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INITIAL-BOUNDARY-VALUE PROBLEM

OF HYPERBOLIC EQUATIONS FOR VISCOUS

BLOOD FLOW THROUGH A TAPERED VESSEL

SAMUEL OLUMIDE ADESANYA

ABSTRACT. In this paper, the effect of viscosity on blood flow
through a tapered artery is studied. Approximate solutions of
the coupled nonlinear partial differential equations that model
the viscous blood a complaint artery are obtained using Ado-
mian decomposition method (ADM). The convergence and para-
metric study of the solution are presented and discussed includ-
ing shock development. The result of the computation shows
that viscosity has significant influence on blood flow.
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1. INTRODUCTION

Blood is a viscous suspension of cells that is responsible for the
circulation of digested food and removal of waste product from the
body. Mathematically speaking, it as an incompressible viscous
fluid flowing through a cylindrical tube of varying cross-sectional
area.

In recent times, various aspects of blood flow problem have been
studied in literature based on the assumption that blood is an in-
compressible inviscid fluid flowing through pre-stressed thin elastic
tube (see refs. [1] - [11]). In this article, attention is focused on
a recent paper by Ruan et al [12] in which an initial-boundary-
value problem of a system of hyperbolic, partial-differential equa-
tions that models blood flow in a vessel was investigated. Analysis
was performed by neglecting the effect of blood viscosity and ap-
proximating the energy quantity. From application point of view,
inviscid blood flow is only valid as a first approximation that cannot
give useful information on blood profile. A more reliable result that
is useful in many real life situations can be obtained if the effect of
blood viscosity is accounted for.
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In many cases of interest, viscosity of blood plays a dominant role
in the diagnosis and treatment of some diseases or physiological
disorders like stenosis [13]-[15], Sickle cell disease [16] and many
more. Several interesting results on the effect of viscosity on blood
flows under different conditions can also be found in [17]-[19].

Motivated by the above discussions, the specific objective of this
paper is to investigate the effect of this all-important flow property
on blood flow through a compliant artery which has not been ac-
counted for in previous model used in [12]. To achieve this, the non-
linear equations of motion for both the tube and the fluid are for-
mulated and solved analytically by Adomain decomposition method
[20-24].

The rest of the paper is organized as follows; in section 2 of the
paper, the problem is formulated and approximate solution of the
problem is obtained in section 3. Results are presented and dis-
cussed in the section 4 of the paper while section 5 gives some
concluding remarks.

2. MATHEMATICAL ANALYSIS

The conservation laws that models blood flow through an artery can
be written in dimensionless form as [12]. The continuity equation

∂A

∂t
+
∂(Au)

∂x
= 0, (1)

∂(Au)

∂t
+
∂(αAu2)

∂x
+
A

ρ

∂p

∂x
= 2R

′
ν

[
∂ux
∂r

]R′
0

, (2)

while the pressure-area relationship takes the form

p = κ(Aβ(t, x) − aβ), (3)

where ux = ux(u, r, R
′), A(t, x) = πR2(t, x), u(t, x),p(t, x), are non-

negative functions, t is the time, x is the axial direction, A(t, x) is
the cross sectional area, a is the constant cross sectional area at
the entrance of the tube, u is the average axial velocity, r is the
radial direction, ρ, p,ν are fluid density, fluid pressure and kine-
matic viscosity respectively.R′ is the radius of the cross section, β
is a positive constant, ux is the axial velocity, α is dimensionalized
energy quantity, κ = Eh

πR2
0

is the wall behavior parameter. E is the

young modulus of elasticity, h is the arterial thickness, R0 is the
unstressed radius.
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The average axial velocity is defined by

u =
1

R2

∫ R

0

2ruxdr, (4)

while the dimensionalized energy quantity as

α =
1

u2R2

∫ R

0

2r(ux)
2dr, (5)

Following [25]-[27], in order to solve equations (1)-(3) a specific
relation for ux is needed and for laminar flow in slightly tapered
vessel the velocity profile is flat. Therefore, we assume

ux = u
(

1 − r

R′

)
(6)

then the viscous term gives[
∂ux
∂r

]R′
0

=

[
∂u

∂r
− u

R′
− r

R′
∂u

∂r

]R′
0

, (7)

