsingular,

Fw(w) =

[
A− λI −φ

cT 0

]
. (13)

at the root. Hence, its inverse exists at an algebraically simple
eigenvalue (i.e., ψTφ 6= 0, for all ψ ∈ N (AT − λI)\{0} and φ ∈
N (A − λI)\{0}) and if c is chosen such that cTφ 6= 0. Newton’s
method

Fw(w(k))∆w(k) = −F(w(k))

w(k+1) = w(k) + ∆w(k), (14)

with cTφ(k) = 1, now becomes[
A− λ(k)I −φ(k)

cT 0

][
∆φ(k)

∆λ(k)

]
= −

[
(A− λ(k)I)φ(k)

cTφ(k) − 1

]
. (15)

By expanding the above, we have the following system of equations

(A− λ(k)I)∆φ(k) −∆λ(k)φ(k) = −(A− λ(k)I)φ(k) (16)

cT∆φ(k) = 0. (17)

After collecting like terms in the first equation above and using the
relation
φ(k+1) = φ(k) + ∆φ(k), we obtain

(A− λ(k)I)φ(k+1) = ∆λ(k)φ(k) (18)

Upon division of both sides by ∆λ(k) and letting w(k) = φ(k+1)

∆λ(k)
we

have

(A− λ(k)I)w(k) = φ(k), (19)

using the fact that cT∆φ(k) = 0, we have cTφ(k+1) = cT (φ(k) +
∆φ(k)) = 1. Hence, cTw(k) = 1

∆λ(k)
, from which ∆λ(k) = 1

cTw(k) .
Therefore,

φ(k+1) = ∆λ(k)w(k)

=
w(k)

cTw(k)
. (20)

By making use of (14) we have

λ(k+1) = λ(k) + ∆λ(k)

= λ(k) +
1

cTw(k)
. (21)

From the above analysis, Algorithm 1.1 is immediate.
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Algorithm 1.1. Inverse Iteration and Newton’s Method

(1) Choose φ(0), λ(0), c such that cTφ(0) = 1, and such that the
conditions of Lemma 1.1 is satisfied and tol.

(2) For k = 1, 2, · · · , until convergence

(3) Solve (A− λ(k)I)w(k) = φ(k−1).
(4) Compute ∆λ(k) = 1

cTw(k) .

(5) Compute λ(k+1) = λ(k) + ∆λ(k).
(6) Update φ(k+1) = ∆λ(k)w(k).
(7) Test for convergence.
(8) Output φ∗ and λ∗.

Next, we describe the implicit determinant method for a nonsym-
metric A. Consider the following (n+ 1) by (n+ 1) bordered linear
system of equations [13, p. 70],[

(A− λI) b
cT 0

] [
x
f

]
=

[
0
1

]
. (22)

Lemma 1.3. Let (x∗, λ∗) solve (22). Assume that zero is a simple
eigenvalue of (A− λ∗I), such that

(a). dimN
[
(A− λ∗I)

]
= 1.

(b). For some b, c ∈ Rn\{0}, assume

ψ∗Tb 6= 0, and cTx∗ 6= 0, (23)

for all ψ∗ ∈ N
[
(AT − λ∗I)

]
.

Then the (n+ 1) by (n+ 1) matrix M(λ∗) defined by

M(λ∗) =

[
(A− λ∗I) b

cT 0

]
,

is nonsingular.

Proof: See [10].

Since the result of Lemma 1.3 shows that M(λ∗) is nonsingular,
then following [13], this means that by an application of the im-
plicit function theorem (see, for example, [14, p. 186]), M(λ) is
nonsingular for λ near λ∗ because (A− λI) is a smooth function of
λ. Therefore, from (22) x and f are smooth functions of λ and we
can write x = x(λ) and f = f(λ). So that (22) becomes[

(A− λI) b
cT 0

] [
x(λ)
f(λ)

]
=

[
0
1

]
. (24)
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Now, by applying Cramer’s rule (see [9, p. 414]) to (24), we obtain

f(λ) =
det(A− λI)

det M(λ)
. (25)

By the implicit determinant method, if M(λ) is nonsingular, then
f(λ) = 0 if and only if (A− λI) is singular, which is attainable at
the root. So we seek zeros of f(λ) as a way of finding the zeros
of the determinant of (A − λI). To find the solution of f(λ) = 0
using Newton’s method, we need f ′(λ), where f ′(λ) = d

dλ
f(λ). This

means we have to differentiate (24) with respect to λ and solve[
(A− λI) b

cT 0

] [
x′(λ)
f ′(λ)

]
=

[
x(λ)

0

]
. (26)

After which the sequence of λ iterates is computed by

λ(k+1) = λ(k) − f(λ(k))

f ′(λ(k))
, (27)

for k = 0, 1, 2, . . ., until convergence. At the root, observe that by
expanding the first row of (26), one obtains

(A− λ∗I)x′(λ∗) + f ′(λ∗)b = x(λ∗). (28)

Hence, after premultiplying both sides by ψ∗T , then

f ′(λ∗) =
ψ∗Tx(λ∗)

ψ∗Tb
, since ψ∗Tb 6= 0. (29)

But for an algebraically simple eigenvalue, the left and right eigen-
vector are not orthogonal i.e., ψ∗Tx(λ∗) 6= 0. Therefore,

f ′(λ∗) 6= 0. (30)

Algorithm 1.2 is now immediate.

