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STEADY ARRHENIUS LAMINAR FREE CONVECTIVE

MHD FLOW AND HEAT TRANSFER PAST A VERTICAL

STRETCHING SHEET WITH VISCOUS DISSIPATION

A. J. OMOWAYE1 AND O. K. KORIKO

ABSTRACT. An analysis of the effects of Arrhenius kinetics
on hydromagnetic free convective flow(set up due to tempera-
ture) of an electrically conducting fluid past a vertical stretch-
ing sheet kept at constant temperature with viscous dissipation
is presented. A similarity transformation is used to reduce the
governing partial differential equations into a system of ordinary
differential equations, which is solved numerically . The effect
of various parameters on the velocity and temperature profiles
as well as the skin friction and Nusselt number are presented in
graphs and tables. It was shown that the velocity and temper-
ature increases as local Eckert number (or viscous dissipation
parameter) increases.
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1. INTRODUCTION

The study of laminar flow has attracted the interest of many scien-
tists in recent times because of its considerable importance in many
practical and technological applications. Hydromagnetic free con-
vection flow has great application in the field of steller and plane-
tary, magnetispheres and aeronautics.However,hydro-magnetic flow
and heat transfer problems have become more important industri-
ally in many metallurgical processes involving the cooling of many
continuous strips or filaments by drawing them through an electri-
cally conducting fluid subject to magnetic field, the rate of cooling
can be controlled and final product of desired characteristics can
be achieved. Another important application of hydromagnetic flow
to metallurgy lies in the purification of molten metals from non-
metallic inclusion by application of magnetic field.
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Shrama and Singh [17] investigated the effect of temperature de-
pendent electrical conductivity on steady natural convection flow
of a viscous incompressible low Prandtl (Pr << 1) electrically con-
ducting fluid along an isothermal vertical non-conducting plate in
the presence of transverse magnetic field and exponentially decaying
heat generation. The governing equations of continuity, momentum
and energy are transformed into ordinary differential equations us-
ing similarity transformation. The resulting coupled non-linear or-
dinary differential equations were solved numerically. They showed
that increase in Prandtl number decreases the skin friction and ve-
locity profiles.Chamha[1] reported analytical solutions for the prob-
lem of heat and mass transfer by steady flow of an electrically con-
ducting and heat generating/absorbing fluid on a uniformly moving
vertical permeable surface in the presence of a magnetic field of first
order chemical reaction. He showed that the fluid velocity decreased
as either of the prandtl number, the schmidt number or the strength
of the magnetic field was increased as either of the thermal or con-
centration buoyancy effects were increased. Mansuor et al[10] con-
sidered a steady two dimensional nonlinear MHD boundary layer
flow of an incompressible, viscous and electrically conducting fluid
in the presence of a uniform magnetic field with heat, mass trans-
fer and chemical reaction in a porous medium. The fluid properties
were assumed to be constant. The results showed that the flow field
was influenced appreciably by the presence of chemical reaction, vis-
cous dissipation and suction or injection flow. Makinde[9] reported
steady flow of a reactive variable viscosity fluid in a cylindrical pipe
with an isothermal wall. The steady state thermal critically con-
ditions which does not depend on Frank-Kamentskii and viscous
heating parameters were obtained. The result also revealed that
rapid convergence of the approximation procedure with gradual in-
crease in the number of series coefficients utilised in the approx-
imants. Recently, Mohyud-Din et al [11] studied free convective
boundary layer flow modeled by a system of nonlinear ordinary dif-
ferential equations. It was observed that combination of modified
variational iteration method and the pade approximation improved
the accuracy and the convergence domain of the problem.
Crane [4] first introduced the study of steady two-dimensional

