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A FIVE-STEP EXTENDED BLOCK BACKWARD
DIFFERENTIATION FORMULA FOR SOLUTIONS OF
SEMI-EXPLICIT INDEX-1 DAE SYSTEMS

0. A. AKINFENWA

ABSTRACT. A five-step Extended Block Backward Differentia-
tion Formulae (EBBDF) for the solutions of semi-explicit index-
1 systems of Differential Algebraic Equations (DAEs) is pre-
sented. The processes compute the solutions of DAEs in a block
by block fashion by some discrete schemes obtained from the
associated continuous scheme which are combined and imple-
mented as a set of block formulae. Numerical results revealed
this method to be efficient and very accurate, and particularly
suitable for semi implicit index one DAEs.
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1. INTRODUCTION

There are many physical problems which are naturally described
by a system of Differential Algebraic Equations (DAEs). These
problems have a wide range of applications in various branches of
science and engineering.

These include mechanical or multibody systems, chemical pro-
cesses, optimal control, electric circuit design and dynamical sys-
tems. A system of ordinary differential equations (ODEs) with
algebraic constraints which can be written in the form

Y = fi(y(t), 2(t)), y(to) = yo

f2<y(t)7 Z(t)) - 07 Z(t()) = 20

is called differential algebraic equation.

Definition 1: The index along the solution path is defined as
the minimum number of differentiations of the system (1) that is
required to reduce the system to a set of ODEs .

(1)
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Numerical solutions for DAEs were first introduced by Gear by apply-
ing numerical methods for ODEs to DAEs [1]. Runge-Kutta methods
[2] and BDF [3], [4] are commonly used for semi-explicit index-1 DAEs,
however, these methods approximate the solution of (1) at one point.
The algorithm presented in this paper is based on block method and ap-
proximates the solution at several points (see [5],[6],[7]). Block methods
were first introduced by Milne [8] for use only as a means of obtain-
ing starting values for predictor-corrector algorithms and has since then
been developed by several researchers (see [[1],[9],[10],[11]), for general
use. This paper presents a block method which preserves the Runge-
Kutta traditional advantage of being self-starting and efficient.

2. DERIVATION OF THE METHOD

In this section, we construct the main method and additional methods
derived from its first derivative and are combined to form the five step
Extended Block Backward Differentiation Formula (EBBDF) on the in-
terval from ¢, to t,y5 = t, + 5h where h is the chosen step-length and
k is the step number. We assume that the exact solution y(¢) on the
interval [t,,, t,1x] is locally represented by Y () given by

p+g—1

Y(t)= Y bipi(t), (2)
j=0

b; are unknown coefficients to be determined, and ¢;(t) are polynomial
basis function of degree p + ¢ — 1 such that the number of interpolation
points p and the number of distinct collocation points ¢ are respectively
chosen to satisfy p = k and ¢ > 0. The proposed class of methods is thus
constructed by specifying the following parameters: ¢;(t) = ¢/ ] =
0,...,k,p=k,q=2, k=>5. By imposing the following conditions

6

D bt = ynri i =0,...,4, (3)
j=0

6 .
Y dbithe = 1= fari, i =4,5, (4)
=0

assuming that y,+; = Y (¢, + ¢h), denote the numerical approxima-
tion to the exact solution y(tn4i), fnti = Y'(tn + ih,yYn+;),denote the
approximation to y'(t,4;) n is the grid index. It should be noted that
equation (3) and (4) lead to a system of seven equations which must be
solved to obtain the coefficients b;, j = 0,1,...,6. The main method is
then obtained by substituting the values of b; into equation (2). After
some algebraic computation, the method yields the expression in the
form (5)
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4
Y () = aj(t)ynrj + h(Ba(t) fara + Bs(t) frs), (5)
j=0

where a;(t),7 = 0,1,...,4, B4(t) and fB5(t) are continuous coeflicients.
The continuous coefficients are also express as a function ofr = H%*“

given as

ap(z) = — 788(1971: —18529), i (z) = 1155 (4852 — 45525)

ag(x) = 197(3151‘ —2952%), az(z) = 197(895:10 — 83525) ay(r) =
72 (620802 — 1246652° + 625252°)

Ba(z) = 13-(7452° — 68525), B5(z) = £225). The main method is

obtained for k = 5 by evaluating (5) at ¢t = t,,4+5 , which is equivalent to
2 = 1 to obtain the formula

25 100 300 25 300h 60h

3
=_ 22 22 >h 6
Yn+5 197yn+ To7Ynt1— 197yn+2+ To7Ynts 197yn+4+ 97 frnta+ 197fn+5 (6)