Introducing the limits and applying the condition u(0) and the

axisymetric condition ∂u(0)
∂r

= 0, equation (7) reduces to[
∂ux
∂r

]R′
0

= − u

R′
, (8)

substituting (3) and (8) in (2), we obtain

∂u

∂t
+ (2α− 1)u

∂u

∂x
+

(α− 1)u2

A

∂A

∂x
+
κ

ρ
βAβ−1

∂A

∂x
= −2πµu

Aρ
, (9)

subject to initial-boundary conditions

A(0, x) = φ(x) = A(0)e−k0x, u(0, x) = u0(x) = e
−x2

2 , p(t, 0) = pl,
(10)

where k0 is the taper parameter, A(0) = πR2
0 is the cross sectional

area at the entrance of the vessel in cm2 and R0 = d
2

is the constant
radius of the artery at the entrance, d is arterial diameter at the
entrance and β = 1

3. ADOMIAN DECOMPOSITION METHOD OF SOLUTION

To obtain the solution of the coupled differential equations using
Adomian decomposition method, we set

Lt =
∂

∂t
, Lx =

∂

∂x
, L−1t =

∫ t

0

(.)dt, (11)
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using (10)-(11) the coupled equation (9) can be written in integral
form as

A(t, x) = φ(x) −
∫ t

0

(A(s, x)Lxu(s, x) + u(s, x)LxA(s, x))ds, (12)

together with

u(t, x) = u0(x) −
∫ t

0

((2α− 1)u(s, x)Lxu(s, x))ds

−
∫ t

0

(
(α− 1)u2(s, x)

A(s, x)
LxA(s, x) +

κ

ρ
LxA(s, x) +

2πµu(s, x)

A(s, x)ρ

)
ds, (13)

while the nonlinear terms in (12)-(13) are identified as

Bn = u(t, x)
∂A(t, x)

∂x
, (14)

Cn = A(t, x)
∂u(t, x)

∂x
, (15)

En = u(t, x)
∂u(t, x)

∂x
, (16)

Fn =
u2(t, x)

A(t, x)

∂A(t, x)

∂x
, (17)

Gn =
u(t, x)

A(t, x)
, (18)

Adomian decomposition method assumes an infinite series in the
form

u(t, x) =
∞∑
n=0

un(t, x), (19)

A(t, x) =
∞∑
n=0

An(t, x), (20)

substituting (19) and (20) into (14)-(18), we obtain the Adomian
polynomials

B0 = u0(t, x)A0x(t, x), (21)

B1 = u1(t, x)A0x(t, x) + u0(t, x)A1x(t, x), (22)

B2 = u2(t, x)A0x(t, x) + u1(t, x)A1x(t, x) + u0(t, x)A2x(t, x), (23)
B3 = u3(t, x)A0x(t, x) + u2(t, x)A1x(t, x) + u1(t, x)A2x(t, x) + u0(t, x)A3x(t, x), (24)

C0 = A0(t, x)A0x(t, x), (25)

C1 = A1(t, x)A0x(t, x) + A0(t, x)A1x(t, x), (26)

C2 = A2(t, x)A0x(t, x) +A1(t, x)A1x(t, x) +A0(t, x)A2x(t, x), (27)
C3 = A3(t, x)A0x(t, x)+A2(t, x)A1x(t, x)+A1(t, x)A2x(t, x)+A0(t, x)A3x(t, x), (28)

E0 = u0(t, x)u0x(t, x), (29)
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E1 = u1(t, x)u0x(t, x) + u0(t, x)u1x(t, x), (30)

E2 = u2(t, x)u0x(t, x) + u1(t, x)u1x(t, x) + u0(t, x)u2x(t, x), (31)
E3 = u3(t, x)u0x(t, x) + u2(t, x)u1x(t, x) + u1(t, x)u2x(t, x) + u0(t, x)u3x(t, x), (32)

F0 =
u20(t, x)A0x(t, x)

A0(t, x)
, (33)

F1 =
A0(t, x)A1(t, x)u2

0(t, x)A0x(t, x) + 2A0(t, x)u0(t, x)u1(t, x)A0x(t, x)

A2
0(t, x)

, (34)

G0 =
u0(t, x)

A0(t, x)
, (35)

G1 =
A0(t, x)u1(t, x) − A1(t, x)u0(t, x)

A2
0(t, x)

, (36)

G2 =
A2

1u0(t, x) − A0A2u0(t, x) − A0A1u1 + A2
0u2(t, x)

A3
0(t, x)

