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DYNAMIC BEHAVIOUR OF NON-PRISMATIC

RAYLEIGH BEAM ON PASTERNAK FOUNDATION

AND UNDER PARTIALLY DISTRIBUTED MASSES

MOVING AT VARYING VELOCITIES

S.T. ONI1 AND O.K. OGUNBAMIKE

ABSTRACT: The dynamic analysis of the behaviour of Non-prismatic
Rayleigh beam on Pasternak foundation under partially distributed
masses moving at varying velocities is investigated in this paper. The
solution technique is based on the expansion of Heaviside function in
series form, the use of the generalized Galerkin method and a modi-
fication of Struble’s asymptotic method which reduces the governing
fourth order partial differential equation to a coupled second order or-
dinary differential equation. Closed form solutions are obtained and
numerical results in plotted curves are presented. The results show
that as the value of rotatory inertia correction factor r0 increases,
the response amplitude of the Rayleigh beam decreases. Similarly,
higher values of the foundation stiffness K, shear modulus G and ax-
ial force N decrease the transverse deflection of the beam. The results
further show that for fixed r0,K,G and N , the transverse deflection
of the non-uniform Rayleigh beam resting on Pasternak foundation
and under partially distributed masses moving at varying velocities
are higher than those when only the force effects of the moving load
are considered indicating clearly that resonance is reached earlier in
moving distributed mass problem. This further confirms results in lit-
erature stressing the need to always consider the inertia terms when
heavy loads traverse any form of structural members.

Keyword and phrases: Pasternak Foundation, Partially dis-
tributed load, Moving load, Foundation Stiffness, Shear Modulus,
Axial force, Rotatory Inertia, Resonance.
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1. INTRODUCTION

The problems of transverse motions of elastic beams on elastic foun-
dations have been analyzed by many investigators Fryba[l], Oni [2],
Oni and Awodola [3], Oni and Omolofe [4]) Oni and Ogunyebi [5],
Muscolino and Palmeri [6], Wu ([7] and Isede and Gbadeyan [8].
Practical problems like railroad trucks, highway pavements, navi-
gation locks and structural foundations are examples of such. These
studies have however been limited to cases where the distributed
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parameter systems are assumed to be prismatic and the speeds
at which the subsystems move to be uniform. Practical problems
involving variable cross-section and where the speed of the subsys-
tem is non-uniform are not common in open literature. The class
of problems involving variable speeds was first tackled by Lowan
[9] who solved the problem of the transverse oscillations of beams
under the action of moving variable loads. Much later was the
work of Kokhmanyuk and Filippov [10] who treated the dynamic
effects on the transverse motion of a uniform beam of a load mov-
ing at variable speed. In a more recent development, Gbadeyan
and Aiyesimi [11] undertook the analysis of the dynamic response
of finite beam continuously supported by a visco-elastic founda-
tion to a load moving at variable speed. Only the force effect of the
moving load was considered. Oni [12] later investigated the flexural
motions of a prestressed uniform beam resting on Winkler founda-
tion and under the actions of a concentrated mass travelling with
variable velocity and considered all the inertia terms. The effects
of some structural parameters on the displacement response of the
vibrating beam were analysed. Huang and Thambiratnam [13], in
a similar manner studied isotropic homogeneous elastic rectangu-
lar plate resting on an elastic Winkler foundation under a single
concentrated load. Finite strip method was employed. Numerical
examples show that when the load moves with zero or a small initial
velocity, the dynamic response of the structure is steady and unlike
the response due to the sudden application of a load. Very recently,
Oni and Omolofe [14] also studied the dynamic response of uniform
Rayleigh beam resting on elastic foundation and subjected to con-
centrated masses travelling at varying velocities. It was concluded
that for the same natural frequency of an elastic beam, resonance
is reached earlier in the moving mass system than in the moving
force system. The authors in most of these various investigations
used Winkler foundation model often used in pavement modelling.
However, Winkler model idealization is not entirely adequate when
applied to real soil and predictions from it exhibit discrepancies
with observed in situ behaviour [15]. Also known as Vlasov model,
Pasternak foundation offers an attractive alternative to the winkler
model in providing a degree of shear interaction between adjacent
soil elements and has been named the preferable option for sub-
grade model [16]. Also, in most of the investigations, moving loads
have been idealized as moving concentrated loads which acts at a



DYNAMIC BEHAVIOUR OF NON-PRISMATIC RAYLEIGH BEAM. . . 287

certain point on the structure and along a single line in space [17].
In practice, it is known that loads are actually distributed over a
small segment or over the entire length of the structural member
as they traverse the structure [18]. Thus in this work the dynamic
behaviour of non-prismatic prestressed Rayleigh beam on Paster-
nak foundation and under partially distributed masses moving at
varying velocities is considered. This work incorporates all the per-
tinent components of inertia terms of the moving distributed loads
in the governing equations.

