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A FIVE-STEP EXTENDED BLOCK BACKWARD

DIFFERENTIATION FORMULA FOR SOLUTIONS OF

SEMI-EXPLICIT INDEX-1 DAE SYSTEMS

O. A. AKINFENWA

ABSTRACT. A five-step Extended Block Backward Differentia-
tion Formulae (EBBDF) for the solutions of semi-explicit index-
1 systems of Differential Algebraic Equations (DAEs) is pre-
sented. The processes compute the solutions of DAEs in a block
by block fashion by some discrete schemes obtained from the
associated continuous scheme which are combined and imple-
mented as a set of block formulae. Numerical results revealed
this method to be efficient and very accurate, and particularly
suitable for semi implicit index one DAEs.
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1. INTRODUCTION

There are many physical problems which are naturally described
by a system of Differential Algebraic Equations (DAEs). These
problems have a wide range of applications in various branches of
science and engineering.

These include mechanical or multibody systems, chemical pro-
cesses, optimal control, electric circuit design and dynamical sys-
tems. A system of ordinary differential equations (ODEs) with
algebraic constraints which can be written in the form

y′ = f1(y(t), z(t)), y(t0) = y0

f2(y(t), z(t)) = 0, z(t0) = z0

 (1)

is called differential algebraic equation.
Definition 1: The index along the solution path is defined as

the minimum number of differentiations of the system (1) that is
required to reduce the system to a set of ODEs .
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Numerical solutions for DAEs were first introduced by Gear by apply-
ing numerical methods for ODEs to DAEs [1]. Runge-Kutta methods
[2] and BDF [3], [4] are commonly used for semi-explicit index-1 DAEs,
however, these methods approximate the solution of (1) at one point.
The algorithm presented in this paper is based on block method and ap-
proximates the solution at several points (see [5],[6],[7]). Block methods
were first introduced by Milne [8] for use only as a means of obtain-
ing starting values for predictor-corrector algorithms and has since then
been developed by several researchers (see [[1],[9],[10],[11]), for general
use. This paper presents a block method which preserves the Runge-
Kutta traditional advantage of being self-starting and efficient.

2. DERIVATION OF THE METHOD

In this section, we construct the main method and additional methods
derived from its first derivative and are combined to form the five step
Extended Block Backward Differentiation Formula (EBBDF) on the in-
terval from tn to tn+5 = tn + 5h where h is the chosen step-length and
k is the step number. We assume that the exact solution y(t) on the
interval [tn, tn+k] is locally represented by Y (t) given by

Y (t) =

p+q−1∑
j=0

bjϕj(t), (2)

bj are unknown coefficients to be determined, and ϕj(t) are polynomial
basis function of degree p+ q− 1 such that the number of interpolation
points p and the number of distinct collocation points q are respectively
chosen to satisfy p = k and q > 0. The proposed class of methods is thus

constructed by specifying the following parameters: ϕj(t) = tjn+i,j =
0, . . . , k, p = k, q = 2, k = 5. By imposing the following conditions

6∑
j=0

bjt
j
n+i = yn+i, i = 0, . . . , 4, (3)

6∑
j=0

jbjt
j
n+i − 1 = fn+i, i = 4, 5, (4)

assuming that yn+i = Y (tn + ih), denote the numerical approxima-
tion to the exact solution y(tn+i), fn+i = Y ′(tn + ih, yn+j),denote the
approximation to y′(tn+i) n is the grid index. It should be noted that
equation (3) and (4) lead to a system of seven equations which must be
solved to obtain the coefficients bj , j = 0, 1, . . . , 6. The main method is
then obtained by substituting the values of bj into equation (2). After
some algebraic computation, the method yields the expression in the
form (5)
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Y (t) =
4∑

j=0

αj(t)yn+j + h(β4(t)fn+4 + β5(t)fn+5), (5)

where αj(t), j = 0, 1, . . . , 4, β4(t) and β5(t) are continuous coefficients.