boundary layer flow caused by a stretching sheet whose velocity
varies linearly with the distance from a fixed point in the sheet.(cf.
Gupta and Gupta [6]; Rajagopal et al.[14]; Siddapa and Abel [ 18];
Chen and Char [2]; Laha et al. [8]; Vajravelu and Nayfeh[21] and
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Tan et al. [20]) studied various aspects of this problem,such as the
heat,mass and momentum transfer in viscous flows with or without
suction or blowing. Shit [16] discussed heat and mass transfer over
a stretching sheet under the influence of applied uniform magnetic
field and the effects of Hall current. The non-linear boundary layer
equations together with the boundary conditions were reduced to
a system of non-linear ordinary differential equations by using the
similarity transformation. The system of non-linear ordinary differ-
ential equations were solved numerically by finite difference scheme
and Newton’s method of linearization. He showed that all the in-
stantaneous flow characteristics are affected by the Hall current
parameter.
Shit and Haldar [15]presented the combined effects of thermal

radiation and Hall current on momentum, heat and mass transfer
in laminar boundary-layer flow over an inclined permeable stretch-
ing sheet with variable viscosity. The sheet was linearly stretched
in the presence of an external magnetic field and the fluid motion
was subjected to a uniform porous medium. The effect of inter-
nal heat generation/absorption was also taken into account. The
fluid viscosity was assumed to vary as an inverse linear function
of temperature. The boundary-layer equations that governed the
flow problem were reduced to a system of non-linear ordinary dif-
ferential equations with a suitable similarity transformation. Then
the transformed equations were solved numerically by employing
a finite difference scheme. It was noted that the velocity profiles
were strongly affected by the inclination of the sheet, whereas the
temperature and concentration profiles are weakly affected.
Viscous dissipation which, appear as a source term in the fluid

flow generates appreciable temperature, gives the rate at which me-
chanical energy is converted into heat in a viscous fluid per unit vol-
ume. This effect is of particular significance in natural convection in
various devices that are subjected to large variation of gravitational
force or that operate at high rotational speeds,as pointed out by
Gebhart [5] in his study of viscous dissipation on natural convection
in fluids. Ostrach [13] presented similarity solution of natural con-
vective flow along vertical isothermal plate. Gebhart[5] studied the
effect of dissipation on natural convective flow.Also, Soundalgekar
[19] studied natural convective flow along vertical porous plate with
suction and viscous dissipation. Joshi and Gebhart[7] observed the
effect of pressure stress work and viscous dissipation in some natural
convective flow: isothermal, uniform flux and plumes. Watanabe
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and Pop [22] investigated the heat transfer in thermal boundary
layer of MHD flow over a flat plate.
In the present work, we study steady laminar free convective

MHD flow and heat transfer past a vertical stretching plate under
Arrhenius kinetics . We further assume that the flow is subject to
magnetic field and there is heat generated by viscous dissipation.
This extends the previous work of Mohyud-Din et al [11] . We
then reduced the two dimensional continuity, momentum and en-
ergy equations to a system of ordinary differential equations using
similarity solutions. The resulting ordinary differential equations
are solved numerically.

2. MATHEMATICAL FOMULATION OF THE PROBLEM
Consider steady laminar two-dimensional free convection flow of a vis-

cous incompressible fluid along a vertical stretching sheet kept at con-
stant temperature Tw , under Arrhenius kinetics. The flow is assumed
to be in x direction,which is taken along the sheet and y-axis is nor-
mal to the sheet. A uniform strong magnetic field β0 is assumed to be
applied. It is assumed that external field is zero. The electrical field
owing to polarization of charges and Hall effect are neglected and there
is heat generation due to viscous dissipation. The flow configuration and
coordinate system is shown in Figure 1.

Fig. 1. Physical model and coordinate system

Incorporating the Buossinesq approximation within the boundary layer,
the governing equation of continuity, momentum and energy respectively
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are given by

(1)
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The boundary conditions are:

(4) y = 0, u = u(x) = cx, v = 0, T = Tw

(5) y → 0, u = 0, T = T∞
Introducing the stream function ψ(x, y) as defined by

(6) u =
∂ψ

∂y
and v = −∂ψ

∂x

the similarity variable η = y
(
c
ν

) 1
2 and

(7) ψ(x, y) = (cν)
1
2xf(η)

the dimensionless temperature

(8) θ(η) =
T − T∞
Tw − T∞

where c is the stretching plate parameter. Substituting equations(6)-
(8) into equations (2) and (3) and simplify, we have