, (37)

using (21)-(37) in (12), we get
∞∑
n=0

An(t, x) = φ(x) −
∫ t

0

(
∞∑
n=0

Bn(s, x) −
∞∑
n=0

Cn(s, x))ds, (38)

together with
∞∑
n=0

un(t, x) = u0(x) −
∫ t

0

((2α− 1)
∞∑
n=0

En(s, x)ds

−
∫ t

0

((α− 1)

∞∑
n=0

Fn(t, x) +
κ

ρ

∞∑
n=0

Lx(An(t, x)) +
2π

µ

∞∑
n=0

Gn(t, x)ρ)ds, (39)

then the zeroth components of (34) and (39) are

A0(t, x) = φ(x), (40)

u0(t, x) = u0(x), (41)

while the recursive relation is

An+1(t, x) = −
∫ t

0

(Bn(s, x) + Cn(s, x))ds, (42)

and

un+1(t, x) = −
∫ t

0

((2α− 1)En(s, x)ds

−
∫ t

0

((α− 1)Fn(t, x) +
κ

ρ
Lx(An(t, x)) +

2π

µ
Gn(t, x)ρ)ds, (43)

then the partial sum

u(t, x) =
k∑

n=0

un(t, x) (44)
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A(t, x) =
k∑

n=0

An(t, x) (45)

are the approximate solutions which satisfies both the initial and
boundary condition (10) provided the solutions are convergent,
twice differentiable with respect to x and differentiable with respect
to t.

4. RESULTS AND DISCUSSION

To show the convergence of the Adomian series solution solution,
the following experimental values are used (see refs. [16],[28]) as
follows: α = 0.9645, ρ = 1.055, d = 0.777, µ = 0.049, κ = 0.5, t =
0.0001, k = 2, x = 0. The result is presented in Table 1.

Table 1: Computation showing rapid convergence of the solution

n An(t, x)
∑k

n=0An(t, x) un(t, x)
∑k

n=0 un(t, x)
0 0.474168 0.474168 1 1
1 1.28025E-06 0.474169 -6.03313E-05 0.99994
2 -4.57007E-09 0.474169 -4.54247E-09 0.99994

Figure 1. Effect of taper parameter on velocity profile

Figure 1 shows the effect of increase in the taper parameter on
the velocity profile. As observed from the plot, an increase in the
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Figure 2. Effect of dynamic viscosity on velocity profile

Figure 3. Effect of elasticity parameter on velocity profile

Figure 4. Effect of dynamic viscosity on arterial cross sectional area
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Figure 5. Effect of taper parameter on arterial cross sectional area

Figure 6. Snap shot of the velocity profile at different times

Figure 7. Travelling wave plot of u(t, x)
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taper parameter leads to an increase in the velocity maximum in
the centre of the tube while flow velocity at the wall of the tube
decreases. Figure 2 depicts the velocity profile for variations in dy-
namic viscosity. The result shows that an increase in blood viscosity
decreases the flow velocity across the tube due to fluid thickening
this eventually results in rise in blood pressure. Figure 3 shows the
effect variations in tube elasticity on the velocity profile. Maximum
velocity at the center of the tube is observed to decrease with an
increase in the wall elasticity. However, at the wall the flow veloc-
ity is observed to increase due to radial displacement. The effect of
rise in the dynamic viscosity on the arterial cross-sectional area is
presented in Figure 4. As observed, an increase in blood viscosity
decreases the radial displacement of the artery. This is physically
true due to rise in frictional forces between fluid layers. Also, Fig-
ure 5 shows the relationship between the taper parameter and the
arterial cross sectional area. The result shows that as the taper
parameter increases there is decrease in the cross sectional area of
the artery. Figure 6 represents the development of shock waves
within the tube at time increases. Therefore, the solution is short-
lived since it develops discontinuity (spike-formation) as t becomes
large. Lastly, Figure 7 represents the smooth traveling wave due to
intermittent injection of blood into the arterial tree from the heart.

5. CONCLUSION

In the present study, the main concern is to investigate the effect
of viscosity on arterial blood flow through an elastic tube. Approxi-
mate solution of the coupled nonlinear partial differential equations
are obtained by using Adomian decomposition method. Just like a
typical hyperbolic partial differential equation, the solution blows
up as t becomes large. The result confirmed that this method is
a powerful mathematical technique in obtaining solution of cou-
pled nonlinear hyperbolic differential equations without any need
for perturbation, transformations or discretization.
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