The continuous coefficients are also express as a function ofx = t−tn+4

h
given as

α0(x) = − 1
788(197x5 − 185x6), α1(x) = 5

1182(485x5 − 455x6)

α2(x) = − 5
197(315x5 − 295x6), α3(x) = 5

197(895x5 − 835x6) α4(x) =
5

2364(62080x4 − 124665x5 + 62525x6)

β4(x) = 5
197(745x5 − 685x6), β5(x) = 60

197x
6). The main method is

obtained for k = 5 by evaluating (5) at t = tn+5 , which is equivalent to
x = 1 to obtain the formula

yn+5 = −
3

197
yn+

25

197
yn+1−

100

197
yn+2+

300

197
yn+3−

25

197
yn+4+

300h

197
fn+4+

60h

197
fn+5 (6)

. To obtain the additional methods, differentiate (5) with respect
to t we have

Y ′(t) =
1

h
[

4∑
j=0

αj(t)yn+j + h(β4(t)fn+4 + β5(t)fn+5)]. (7)

. additional discrete methods are then obtained by evaluating (7) at
the points t = [tn, tn+1, tn+2, tn+3] to give

hfn = − 1490
591

yn + 3880
591

yn+1 − 1890
197

yn+2 + 7160
591

yn+3 − 3880
591

yn+4 + 745h
197

fn+4 − 48h
197

fn+5

hfn+1 = − 90
197

yn − 826
591

yn+1 + 576
197

yn+2 − 546
197

yn+3 + 826
591

yn+4 − 152h
197

fn+4 + 9h
197

fn+5

hfn+2 = 41
1576

yn − 202
591

yn+1 − 315
394

yn+2 + 374
197

yn+3 − 3703
4728

yn+4 + 157h
394

fn+4 − 4h
197

fn+5

hfn+3 = − 43
4728

yn + 53
591

yn+1 − 207
591

yn+2 − 349
591

yn+3 + 4895
4728

yn+4 − 167h
394

fn+4 + 3h
197

fn+5


(8)

the methods (6) and (8) are thus combined to give the EBBDF.

3. ORDER OF ACCURACY AND STABILITY OF THE EBBDF

The five step extended block backward differentiation formulae
can be represented by a matrix finite difference equation in block
form as

A(1)Yω = A(0)Yω−1 + hB(1)Fω + hB(0)Fω−1, (9)

where
Yω = (yn+1 yn+2 yn+3 yn+4 yn+5)

T ,
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Yω−1 = (yn−4 yn−3 yn−2 yn−1 yn)T ,

Fω = (fn+1 fn+2 fn+3 yn+4 yn+5)
T ,

Fω−1 = (fn−4 fn−3 fn−2 fn−1 fn)T ,

for ω = 1, 2, . . . and n = 0, 5, . . . , N − 5.

And the matrices A(1), A(0), B(1) and B(0) are 5 by 5 matrices whose
entries are given by the coefficients of (9) given as

A(1) =


826
591

−576
197

546
197

−826
591

0
202
591

315
394

−374
197

3703
4728

0
−53
591

207
394

349
591

−4895
4728

0
−3880
591

1890
197

−7160
591

3880
591

0
−25
197

100
197

−300
197

25
197

1



A(0) =


0 0 0 0 −30

197
0 0 0 0 41

1576
0 0 0 0 −43

4728
0 0 0 0 −1490

591
0 0 0 0 −3

197



B(1) =


−1 0 0 −152

37
9

197
0 −1 0 157

394
−4
197

0 0 −1 −167
394

3
197

0 0 0 745
197

−48
197

0 0 0 300
197

60
197



B(0) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0


Following Fatunla[12] and Lambert [13] the local truncation error
associated with each of the method in the EBBDF can be defined
to be the linear difference operator

L[y(t);h] =
k−1∑
j=0

αjyn+j − h(βk−1fn+k−1 + βkfn+k − γl), (10)

where γl = 1, l = 0, 1, . . . , k − 2.
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Assuming that y(t) is sufficiently differentiable,we can write the
terms in (10) as a Taylor series expression of y(tn+j) and f(tn+j) =
y′(tn+j) as

y(tn+j) =

∞∑
j=0

(jh)m

m!
y(m)(tn) and y′(tn+j) =

∞∑
j=0

(jh)m+1

(m + 1)!
y(m+1)(tn). (11)