(9) f
′′′
+ f

′′
f − (f

′
)2 +Grθ −Mf

′
= 0

(10)
1

Pr
θ
′′
+ fθ

′
+ Ec(f

′′
)2 + δe

θ
α+εθ = 0

where the local grashof number Gr = gβ(Tw−T∞)ν
c2x

,the activation en-

ergy parameter ε = RT∞
E , the magnetic parameter M =

σβ2
0

ρc , Prandtl

number Pr =
cpμ
k ,the Frank-Kamenetskii parameter δ = AQEe

− E
RT0

ρcpcRT 2∞
and

the local Eckert number( or viscous dissipation parameter) Ec = c2x2

cpT∞ ,

α = εT∞
(Tw−T∞) . For this analysis we assume α = 1

Using equation(6) in equation(1), the equation is identically satisfied.
The corresponding boundary conditions are reduced to:
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(11) f(0) = 0, f
′
(0) = 1, f

′
(∞) = 0, θ(0) = 1, θ(∞) = 0

Equations(9) and (10) subject to (11) are the local similarity equations
governing the flow.
We now move to examining Nusselt number and skin-friction coeffi-

cient. We therefore denote and define respectively as in Omowaye and

Koriko[12]: Nu = (νc )
1
2

qw
k∗(Tw−T∞) = −θ′(0) , where qw = −k∗(∂T∂y )y=0

,Cf = τw

ρc(νc)
1
2
= xf

′′
(0),where τw = μ(∂u∂y + ∂v

∂x)y=0 is the shear stress at

the sheet.

3. NUMERICAL COMPUTATION
The set of nonlinear coupled ordinary differential equations (9) and

(10) with boundary conditions (11) are solved using Runge-Kutta Fourth
order technique along with the shooting method (Conte and Boor [3]).
The basic idea is to reduce the higher order non-linear differential equa-
tions (9) and (10) to first order linear differential equations and they are
further transformed into initial value problem and then apply shooting
technique with Pr, Gr, Ec, M , ε and δ as prescribed parameters. The
results are presented in figures 2 - 8.

4. DISCUSSION AND RESULTS
The local similarity equations governing the flow along with the bound-

ary conditions have been solved in the preceding section in order to give
the detail of flow fields, thermal and velocity distributions. The ef-
fects of the main controlling parameters as they appear in the governing
equations are discussed in the current section. In the entire numeri-
cal calculations Pr, ε,Gr,Ec,M and δ are varied over ranges which are
listed in the figure legends.
Typical variations of the velocity profiles along the span wise coordi-

nate are shown in figures 2 - 5 for different values of Grashof number,
magnetic parameter, local Eckert number and Frank-kamenetskii param-
eter. In figure 2, the numerical result shows that the velocity increases
with increase in Gr. This is in agreement with physical fact that buoy-
ancy force assists the flow and this result is in agreement with what
Chamkha [1] obtained. While in figure 3, the velocity decreases with
increase in magnetic parameter. It is noted that the presence of a mag-
netic field in an electrically conducting fluid introduces a force called
Lorentz force which acts against the flow if the magnetic field is applied
in the normal direction as considered in the present problem. This type
of resistive force tends to slow down the flow field(velocity). Since the
magnetic field has stability effect, the velocity decreases with increasing
M , this yields identical results of Chamkha[1]. The velocity increases
with the increase in Frank-Kamenetskii parameter. This is shown in
figure 5. Also, the temperature profiles are shown in figures 6 and 7 for
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various values of local Grashof number and Frank-kamenetskii param-
eter. It is reported in figure 6 that the temperature decreases as local
Grashof number and the temperature increases as Frank-kamenetskii
parameter increases. Also, the effect of viscous dissipation on veloc-
ity and temperature profiles are shown in figures 4 and 8 respectively.
By analysing these figures, it is clearly revealed that the effect of local
Eckert number is to increase both the velocity and temperature distri-
butions in the flow region. This is due to the fact that heat energy is
stored in liquid due to frictional heating thus, the effect of increasing
local eckert number is to enhace the temperature at any point as well
as the velocity. Numerical values of heat transfer rate and local skin
friction are presented in tables 1 and 2. The effects of Pr, M , Gr, Ec, ε
and δ on the rate of heat transfer(Nu) are numerically shown in table1.
We observed that an increase in Pr, Gr, Ec and δ leads to an incease
in the rate of heat transfer expressed in terms of Nusselt number while
the reverse effect is noted for M and ε . The effects of Pr, M , Gr, Ec,
ε and δ on the skin friction (cf) are numerically shown in table2. We
observed that an increase in Pr, M , Ec and δ leads to a decease in
the skin friction while the reverse is the case for Gr and ε . Finally,we
observed from table 3 that the numerical values of temperature gradient
in present paper are in agreement with the result of Mohyud -Din et al
[11].