Algorithm 1.2. Implicit Determinant Method Algorithm for a Sim-
ple Matrix

(1) Choose b, c, λ(0), such that M(λ(0)) is nonsingular, tol.
(2) For k = 1, 2, · · · , until convergence
(3) Solve (24) for x(λ) and f(λ).
(4) Solve (26) for x′(λ) and f ′(λ).
(5) Update

λ(k+1) = λ(k) − f(λ(k))

f ′(λ(k))
.

(6) Test for convergence.
(7) Output x(λ∗) and λ∗.
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Stop Algorithm 1.2 as soon as

‖f(λ(k))‖ ≤ tol.

Now, we present the theory to explain the link between the im-
plicit determinant method and inverse iteration. For ease of nota-
tion, we shall drop the superscripts k and write λ(k+1) = λ+ and
λ(k) = λ.

We start by assuming that λ 6= λ∗, which implies (A − λI) is
nonsingular. Observe by expanding along the first row of (24),
that

(A− λI)x(λ) + bf(λ) = 0, and x(λ) + (A− λI)−1bf(λ) = 0.

Premultiply both sides by cT and solve for f(λ) using the second
row of (24) to obtain

f(λ) = − 1

cT (A− λI)−1b
. (31)

Similarly, it can be shown by using the first row of (26) and cTx′(λ)
from the second row that

f ′(λ) =
cT (A− λI)−1x(λ)

cT (A− λI)−1b
. (32)

Note from (19), that if we replace w with y and φ with x, that is,

(A− λI)y = x, then y = (A− λI)−1x(λ),

and we can rewrite (32) as

f ′(λ) =
cTy

cT (A− λI)−1b
.

Now, it is easy to see that (27) reduces to

λ+ = λ+
1

cTy
.

The above equation, which is the same update for λ as that obtained
using inverse iteration, see (21). What remains now is to give the
implicit determinant method’s analogue for the eigenvector update
which can be explained as follows.

Set (A− λI)z = b in (24) and expand the first row to obtain

(A− λI)x(λ) + f(λ)(A− λI)z = 0, then x(λ) = −f(λ)z.

By premultiplying both sides of x(λ) = −f(λ)z, by cT , we have
f(λ) = − 1

cT z
. Hence, x(λ) = −f(λ)z can be rewritten as x(λ) =

z
cT z

.
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Example 1.1. Consider

D = diag{−10, 9,−8, 7,−6, 5,−4, 3,−2, 1} (33)

and the matrix A = XDX−1, where X is a nonsymmetric random
10 by 10 matrix. So A is nonsingular. We compare the convergence
to a simple eigenvalue of inverse iteration and the implicit determi-
nant method. We make the fixed choice for c and b as c = 1/‖1‖
and b = [(A−λ(0)I)T ]−1c, where λ(0) = 0.1, and c = 1 is the vector
of all ones. See results in Tables 1 and 2.

We see from Table 1 that the implicit determinant Algorithm 1.2
converged to the eigenvalue λ∗ ≈ 1 and quadratic convergence is
seen in the third column.

Table 1. Values of λ(k) and f(λ(k)) of Example 1.1
using the implicit determinant method (Algorithm
1.2). Column 3 show that the results converged
quadratically for k = 5 and 6. The last column shows
the angle between x(λ(k)) and x(λ∗) in radians.

k λ(k) f(λ(k)) θ(k)

0 1.0000000000000001e-01 Inf 0.0e+00
1 1.0000000000000001e-01 1.5e-01 4.7e-01
2 6.2059513954948309e-01 4.5e-02 1.6e-01
3 9.4639992744280654e-01 5.6e-03 2.0e-02
4 9.9905160715023478e-01 9.8e-05 3.6e-04
5 9.9999970803503402e-01 3.0e-08 1.1e-07
6 9.9999999999987121e-01 4.0e-15 0.0e+00
7 9.9999999999990963e-01 8.3e-16 0.0e+00

Table 2. Values of λ(k) and |∆λ(k)| of Example
1.1. Column 3 show that the inverse iteration Al-
gorithm 1.1 converged quadratically for k = 3, 4 and
5. However, Matlab complained of the singularity of
(A−λ∗I) for k = 7. The last column shows the angle
between φ(k) and x(λ∗) in radians.

k λ(k) |∆λ(k)| θ(k)

0 1.0000000000000001e-01 Inf 0.0e+00
1 1.0000000000000001e-01 1.4e+00 4.7e-01
2 1.4835721862680826e+00 3.5e-01 4.7e-01
3 1.1307842488543134e+00 1.2e-01 5.3e-02
4 1.0108595562087610e+00 1.1e-02 2.4e-03
5 9.9999481363113973e-01 5.2e-06 1.4e-05
6 9.9999999987802568e-01 1.2e-10 0.0e+00
7 1.0000000000000322e+00 - 0.0e+00
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We conclude from the third columns of Tables 1 and 2 that both
the implicit determinant method and inverse iteration converge qua-
dratically with a good enough starting guess.