Substituting (11) into equations (10) we obtain the expression

L[y(t);h] = C0y(t) +C1hy
′(t) +C2h

2y′′(t) + . . .+Cph
pyp(t) + . . . , (12)

where the constant coefficients Cm , m = 0, 1, 2, . . ., l = 1, 2, . . . , k
are given as follows:
C0 =

∑k−1
j=0 αj

C1 =
∑k−1

j=1 jαj − βk−1 − βk + γl

C2 = 1
2!

(
∑k

j=1 j
2αj − 2(k − 1)βk−1 − 2kβk + 2lγl)

...

Cm = 1
m!

(
∑k−1

j=1 j
mαj −m(k − 1)m−1βk−1 −mkm−1βk +mlm−1γl)

where γk = 0 and γl = 1, l = 0, 1, . . . k − 2.
The block method in (9) is said to have a maximal order of ac-

curacy m if

L[y(t);h] =©(hm+1), C0 = C1 = . . . = Cm = 0, Cm+1 6= 0. (13)

Therefore, Cm+1 is the error constant and Cm+1h
m+1y(m+1)(tn) the

principal local truncation error at the point tn.
Therefore the values of the error constant calculated for the five
step EBBDF (9) is given as:

(− 10
1379

, 418
4137

,− 106
6895

, 31
5910

,− 227
82740

) with order p=(6 6 6 6 6)T and T
is the transpose.
Zero Stability: The zero stability of the method is concerned with
the stability of the difference system in the limit as h→ 0 [12]. The
difference system (9) becomes

A(1)Yω = A(0)Yω−1

whose first characteristics polynomial ρ(R) given by |Rj| ≤ 1, j =
1, 2, . . . , 5
Thus from (14)the EBBDF k = 5 , ρ(R) = 0 implies

ρ(R) = Det[RA(1) − A(0)] =
1800

197
R4(1−R). (14)
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The block method (9) is zero stable since from (15) ρ(R) = 0 sat-
isfies |Rj| ≤ 1, and for those roots with |Rj| = 1, the multiplicity
does not exceed 1 hence the extended block BDF with continuous
coefficients is zero stable.
Consistency and Convergence: We note that the new block
method (9) is consistent as it has order p > 1. Since the block
method (11) is zero stable. According to Henrici [14],
Convergence = zero stability + consistency. Hence the block method
(9) converges.
Linear stability: The linear stability properties of the block for-
mula is discussed and determined through the application to the
test equation

y′ = λy, λ < 0 (15)

applying (9) and (15) yields

Yω = Q(z)Yω−1 , (16)

where Q(z) is the amplification matrix with z = λh given by

Q(z) = (A(1) − zB(1))
−1
. (A(0) +B(0))

The matrix Q(z) has eigenvalues {ξ1, ξ2, ξ3, ξ4, ξ5} = {0, 0, 0, 0, ξ5},
where the dominant eigenvalue ξ5 is a rational function of z given
by

ξ5 =
360 + 900z + 1020z2 + 675z3 + 274z4 + 60z5

360− 900z + 1020z2 − 675z3 + 274z4 − 60z5
(17)

which is the stability function of our block method (9). From (17)
the usual property of A-stability which requires that for all z =
λhε C− and ξ5 < 0 is obtained. The absolute stability region S
associated with the block method (9) is the set S = {z = λh for
that z where the roots of the stability function (17) are moduli <
1}.

In the spirit of Hairer and Wanner [15], the stability region S is
presented in white colour which corresponds to the 5- step extended
block BDF stability function (17). Clearly, from Figure 1 above, it
is obvious that the method is A- stable, since it has no pole of the
stability function (17) represented by the plus sign in the left half
complex plane.
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Fig. 1. Absolute stability region.

Fig. 2. All points for stability region.