. To obtain the additional methods, differentiate (5) with respect
to t we have

Za yn+j + h(54( )fn+4 + 65( )fn+5)} (7)

7=0

DIH

. additional discrete methods are then obtained by evaluating (7) at
the points ¢t = [t,,, tpi1, tare, thas] to give

hfn = _%yn + %%H— - 197 yn+ 2+ 5971?/71—0-3 - myn+4 + 197hfn+4 - 197 fn+o
hfnt1 = *%yn - %ywrl + %gynu - %yn#” + %yrwﬂ - %fnJA + %fn+5
hfnt2 = %y” - %ynﬂ 39474”+2 + 197y”+3 - 4728 Synta+ 3?974h frta = 147h7f"+5
hfnts = *%yn + %ﬁ%ﬂ — %ynw — %ynm + %yn-s-zx = %fn-p; + %fm—s

(8)
the methods (6) and (8) are thus combined to give the EBBDF.

3. ORDER OF ACCURACY AND STABILITY OF THE EBBDF

The five step extended block backward differentiation formulae
can be represented by a matrix finite difference equation in block
form as

AVY, = AOy, |, + hBYF, + hBOF,_,, (9)
where
Y, = (yn+1 Yn+2 Yn+3 Yn+a yn+5)T,
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Yoot = (Yn—a Un—3 Yn—2 Yn—1 Un)",
Fo = (for1 for2 fot3 Ynia yn+5>T7
For = (faa fos fa2 for )7,
forw=1,2,...and n=20,5,...,N —5.

And the matrices AM, A© BM and B are 5 by 5 matrices whose
entries are given by the coefficients of (9) given as

826 576 546 826
moOWE MW @
JYCO I B R (R R
Mk b b #E
oW B B
197 197 197 197
—30
0000 W
A9 =1 0000 B
0000—455550
0000 =
- —152 9
o o & 4
BO=| o o -1 -t W
1%
000%@
o o o 2 8
0000 0
0000 O
BO9=10000 0
0000 —1
0000 0

Following Fatunla[12] and Lambert [13] the local truncation error
associated with each of the method in the EBBDF can be defined
to be the linear difference operator

k-1
Lly(t); h] = Z QYnti — M Br-1 fath—1 + B Lotk — M), (10)
=0

where v, =1,1=0,1,...,k— 2.
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Assuming that y(t) is sufficiently differentiable,we can write the
terms in (10) as a Taylor series expression of y(t,+;) and f(t,+;) =
y/(thrj) as
oo 1 \m st ih m+41
(tors) = 3 Iy 1) and o' () = 30 LSy ) )

m! y
j=0 ’ j=0

Substituting (11) into equations (10) we obtain the expression
Lly(t); ] = Coy(t) + Crhy'(t) + Coh®y" () 4. ..+ CphPyP (t) + ..., (12)

where the constant coefficients C,,, , m =0,1,2,...,1=1,2,...,k
are given as follows:

k—1
Co = ijo a;

Gy = 25;11 Jjoy — Br—1 — Br + Vi
s = %(25:1 jzaj - 2(1{5 - 1)5k—1 — 2kp; + 2[’)/1)

Cm = %(25;11 J™ay —m(k = 1) By — mk™ T B+ mi™ )
where vy =0 and v, =1,0=0,1,...k — 2.
The block method in (9) is said to have a maximal order of ac-

curacy m if

Lly(t);h) = O™, Co=Cy=...=C,, =0, Cpyy #0. (13)

Therefore, C,, 41 is the error constant and C,, h™ 1y (t,,) the
principal local truncation error at the point %,,.
Therefore the values of the error constant calculated for the five
step EBBDF (9) is given as:

(— 3% 1155 — ie, =015, —geer5) With order p=(6 6 6 6 6)” and T
is the transpose.
Zero Stability: The zero stability of the method is concerned with
the stability of the difference system in the limit as » — 0 [12]. The

difference system (9) becomes

AWy, = A0y, _,
whose first characteristics polynomial p(R) given by |R;| <1, j =
1,2,....5
Thus from (14)the EBBDF k£ =5, p(R) = 0 implies
1800

p(R) = Det|[RAW — AQ)] = WR‘*(l —R). (14)
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The block method (9) is zero stable since from (15) p(R) = 0 sat-
isfies |R;| < 1, and for those roots with |R;| = 1, the multiplicity
does not exceed 1 hence the extended block BDF with continuous
coefficients is zero stable.

Consistency and Convergence: We note that the new block
method (9) is consistent as it has order p > 1. Since the block
method (11) is zero stable. According to Henrici [14],
Convergence = zero stability 4 consistency. Hence the block method
(9) converges.