We conclude this section by saying that the implicit determinant
method is an inefficient way of carrying out inverse iteration. This
is because it involves solving two linear systems at each iteration.
However, one advantage of the implicit determinant method over
inverse iteration is that it converges quadratically when the dimen-
sion of the nullspace of (A − λ∗I) is one, which includes the case
when λ∗ is a defective eigenvalue. Inverse iteration converges with
O(1/k) for k → ∞, k ∈ N when λ∗ is a defective eigenvalue as
illustrated in [18]. Other advantages of the implicit determinant
method can be seen in [1].

In the next section, we present a description of the implicit de-
terminant method and inverse iteration for a defective eigenvalue.

1.3. Implicit Determinant Method and Inverse Iteration
for a Defective Eigenvalue. At the tail end of the last sec-
tion, we mentioned that the implicit determinant method converges
quadratically for a defective eigenvalue and inverse iteration con-
verges harmonically. In this section, we present the theory of the
implicit determinant method for a defective matrix and present nu-
merical results to compare its convergence with inverse iteration.

We begin by making the following remark backed up with a nu-
merical example. For a defective eigenvalue λ∗, Algorithm 1.2 con-
verges linearly.

Example 1.2. We consider the A = XJX−1, where X is a non-
symmetric but random matrix and

J =



−1 1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 −8 0 0 0 0 0 0 0
0 0 0 7 0 0 0 0 0 0
0 0 0 0 −6 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0 0 11


. (34)

The structure of J shows that A has a 2-dimensional Jordan block
corresponding to the double eigenvalue -1. The aim is to compare



218 R. O. AKINOLA AND A SPENCE

the convergence of the implicit determinant method and inverse it-
eration. We use the same values for c and b as in the preceding
example with λ(0) = −0.1. Results of a numerical experiment which
shows that Algorithm 1.2 converges linearly is presented in Table 3.

We observe linear convergence to the double eigenvalue λ∗ = −1
as shown in Table 3.

Table 3. Values of λ(k) and f(λ(k)) of Example 1.1
using the implicit determinant method (Algorithm
1.2). Column 3 show that the results converged lin-
early to the eigenvalue λ∗ ≈ −1. The last column
shows the angle between x(λ(k)) and x(λ∗) in radians.

k λ(k) f(λ(k)) θ(k)

0 -1.0000000000000001e-01 Inf 0.0e+00
1 -1.0000000000000001e-01 2.9e-02 2.9e-01
2 -6.9283591626360030e-01 5.1e-03 1.3e-01
3 -8.7380099988202919e-01 1.1e-03 7.1e-02
4 -9.4317106696159647e-01 2.4e-04 3.7e-02
5 -9.7304975133933103e-01 5.7e-05 1.9e-02
6 -9.8687638851037474e-01 1.4e-05 9.4e-03
7 -9.9352418513524987e-01 3.4e-06 4.7e-03
8 -9.9678335110488692e-01 8.5e-07 2.4e-03
9 -9.9839696011811008e-01 2.1e-07 1.2e-03

10 -9.9919979743351017e-01 5.3e-08 5.9e-04
11 -9.9960022759069178e-01 1.3e-08 3.0e-04
12 -9.9980019596300884e-01 3.3e-09 1.5e-04
13 -9.9990011851389116e-01 8.3e-10 7.4e-05
14 -9.9995006439987510e-01 2.1e-10 3.7e-05
15 -9.9997503347743444e-01 5.2e-11 1.9e-05
16 -9.9998751727209412e-01 1.3e-11 9.3e-06
17 -9.9999375865895801e-01 3.2e-12 4.6e-06
18 -9.9999687988314290e-01 8.1e-13 2.3e-06
19 -9.9999844051901110e-01 2.0e-13 1.2e-06
20 -9.9999922146580489e-01 5.0e-14 5.8e-07
21 -9.9999961158516693e-01 1.3e-14 2.9e-07
22 -9.9999981779099434e-01 3.1e-15 1.3e-07
23 -9.9999992159144380e-01 6.0e-16 5.8e-08