4. COMPUTING WITH THE EBBDF
The method is implemented more efficiently as a 5-step block nu-

merical integrators for (1) to simultaneously obtain the approximations
(yn+1 yn+2 yn+3 yn+4 yn+5)

T without requiring back values and predic-
tors,taking n = 0, 5, . . . , N − 5, over sub-intervals [t0, t5], . . . , [tN−5, tN ],
where N is the total number of points. For example n = 0, ω = 1
((yn+1 yn+2 yn+3 yn+4 yn+5)

T , are simultaneously obtained over the
sub-interval [t0, t5], as y0 is known from (1).
For n = 1, ω = 2, (y6 y7 y8 y9 y10)

T are simultaneously obtained over the
sub-interval [t5, t10], as y5 is known from the previous block. Hence, the
sub-intervals do not over-lap. The computations were carried out using
our written code in Matlab. It should be noted that for linear problems,
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the code uses Gaussian elimination and uses the Newton’s method for
nonlinear problems.

5. Numerical Examples
In this section, we give three examples to illustrate the accuracy of
the method. The three problems are standard DAE problems whose
solutions are of importance in applied systems. We find absolute errors
of the approximate solutions. All computations were carried out using
our written Mathematica code in Mathematica 9.0.
Example 5.1:

y′(t) = tcost− y + (1− t)z, y(0) = 1

sint− z = 0, z(0) = sint

The exact solution is y(t) = e−t + t sin t, z(t) = sin t
Example 5.2:

y′1(t) = −ty2 − (1 + t)z1, y1(0) = 5

y′2(t) = ty1 − (1 + t)z2, y2(0) = 1

y1 − z2
5

− cos( t
2

2
), z1(0) = −1

y2 − z1
5

− sin(
t2

2
), z2(0) = 0

0 ≤ t ≤ 10
The exact solution is y1 = sin t + 5 cos( t

2

2 ), y2 = cos t + 5 sin( t
2

2 ), z1 =
− cos t, z2 = sin t
Example 5.3:

y′(t) = z, y(0) = 1

z3 − y2 = 0, z(0) = 1

The exact solution is
y(t) = (1 + t

3)3, z(t) = (1 + t
3)2

The tables below show the numerical results of extended block BDF
method for k=5 applied to semi explicit index-1 DAEs. Tables 1-6 dis-
play the results for example 5.1, 5.2, and 5.3. The results obtained show
that the method is efficient for semi-explicit index-1 DAEs and can cope
with large step size
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Table 1. Numerical results for the for Example 5.1 .

Exact Block method(9) Error h = 0.1 Error h = 0.01
t i y(t) yi |y(t)− yi| i |y(t)− yi|

z(t) zi |z(t)− zi| |z(t)− zi|
2 20 1.95393014 1.95393606 3.34× 10−8 200 4.32× 10−14

0.90929743 0.90929861 4.16× 10−9 8.54× 10−15

4 40 −3.00889434 -3.00889931 1.44× 10−8 400 2.89× 10−14

−0.75680249 -0.75680352 3.46× 10−9 7.33× 10−15

6 60 −1.67401423 -1.67402028 2.81× 10−8 600 3.55× 10−15

−0.27941549 -0.27941584 1.28× 10−9 3.16× 10−15

8 80 7.91520143 7.91521420 5.46× 10−8 800 8.52× 10−14

0.98935824 0.98935949 4.53× 10−9 8.88× 10−15

10 100 −5.44016570 -5.44017306 1.96× 10−8 1000 1.78× 10−13

−0.54402111 -0.54402190 2.49× 10−9 1.82× 10−14

Table 2. comparison of methods for the for Example 5.1 Max Error =
|y(ti)− yiapprox |,|z(ti)− ziapprox | .

Abass et.al.[7] Block Method (9)
h Max Error h Max Error
0.01 4.78153× 10−4 0.5 5.70843× 10−4

0.001 4.91863× 10−6 0.1 5.76343× 10−8

0.0001 4.94542× 10−8 0.05 8.85906× 10−10

0.00001 4.94939× 10−10 0.01 1.77636× 10−13

0.000001 1.21411× 10−9 0.005 3.37508× 10−13

Table 3. Numerical results for the for Example 5.2.