Linear stability: The linear stability properties of the block for-
mula is discussed and determined through the application to the
test equation

y =Xy, A <0 (15)

applying (9) and (15) yields

Y, = Q(Z)Yw—l ) (16>

where Q(z) is the amplification matrix with z = Ah given by
Q(z) = (AD — 2 BMY™! (40 4 BO)
The matrix Q(Z) has eigenvalues {617 527 537 547 §5} - {07 07 07 07 55}7

where the dominant eigenvalue &5 is a rational function of z given

by

€ = 360 + 900z + 102022 + 67523 + 2742% + 602° (17)
® 360 — 900z 4 102022 — 67523 + 27424 — 6025

which is the stability function of our block method (9). From (17)
the usual property of A-stability which requires that for all z =
Ahe C~ and & < 0 is obtained. The absolute stability region S
associated with the block method (9) is the set S = {z = Ah for
that z where the roots of the stability function (17) are moduli <
1}.

In the spirit of Hairer and Wanner [15], the stability region S is
presented in white colour which corresponds to the 5- step extended
block BDF stability function (17). Clearly, from Figure 1 above, it
is obvious that the method is A- stable, since it has no pole of the
stability function (17) represented by the plus sign in the left half
complex plane.
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Fig. 2. All points for stability region.

4. COMPUTING WITH THE EBBDF

The method is implemented more efficiently as a 5-step block nu-
merical integrators for (1) to simultaneously obtain the approximations
(Yn+1 Yn+2 Yn+3 Ynt4a yn+5)T without requiring back values and predic-
tors,taking n = 0,5, ..., N — 5, over sub-intervals [to, 5], ..., [tN—5,tN],
where N is the total number of points. For example n = O,w = 1
((Yns1 Yne2 Yni3 Ynid Ynis)', are simultaneously obtained over the
sub-interval [to, 5], as yo is known from (1).
Forn =1,w =2, (y6 y7 ys ¥o y10)! are simultaneously obtained over the
sub-interval [t5, t10], as y5 is known from the previous block. Hence, the
sub-intervals do not over-lap. The computations were carried out using
our written code in Matlab. It should be noted that for linear problems,
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the code uses Gaussian elimination and uses the Newton’s method for
nonlinear problems.

5. Numerical Examples
In this section, we give three examples to illustrate the accuracy of
the method. The three problems are standard DAE problems whose
solutions are of importance in applied systems. We find absolute errors
of the approximate solutions. All computations were carried out using
our written Mathematica code in Mathematica 9.0.
Example 5.1:

y'(t) =tcost —y+ (1 —t)z, y(0) =1

sint —z =0, z(0) = sint
The exact solution is y(t) = e~ + tsint, z(t) = sint

Example 5.2:
y1(t) = —tya — (L +t)z1, y1(0) =5
Ya(t) = tyr — (1 + )22, y2(0) =1
_ +2
s 7 2 008(5)’ 21(0) = -1
_ +2
% — sin(E), 22(0) =0
0<t<10

The exact solution is y; = sint + 5cos(§), yo = cost + 5Sin(§), z1 =

—cost, z9 =sint
Example 5.3:

The exact solution is

y(t) = (1+ )%, 2(1) = (1 + 4)?

The tables below show the numerical results of extended block BDF
method for k=5 applied to semi explicit index-1 DAEs. Tables 1-6 dis-
play the results for example 5.1, 5.2, and 5.3. The results obtained show
that the method is efficient for semi-explicit index-1 DAEs and can cope
with large step size
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Table 1. Numerical results for the for Example 5.1 .