For a defective eigenvalue λ∗, with algebraic multiplicity two and
geometric multiplicity one, then ψ∗Tx(λ∗) = 0, and so from (29)

f ′(λ∗) = 0. (35)
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Thus, (28) gives
(A− λ∗I)x′(λ∗) = x(λ∗), (36)

so that x′(λ∗) is a generalised eigenvector of λ∗. Since λ∗ has alge-
braic multiplicity two,

ψ∗Tx′(λ∗) 6= 0. (37)

Now, differentiate (26) with respect to λ again to obtain[
(A− λI) b

cT 0

] [
x′′(λ)
f ′′(λ)

]
=

[
2x′(λ)

0

]
. (38)

After expanding along the first row and premultiplying both sides
by ψ∗T at the root, then we obtain

ψ∗T (A− λ∗I)x′′(λ∗) + f ′′(λ∗)ψ∗Tb = 2ψ∗Tx′(λ∗).

Since ψ∗ ∈ N (AT − λ∗I), this implies

f ′′(λ∗) =
2ψ∗Tx′(λ∗)

ψ∗Tb
.

Consequently, from (37), we conclude that

f ′′(λ∗) 6= 0. (39)

It is well known that for a double root, the standard Newton’s
method of a scalar nonlinear problem

λ(k+1) = λ(k) − f(λ(k))

f ′(λ(k))
,

can be altered to

λ(k+1) = λ(k) − 2
f(λ(k))

f ′(λ(k))
,

for k = 0, 1, 2, 3, . . . . This now leads to the following implicit deter-
minant method algorithm for an algebraically double and geomet-
rically simple eigenvalue.

Algorithm 1.3. Implicit Determinant Method Algorithm for a De-
fective Matrix

(1) Choose b, c, λ(0), such that M(λ(0)) is nonsingular, tol.
(2) For k = 1, 2, · · · , until convergence
(3) Solve (24) for x(λ) and f(λ).
(4) Solve (26) for x′(λ) and f ′(λ).
(5) Update

λ(k+1) = λ(k) − 2
f(λ(k))

f ′(λ(k))
.
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(6) Test for convergence.
(7) x(λ∗) and λ∗.

Algorithm 1.3 gives quadratic convergence and should be stopped
as soon as

‖f(λ(k))‖ ≤ tol.

Example 1.3. We now apply Algorithm 1.3 to the same matrix
in Example 1.2. The results are presented in Table 4. Quadratic

Table 4. Values of λ(k) and f(λ(k)) of Example 1.2
using the implicit determinant method (Algorithm
1.3). Column 3 show that the results converged
quadratically for k = 5 and 6. The last column shows
the angle between x(λ(k)) and x(λ∗) in radians.

k λ(k) f(λ(k)) θ(k)

0 -1.0000000000000001e-01 Inf 0.0e+00
1 -1.0000000000000001e-01 2.9e-02 2.9e-01
2 -1.2856718325272007e+00 2.6e-02 6.1e-01
3 -1.1834901395004076e+00 4.9e-03 2.5e-01
4 -1.0559116144280840e+00 2.9e-04 4.8e-02
5 -1.0036805192714482e+00 1.1e-06 2.8e-03
6 -1.0000140602287790e+00 1.6e-11 1.0e-05
7 -1.0000000000051936e+00 2.4e-16 0.0e+00

convergence is observed in the third column of Table 4 for k = 5
and 6.

Observe that for a defective eigenvalue, because f(λ∗) = 0 and
f ′(λ∗) = 0, we can use the Gauss-Newton method to solve the
combined two nonlinear equations in one unknown. This forms the
basis for our next discussion below.

For a defective eigenvalue λ∗, since f(λ∗) = 0 and f ′(λ∗) = 0 but
f ′′(λ∗) 6= 0. This shows that we can write the resulting nonlinear
system of equations as an over-determined nonlinear system of two
equations

F(λ) =

[
f(λ)
f ′(λ)

]
= 0, (40)

in one real unknown λ. The last equation can be re-written as the
following nonlinear least squares problem;

min
λ∈R

‖F(λ)‖,
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which is the same as minimizing 1
2
F(λ)TF(λ). Now, observe that

the Jacobian of (40) is

Fλ(λ) =

[
f ′(λ)
f ′′(λ)

]
.

Using standard Gauss-Newton techniques (see, for example [3]),
then we have for k = 0, 1, 2, . . . that

Fλ(λ
(k))TFλ(λ

(k))∆λ(k) = −Fλ(λ
(k))TF(λ).

Therefore,(
f ′2(λ(k)) + f ′′2(λ(k))

)
∆λ(k) = −[f ′(λ(k))f(λ(k)) + f ′′(λ(k))f ′(λ(k))],

and

∆λ(k) = − [f ′(λ(k))f(λ(k)) + f ′′(λ(k))f ′(λ(k))](
f ′(λ(k))2 + f ′′(λ(k))2

) .