Error h = 0.1 Error h = 0.01
|y(t1)− y1| |y(t2)− y2| |y(t1)− y1| |y(t2)− y2|

t |z(t1)− z1| |z(t2)− z2| |z(t1)− z1| |z(t2)− z2|
2 8.92× 10−6 2.88× 10−7 8.70× 10−12 2.53× 10−13

8.44× 10−7 2.99× 10−6 8.49× 10−13 2.93× 10−12

4 1.26× 10−4 1.70× 10−4 1.12× 10−10 1.63× 10−10

7.88× 10−5 2.99× 10−5 7.55× 10−11 7.64× 10−11

6 8.70× 10−4 2.03× 10−3 7.54× 10−10 1.90× 10−9

5.22× 10−4 6.03× 10−4 8.41× 10−10 4.11× 10−10

8 7.25× 10−3 8.47× 10−3 1.06× 10−8 4.34× 10−9

6.68× 10−3 3.75× 10−3 2.25× 10−9 4.84× 10−9

104 7.24× 10−2 1.24× 10−1 4.05× 10−8 1.66× 10−8

1.80× 10−1 2.22× 10−2 7.27× 10−9 1.93× 10−8
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Table 4. Comparison of methods for the for Example 5.2 Max Error
= |y(ti)− yiapprox |, |z(ti)− ziapprox |.

Abass et.al. [7] Block Method (9)
h Max Error h Max Error
0.01 6.60563× 10−4 0.05 2.51154× 10−4

0.001 6.60001× 10−6 0.01 4.04563× 10−8

0.0001 6.60125× 10−8 0.005 6.31331× 10−10

0.00001 6.87188× 10−10 0.002 3.85381× 10−12

0.000001 2.02971× 10−9 0.001 1.92988× 10−11

Table 5. Numerical results for the for Example 5.3.

Exact Block method(9) Error h = 0.1 Error h = 0.01
t i y(t) yi |y(t)− yi| |y(t)− yi|

z(t) zi |z(t)− zi| |z(t)− zi|
2 20 4.62962962 4.62962962 6.21× 10−15 8.88× 10−15

2.77777777 2.77777777 2.66× 10−15 3.99× 10−15

4 40 12.70370370 12.70370370 2.49× 10−14 4.08× 10−14

5.44444444 5.44444444 7.11× 10−15 1.33× 10−14

6 60 26.99999999 26.99999999 5.68× 10−14 1.08× 10−13

8.99999999 8.99999999 1.24× 10−14 2.66× 10−14

8 80 49.29629629 49.29629629 1.28× 10−13 2.48× 10−13

13.44444444 13.44444444 2.66× 10−14 5.15× 10−14

10 100 81.37037037 81.37037037 2.55× 10−13 4.83× 10−13

18.77777777 18.77777777 4.26× 10−14 8.17× 10−14

Table 6. comparison of methods for the for Example 5.3 Max
Error=|y(ti)− yiapprox |,|z(ti)− ziapprox |.

Abass et.al.[7] Block Method (9)
h Max Error h Max Error

0.01 2.04173× 10−3 0.5 1.27898× 10−13

0.001 2.06314× 10−5 0.1 4.83169× 10−13

0.0001 2.06367× 10−7 0.05 8.95284× 10−13

0.00001 1.01275× 10−9 0.01 1.84741× 10−12

0.000001 1.04160× 10−8 0.005 4.81748× 10−12

6. CONCLUDING REMARKS

We have proposed in this paper a five step EBBDF for the solutions
of semi-explicit index-1 DAEs. The method is of order 6, it is self-
starting and provides good accuracy. Numerical examples using the
five step EBBDF showed that the method is accurate and efficient
as evident in Tables 1-6. The EBBDF is also found to be convergent
and A-stable, making it a suitable method for this class of problems.
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Fig. 3. Error distribution for Example 5.1, 5.2, 5.3 for stepsize h=0.1
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