Exact Block method(9) Error h = 0.1 Error h = 0.01
6 i y(t) Yi ly(t) — il i ly(t) — il
z(t) Zi |2(t) — 2l |2(t) — 2l
2 [ 20 1.95393014 1.95393606 3.34x 10°% 200 4.32x 10"
0.90929743 0.90929861 4.16 x 107° 8.54 x 1071°
4 | 40 —3.00889434 -3.00889931 144 x 1078 400 2.89 x 10~
—0.75680249 -0.75680352 3.46 x 107° 7.33 x 1071
6 | 60 —1.67401423 -1.67402028 281 x107% 600 3.55x107'°
—0.27941549 -0.27941584 1.28 x 107° 3.16 x 1071°
8 | 80  7.91520143 7.91521420 546 x 1078 800  8.52x 1074
0.98935824 0.98935949 4.53 x 107° 8.88 x 1071°
10 | 100 —5.44016570 -5.44017306 1.96 x 1078 1000 1.78 x 1073
—0.54402111 -0.54402190 2.49 x 107° 1.82 x 107
Table 2. comparison of methods for the for Example 5.1 Max Error =
‘y(tz) - yiapprom‘?’z(ti) - Z'iapp'rom| N
Abass et.al.[7] Block Method (9)
h Max Error h Max Error
0.01 4.78153 x 10~* 0.5 5.70843 x 10~*
0.001 4.91863 x 1076 0.1 5.76343 x 1078
0.0001 4.94542 x 10°8  0.05 8.85906 x 10710
0.00001 | 4.94939 x 10~ 0.01 1.77636 x 10713
0.000001 | 1.21411 x 1072 0.005 3.37508 x 1013
Table 3. Numerical results for the for Example 5.2.
Error h = 0.1 Error h = 0.01
ly(ts) —wl ly(te) =yl [y(ts) — | [y(t2) — o
t |2(t1) — 21| [2(t2) — 22| |2(t1) — 21| [2(t2) — 20
2 |892x1075288x 1077 870x 1072253 x 10713
844 x 1077299 x 1079 8.49 x 10713 2.93 x 1012
4 1.26 x 1074 1.70 x 107* 1.12 x 10719 1.63 x 10710
7.88 x 107299 x 107° 7.55 x 10~ 7.64 x 10~
6 870 x 107 2.03 x 1073 7.54 x 10719 1.90 x 107*
522 x 107 6.03 x 107* 841 x 10710 4.11 x 10719
8 [7.25x1072847x 1072 1.06 x 1078 4.34 x 107
6.68 x 1072 3.75 x 1073 2.25 x 107 4.84 x 107°
104 [ 724 x 1072 1.24 x 107" 4.05 x 1078 1.66 x 1078
1.80 x 1071 222 x 1072 727 x 1077 1.93 x 1078
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Table 4. Comparison of methods for the for Example 5.2 Max Error
= |y(tl) - yiapp'roz |’ |Z(t1) - z’iapprocv|'

Abass et.al. [7] Block Method (9)
h Max Error h Max Error
0.01 6.60563 x 10~* 0.05  2.51154 x 1074
0.001 6.60001 x 107% 0.01 4.04563 x 1078
0.0001 6.60125 x 10~® 0.005 6.31331 x 10719
0.00001 | 6.87188 x 1071 0.002 3.85381 x 10~'2
0.000001 | 2.02971 x 10~2 0.001  1.92988 x 10!

Table 5. Numerical results for the for Example 5.3.

Exact Block method(9) Error h =0.1 Error h = 0.01
t i y(t) i ly(t) — vil ly(t) — il
z(t) Zi |2(t) — 2] |2(t) — 2]
2 | 20 4.62962962 4.62962962 621 x 1071  8.88x 10~ 1°
2.7TTTTTTT 2.7TTTTTTT 2.66 x 1071°  3.99 x 1071°
4 | 40 12.70370370 12.70370370 249 x 1071*  4.08 x 1074
5.44444444 5.44444444 711 x 1071 1.33x 1074
6 | 60 26.99999999 26.99999999 5.68 x 107'*  1.08 x 1073
8.99999999 8.99999999 1.24 x 107 266 x 1074
8 | 80 49.29629629 49.29629629 1.28 x 10713 248 x 10713
13.44444444 13.44444444 2.66 x 107* 515 x 107
10 | 100 81.37037037 81.37037037 255 x 10718 4.83x 10713
18.77777777 18.777TTTTT 426x 107" 817 x 1074

Table 6. comparison of methods for the for Example 5.3 Max
Error:‘y(ti) - yiapprox ‘ ? ’z(t1> - Ziapproac ’

Abass et.al.[7] Block Method (9)

h Max Error h Max Error
0.01 2.04173 x 10~ 0.5 1.27898 x 10~
0.001 2.06314 x 107° 0.1 4.83169 x 10713
0.0001 2.06367 x 10~7 0.05  8.95284 x 10~ 13
0.00001 1.01275 x 107 0.01  1.84741 x 1072
0.000001 1.04160 x 10~® 0.005 4.81748 x 10~ 12

6. CONCLUDING REMARKS

We have proposed in this paper a five step EBBDF for the solutions
of semi-explicit index-1 DAEs. The method is of order 6, it is self-
starting and provides good accuracy. Numerical examples using the
five step EBBDF showed that the method is accurate and efficient
as evident in Tables 1-6. The EBBDF is also found to be convergent
and A-stable, making it a suitable method for this class of problems.
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Fig. 3. Error distribution for Example 5.1, 5.2, 5.3 for stepsize h=0.1
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