Since at the root, f(λ) = f ′(λ) = 0 but f ′′(λ) is nonzero, this means
that the above expression is valid at the root. Hence, the following
algorithm, Algorithm 1.4 can be used to compute an algebraically
double and geometrically simple eigenvalue of a defective matrix.

Algorithm 1.4. Implicit Determinant Method Algorithm for a De-
fective Matrix

(1) Choose b, c, λ(0), such that M(λ(0)) is nonsingular, tol.
(2) For k = 1, 2, · · · , until convergence
(3) Solve (24) for x(λ(k)) and f(λ(k)).
(4) Solve (26) for x′(λ(k)) and f ′(λ(k)).
(5) Solve[

(A− λ(k)I) b
cT 0

] [
x′′(λ(k))
f ′′(λ(k))

]
=

[
2x′(λ(k))

0

]
,

for x′′(λ(k)) and f ′′(λ(k)).
(6) Compute

∆λ(k) = − [f ′(λ(k))f(λ(k)) + f ′′(λ(k))f ′(λ(k))](
f ′(λ(k))2 + f ′′(λ(k))2

) .

(7) Update λ(k+1) = λ(k) + ∆λ(k).
(8) Test for convergence.
(9) Output x(λ∗) and λ∗.

Stop Algorithm 1.4 as soon as

‖∆λ(k)‖ ≤ tol.
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Table 5. Values of λ(k), |f(λ(k))| and |∆λ(k)| of Ex-
ample 1.2 using the implicit determinant method and
the Gauss-Newton method (Algorithm 1.4). Column
4 show that the results converged quadratically for
k = 4, 5 and 6.

k λ(k) |f(λ(k))| |∆λ(k)|
0 -1.0000000000000001e-01 Inf Inf
1 -1.0000000000000001e-01 4.2e-02 8.2e-01
2 -9.2060596788524907e-01 5.7e-04 8.9e-02
3 -1.0100862296075745e+00 1.0e-05 9.9e-03
4 -1.0001831090567705e+00 3.3e-09 1.8e-04
5 -1.0000000596542082e+00 1.2e-15 6.0e-08
6 -1.0000000000000111e+00 1.5e-15 6.9e-15
7 -1.0000000000000042e+00 6.2e-16 1.4e-15

Example 1.4. Table 6 shows the result obtained after applying the
inverse iteration algorithm, Algorithm 1.1 with the same starting
guesses as those in the implicit determinant method.

Note that inverse iteration for a matrix with a defective eigen-
value gives O( 1

k
) convergence as against the quadratic convergence

of the implicit determinant method. Moreover, after the k = 21
iterate, Matlab gave a warning about the singularity of (A − λ∗I).
For a matrix A in which dim

(
N (A − λ∗I)

)
= n − 1, the implicit

determinant method converge quadratically to a defective eigenvalue
while inverse iteration converges much slowly as shown in Tables 3
and 6 respectively.

Remark 1.1. We remark that if we perturb the Jordan block matrix
J in (34) by adding ε, as in

J =



−1 1 0 0 0 0 0 0 0 0
0 −1 + ε 0 0 0 0 0 0 0 0
0 0 −8 0 0 0 0 0 0 0
0 0 0 7 0 0 0 0 0 0
0 0 0 0 −6 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0 0 11


, (41)
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Table 6. Values of λ(k) and |∆λ(k)| of Example 1.1.
Column 3 show that the inverse iteration Algorithm
1.1 gave O( 1

k
) convergence, which is slow compared

to the quadratic convergence obtained in column 3 of
Table 3. However, Matlab complained of the singu-
larity of (A− λ∗I) for k = 22.

k λ(k) |∆λ(k)| θ(k)

0 -9.8999999999999999e-01 Inf 0.0e+00
1 -9.8999999999999999e-01 9.6e-02 5.997142553134e-01
2 -1.0857076510151373e+00 9.7e-02 6.166383316980e-01
3 -9.8858594680621992e-01 5.9e-03 6.177058985192e-01
4 -9.9444440554346691e-01 2.8e-03 6.194551424680e-01
5 -9.9722293199093404e-01 1.4e-03 6.204420440981e-01
6 -9.9861146791050637e-01 6.9e-04 6.209364177328e-01
7 -9.9930573395791322e-01 3.5e-04 6.211836853986e-01
8 -9.9965286698119782e-01 1.7e-04 6.213073389238e-01
9 -9.9982643348181011e-01 8.7e-05 6.213691705903e-01