5. CONCLUDING REMARKS

The problem of steady laminar free convective MHD flow and heat trans-
fer past a vertical stretching sheet under Arrhenius Kinetics and viscous
dissipation has been considered. Numerical results are presented to il-
lustrate the details of the flow condition and fluid properties.
The main findings of the present study are:

(i ) The velocity profiles increase with increase in local grashof number
and local eckert number. While temperature increases as local eckert
number increases.

(ii) An increase in local eckert number enhance the rate of heat transfer
in terms of Nusselt number while the reverse is the case for skin friction
cofficient.
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Table 1. The rate of heat transfer in terms of Nusselt number (Nu)
Pr M Gr Ec ε δ Nu

0.071 0.1 2 1 0.01 0.1 0.2710
1 0.1 2 1 0.01 0.1 1.3414

0.071 0.8 2 1 0.01 0.1 0.2564
0.071 0.1 4 1 0.01 0.1 0.3024
0.071 0.1 2 3 0.01 0.1 0.2849
0.071 0.1 2 1 0.5 0.1 0.2657
0.071 0.1 2 1 0.01 0.3 0.3488

Table 2. Numerical values of shear stress in terms of Skin friction(Cf )

Pr M Gr Ec ε δ Cf
0.071 0.1 2 1 0.01 0.1 0.3511
1 0.1 2 1 0.01 0.1 -0.4852

0.071 0.8 2 1 0.01 0.1 -0.1179
0.071 0.1 4 1 0.01 0.1 1.4026
0.071 0.1 2 3 0.01 0.1 0.3351
0.071 0.1 2 1 0.5 0.1 0.3542
0.071 0.1 2 1 0.01 0.3 0.2800

Table 3. Values of −θ′(0) for different values of Pr are compared with
results obtained by Mohyud-Din et al [11]

Pr −θ′(0)
Gr = 0.1, Ec = 0.1, ε = 0.09, δ = 0.0815
Mohyud-Din et al [11] Present Paper

0.710 0.2133 0.2132
0.711 0.2134 0.2137
0.712 0.2135 0.2142
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Fig. 2. Velocity Profiles against spanwise coordinate η for various Gr
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Fig. 3. The variation of f’(η) against η for various M
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Fig. 6. Temperature profiles for different values of Gr
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Fig. 7. Temperature Profiles against η for various δ
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NOMENCLATURE

• A-Pre-exponent factor
• c-Stretching sheet parameter
• cp-specific heat capacity at constant pressure
• Cf -Skin friction coefficient
• E - Activation energy
• Ec-Local Eckert number (or viscous dissipation parameter)
• f -Dimensionless velocity
• g -Acceleration due to earth gravity
• Gr- Local Grashof number
• k - Thermal conductivity
• M - Magnetic parameter
• Nu - Nusselt number
• Pr - Prandtl number
• Q - Heat release
• qw - Local heat flux
• R - Universal gas constant
• T - Fluid temperature
• Tw -Temperature at the wall
• u,v - Velocity components along x-and y-axes respectively
• x,y - Cartesian coordinates along x-and y-axes respectively

Greek Letters

• β - Coefficient of volumetric expansion
• βo - Magnetic field intensity
• ε - Activation energy parameter
• δ - Frank Kamenetskii parameter
• η - Similarity variable
• ψ - Stream function
• θ - Dimensionless temperature
• ρ - Density of fluid
• σ - Electrical conductivity
• ν - Kinematic viscosity
• μ - dynamic viscosity
• τw - Shear stress
• T∞ - Free stream temperature
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