10 -9.9991321674642697e-01 4.3e-05 6.214000876538e-01
11 -9.9995660836771694e-01 2.2e-05 6.214155464877e-01
12 -9.9997830417135514e-01 1.1e-05 6.214232759786e-01
13 -9.9998915212523509e-01 5.4e-06 6.214271407617e-01
14 -9.9999457603133857e-01 2.7e-06 6.214290731328e-01
15 -9.9999728777802699e-01 1.4e-06 6.214300392461e-01
16 -9.9999864473463207e-01 6.8e-07 6.214305226889e-01
17 -9.9999932267868641e-01 3.4e-07 6.214307642201e-01
18 -9.9999966195557344e-01 1.6e-07 6.214308850943e-01
19 -9.9999981720530673e-01 8.6e-08 6.214309404051e-01
20 -9.9999990344742584e-01 6.5e-08 6.214309711306e-01
21 -9.9999996833868421e-01 8.9e-08 6.214309942494e-01
22 -1.0000000577077797e+00 3.9e-08 6.214310260890e-01

and with A = XJX−1 as in the last example, then we obtained sim-
ilar results. We conclude this section that we made use of the same
random matrix X in all the numerical examples of this section.

4. CONCLUDING REMARKS

We compared numerically the rate of convergence of inverse it-
eration with the implicit determinant method for an algebraically
simple eigenvalue and a defective one. Numerical experiments show
that for an algebraically simple eigenvalue, both inverse iteration
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and the implicit determinant method give quadratic convergence.
However, for a defective eigenvalue, results show that while two
versions of the implicit determinant method show quadratic conver-
gence at a double root, inverse iteration shows O(1/k) convergence
as predicted by Wilkinson [19].

In the defective case, because there is a possibility of stagnation
in the implicit determinant method since f(λ∗) = 0 and f ′(λ∗) =
0, we showed that this short-coming can be overcomed by using
the Gauss-Newton method to solve an over-determined nonlinear
system of two real equations in one real unknown.
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Appendix A. Quadratic Convergence of Newton’s
Method

Since the implicit determinant method is an application of New-
ton’s method, the aim of this appendix is to prove the quadratic
convergence of Newton’s method for a system of nonlinear equa-
tions. The materials in this section can be found in [3]. To prove
that Newton’s method converged quadratically, we need some pre-
liminary results. We start with the following definition.

Definition A.1. : The Jacobian matrix Fx ∈ Lipγ(B(x
(0)
, r)) if

there exists a γ > 0 such that for all x,y ∈ B(x
(0)
, r),

‖Fx(y)− Fx(x)‖ ≤ γ‖y − x‖. (42)

Consider the problem of solving the following nonlinear system
of equations F(x) = 0, where F : Rn → Rn. Let Φ(t) : R→ Rn be
defined as

Φ(t) = F(x + t(y − x)),

and

F(x+t(y−x)) = [f1(x+t(y−x)), f2(x+t(y−x)), . . . , fn(x+t(y−x))]T .
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Let Φi(t) denote the ith component of Φ(t) for i = 1, 2, . . . , n, then
by the Chain rule

Φ′i(t) =
d

dt

{
fi(x + t(y − x))

}
=

∂

∂x1

fi(x + t(y − x))(y1 − x1) + . . .

+
∂

∂xn
fi(x + t(y − x))(yn − xn)

=
n∑
j=1

∂

∂xj
fi(x + t(y − x))(yj − xj)

=
[

∂
∂x1
fi(x + t(y − x)) ... ∂

∂xn
fi(x + t(y − x))

]
×

[(y1 − x1), (y2 − x2), . . . , (yn − xn)]T .

By the definition of F, we have

Φ′(t) =


∂
∂x1
f1(x + t(y − x)) ... ∂

∂xn
f1(x + t(y − x))

∂
∂x1
f2(x + t(y − x)) ... ∂

∂xn
f2(x + t(y − x))

...
...

...
∂
∂x1
fn(x + t(y − x)) ... ∂

∂xn
fn(x + t(y − x))

×
[(y1 − x1), (y2 − x2), . . . , (yn − xn)]T . (43)

Now,

F(y)− F(x) = Φ(1)−Φ(0)

=

∫ 1

0

d

dt

{
Φ(t)

}
dt (44)

=

{∫ 1

0

Fx(x + t(y − x))dt

}
(y − x),

hence, F(y) = F(x) +
∫ 1

0
Fx(x + t(y − x))dt(y − x). Assuming

we have a good guess x(0) to a solution x∗ of F(x) = 0, then by
replacing y by x∗ and x by x(0) in (44), we obtain

0 = F(x∗) = F(x(0)) +

∫ 1

0

Fx(x(0) + t(x∗ − x(0)))dt(x∗ − x(0)).

If the integral in the above expression is approximated by∫ 1

0

Fx(x(0) + t(x∗ − x(0)))dt ≈ Fx(x(0)),
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then we have

0 ≈ F(x(0)) + Fx(x(0))(x∗ − x(0)).

So that if we define ∆x(0) = x(1) − x(0), then,

F(x(0)) + Fx(x(0))∆x(0) = 0 or Fx(x(0))∆x(0) = −F(x(0)).

This means that by iterating the above for k = 1, 2, . . ., yields

Fx(x(k))∆x(k) = −F(x(k)), (45)

which is a linear system of equations. Thus, we have linearized the
nonlinear system of equations F(x) = 0 into (45). Therefore, if the
Jacobian matrix Fx(x(k)) is nonsingular, then

∆x(k) = −Fx(x(k))−1F(x(k)). (46)

The above expression for ∆x(k) and the solution to the nonlinear
system of equations F(x) = 0 for k = 0, 1, 2, . . .

x(k+1) = x(k) + ∆x(k). (47)

is called Newton’s method (see, for example, [4]).
The following n-dimensional version of the integral Mean Value

Theorem is given below.

Lemma A.1. : Let x
(0) ∈ Rn, r > 0 and F is continuously differ-

entiable on B(x
(0)
, r). Then for all x,y ∈ B(x

(0)
, r),

F(y) = F(x) +

{∫ 1

0

Fx(x + t(y − x))dt

}
(y − x).

Proof: Let Φ : R 7→ Rn be defined as Φ(t) := F(x + t(y−x)). If
Φi(t) is as defined above and using the result of (43), then Φ′i(t) =
Fx(x + t(y − x))(y − x). Using equation (44), the result holds.

The following corrolary is an immediate consequence of the last
result.

Corollary A.1. :

‖F(y)− F(x)‖ ≤ max
z=x+t(y−x)

‖Fz(x)‖‖y − x‖.

We state the following well known result without a proof.

Theorem A.1. If A and C are square nonsingular matrices and

‖C−A‖ < 1

‖A−1‖
,
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then

‖C−1‖ ≤ ‖A−1‖
1− ‖C−A‖‖A−1‖

. (48)

The following lemma, contains two important results that will be
used in the final proof for the convergence of Newton’s method.

Lemma A.2. : Let F be a continuously differentiable vector-valued
function on B(x

(0)
, r) and Fx ∈ Lipγ(B(x

(0)
, r)) and Fx(x

(0)
) is

nonsingular such that

‖[Fx(x
(0)

)]−1‖ = β.

Hence,

(a). for all x,y ∈ B(x
(0)
, r).

‖F(y)− F(x)− Fx(x)(y − x)‖ ≤ γ

2
‖y − x‖2.

(b). For all x ∈ B(x
(0)
, ε) and with ε := min

{
r, 1

2βγ

}
‖[Fx(x

(0)

)]−1‖ ≤ 2β. (49)

Proof:

(a). Let x,y ∈ B(x
(0)
, r) and ω = Fx

(
x + t(y − x)

)
. Then,

‖F(y)− F(x)− Fx(x)(y − x)‖ = ‖
∫ 1

0

{
ω − Fx(x)

}
(y − x)dt‖

≤
∫ 1

0

‖
{
ω − Fx(x)

}
(y − x)‖dt

≤
∫ 1

0

‖
{
ω − Fx(x)

}
‖‖y − x‖dt

≤ γ‖y − x‖2

∫ 1

0

tdt

=
γ

2
‖y − x‖2. (50)
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(b). Let x ∈ B(x
(0)
, ε) ⊆ B(x

(0)
, r), then

‖Fx(x)− Fx(x
(0)

)‖ ≤ γ‖x− x
(0)‖

< γε

≤ γ

2βγ

=
1

2β

≤ 1

2‖[Fx(x(0))]−1‖
.

Using the result of Theorem A.1 and the nonsingularity of
Fx(x

(0)
),

‖[Fx(x
(0)

)]−1‖ ≤ ‖[Fx(x
(0)

)]−1‖
1− ‖[Fx(x(0))]−1‖‖Fx(x)− Fx(x(0))‖

<
β

1− 1
2

= 2β.

Hence the proof.

The above results now paves the way for the proof of the quadratic
convergence of Newton’s method.

Theorem A.2. Assuming there exists a solution x∗ ∈ Rn with
F(x∗) = 0 and the conditions of Lemma A.2 are satisfied at x

(0)
=

x∗. By setting ε = min
{
r, 1

2βγ

}
and provided x

(0) ∈ B(x∗, ε), then

the following results holds:

(a). [Fx(x(k))]−1 exists, that is, Newton’s method is well defined.
(b). For all k ≥ 0, x(k) ∈ B(x∗, ε)
(c). For all k ≥ 0, ‖x(k+1) − x∗‖ ≤ βγ‖x(k) − x∗‖2

(d). x(k) converges to x∗ quadratically.

Proof:

(a).&(b). The proofs of (a) and (b) will be by induction. For k =

0, ‖[Fx(x
(0)

)]−1‖ < 2β by Lemma A.2. Hence, (a) holds.

Similarly, because by choice x
(0) ∈ B(x∗, ε) and so (b) also

holds. Now, suppose that both (a) and (b) holds for some
k ∈ N, then using the second part of Lemma A.2, this means
[Fx(x(k))]−1 exists and x(k+1) is well defined. Thus, (a) holds
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for n = k+1. Next, we want to show that x(k+1) ∈ B(x∗, ε).
Now,

‖x(k+1) − x∗‖ = ‖x(k) − x∗ − [Fx(x(k))]−1F(x(k))‖

= ‖[Fx(x(k))]−1
{
F(x∗)− F(x(k))− Fx(x(k))(x(k) − x∗)

}
‖

≤ ‖[Fx(x(k))]−1‖‖F(x∗)− F(x(k))− Fx(x(k))(x(k) − x∗)‖

≤ 2β × γ

2
‖x(k) − x∗‖2

= βγ‖x(k) − x∗‖2 (51)

≤ (βγ‖x(k) − x∗‖)‖x(k) − x∗‖

≤ 1

2
‖x(k) − x∗‖ (since‖x(k) − x∗‖ ≤ min

{
r,

1

2βγ

}
).

Hence, ‖x(k+1) − x∗‖ ≤ 1
2
‖x(k) − x∗‖. Therefore, x(k+1) ∈

B(x∗, ε) and (b) holds for all n ∈ N
(c). This is proved from (51).
(d). Using ‖x(k+1) − x∗‖ ≤ 1

2
‖x(k) − x∗‖, we have

‖x(k+1) − x∗‖ ≤ 1

2
‖x(k) − x∗‖

≤
(

1

2

)(k+1)

‖x(0) − x∗‖.

Therefore, x(k) converges to x∗ as k tends to infinity. Quadratic
convergence is obvious from (51)

References

[1] R. O. Akinola, Numerical Solution of Linear and Nonlinear Eigenvalue
Problems, Ph.D. thesis, University of Bath, 2010.

[2] R. Alam, and S. Bora, On Sensitivity of Eigenvalues and Eigendecom-
positions of Matrices, Linear Algebra and its Applications 396 (2005),
273–301.

[3] J. E. Dennis, Jr, and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Classics In Applied Mathematics,
no. 16, SIAM Philadelphia, 1996.

[4] P. Deuflhard, Newton Methods for Nonlinear Problems, ch. 4, pp. 174–175,
Springer, 2004.

[5] M. A. Freitag, and A. Spence, Convergence of Inexact Inverse Iteration
with Application to Preconditioned Iterative Solves, BIT Numerical Math-
ematics 47 (2006), 27–44.

[6] M. A. Freitag, and A. Spence, A Newton-based method for the calculation
of the distance to instability, Linear Alg. Appl., no. 435(12) , 15 December
2011, pp. 3189-3205.



230 R. O. AKINOLA AND A SPENCE

[7] G. H. Golub, and C. F. van Loan, Matrix Computations, 3rd ed., The
John Hopkins University Press, London, 1996.

[8] I. C. F. Ipsen, Computing an Eigenvector with Inverse Iteration, SIAM
Review 39 (1997), no. 2, 254–291.

[9] A. Jeffrey, Mathematics for Engineers and Scientists, Nelson, 1969.
[10] H. B. Keller, Numerical Solution of Bifurcation and Nonlinear Eigenvalue

Problems, Applications of Bifurcation Theory (in : P. Rabinowitz, ed.),
Academic Press, New York, 1977, pp. 359–384.

[11] B. Noble, Applied Linear Algebra, ch. 5, pp. 143–145, Prentice-Hall, Inc.,
1969.

[12] B. Noble, and J. W. Daniel, Applied Linear Algebra, third ed., ch. 9,
pp. 355–397, Prentice-Hall, 1988.

[13] A. Spence, and C. Poulton, Photonic Band Structure Calculations using
Nonlinear Eigenvalue Techniques, Journal of Computational Physics 204
(2005), 65 – 81.

[14] A. Spence, and I. G. Graham, The Graduate Student’s Guide to Numeri-
cal Analysis ’98, Lecture Notes from the VIII EPSRC Summer School in
Numerical Analysis 3, pp. 176–216, Springer, 1998.

[15] L. N. Trefethen, and D. Bau III, Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

[16] H. Wielandt, Das Iterationsverfahren bei nicht Selbstadjungierten Linearen
Eigenwertaufgaben, Mathematische Zeitschrift (1944), 93–143.

[17] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
Press, Ely House, London W., 1965.

[18] J. H. Wilkinson, Inverse Iteration in Theory and in Practice, Istituto
Nazionale di Alta Mathematica, Symposia Mathematica X (1972), 361–
379.

[19] J. H. Wilkinson, Note on Matrices with a very Ill-Conditioned Eigenprob-
lem, Numerische Mathematik 19 (1972), 176–178.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF JOS, NIGERIA

E-mail addresses: roakinola@yahoo.com, akinolar@unijos.edu.ng

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF BATH,

UNITED KINGDOM

E-mail address: a.spence@bath.ac.uk