2. MATHEMATICAL MODEL

The flexural vibrations of finite non-uniform Rayleigh beam under
partially distributed loads moving at non-uniform velocities is con-
sidered. The corresponding governing equation is the fourth order
partial differential equation [1]

∂2

∂x2

[
EI(x)

∂2V (x, t)

∂x2

]
−N ∂2V (x, t)

∂x2
+μ(x)

∂2V (x, t)

∂t2
−μ(x)r0 ∂

4V (x, t)

∂x2∂t2
+ZF (x, t) = P (x, t)

(1)

Where EI(x) is the variable flexural rigidity of the structure, N
is the axial force, μ(x) is the variable mass per unit length of the
beam and r0 is the rotatory inertia correction factor, ZF (x, t)is the
foundation reaction, P (x, t) is the transverse distributed load, x is
the spatial coordinate and t is the time.
The relationship between the foundation reaction and the lateral

deflection V (x, t) is given as

ZF (x, t) = KV (x, t) −G
∂2V (x, t)

∂x2
(2)

where G is the shear modulus and K is the foundation stiffness. If
the inertia effect of the moving load is considered, the distributed
load P (x, t) takes the form

P (x, t) = Pf (x, t)

[
1 =

1

g

d2V (x, t)

dt2

]
(3)

where the continuous moving force Pf(x, t) acting on the beam
model is given by

Pf (x, t)MgH[x− f(t)] (4)

where g is the acceleration due to gravity and
d2

dt2
is a convective

acceleration operator defined as [1]

d2

dt2
=

∂2

∂t2
+ 2

d

dt
f(t)

∂2

∂x∂t
+

(
df(t)

dt

)2 ∂2

∂x2
+

d2

dt2
f(t)

∂

∂x
(5)
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and the distance covered by the load on the same structure at any
given instance of time is given as

f(t) = x0 + ct+
1

2
at2 (6)

where x0 is the point of application of force P (x, t) at the instance
t = 0, c is the initial velocity and a is the constant acceleration of
motion. Using equations (2) to (6) in equation (1), one obtains

∂2

∂x2

[
EI(x)

∂2V (x, t)

∂x2

]
−N

∂2V (x, t)

∂x2
+ μ(x)

∂2V (x, t)

∂t2
− μ(x)r0

∂4V (x, t)

∂x2∂t2
−G

∂2V (x, t)

∂x2

+KV (x, t) +MH

[
x−

(
x0 + ct+

1

2
at2
)][

∂2V (x, t)

∂t2
+ 2(c+ at)

∂2V (x, t)

∂x∂t

+(c+ at)2
∂2V (x, t)

∂x2
+ a

∂V (x, t)

∂x

]
=MgH

[
x−

(
x0 + ct+

1

2
at2
)]

(7)

Adopting the examples in [7], I(x) and μ(x) are taken to be of
the form

I(x) = I0
(
1 + sin

πx

L

)3
and μ(x) = μ0

(
1 + sin

πx

L

)
(8)

where I(x) is the variable moment of inertia.
Substituting equation (8) into equation (7) after some simplifica-
tions and rearrangements one obtains

∂2

∂x2

[
EI0

(
1 + sin

πx

L

)3 ∂2V (x, t)

∂x2

]
−N

∂2V (x, t)

∂x2
−G

∂2V (x, t)

∂x2
+ μ0

(
1 + sin

πx

L

)

∂2V (x, t)

∂t2
− ∂

∂x

[
μ0
(
1 + sin

πx

L

) ∂3V (x, t)

∂x∂t2

]
+KV (x, t) +MH

[
x−

(
x0 + ct+

1

2
at2
)]

[
∂2V (x, t)

∂t2
+ 2(c+ at)

∂2V (x, t)

∂x∂t
+
(
c+ at2

) ∂2V (x, t)

∂x2
+ a

∂V (x, t)

∂x

]

= MgH

[
x−

(
x0 + ct+

1

2
at2
)]

(9)

Further simplifications and rearrangements yields

EI0

μ0

{
∂4V (x, t)

∂x4

{
5

2
+

15

4
sin

πx

L
− 1

4
sin

3πx

L
− 3

2
cos

2πx

L

}

+
∂2V (x, t)

∂x2

{
9π2

4L2
sin

3πx

L
− 15π2

4L2
sin

πx

L
+

6π2

L2
cos

2πx

L

}}
−
(
N +G

μ0

)
∂2V (x, t)

∂x2
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+
(
1 + sin

πx

L

) ∂2V (x, t)

∂t2
− r0

[(
1 + sin

πx

L

) ∂4V (x, t)

∂x2∂t2
+
π

L
cos

πx

L

∂3V (x, t)

∂x∂t2

]

+
K

μ0
V (x, t) +

MH

μ0

[
x−

(
x0 + ct+

1

2
at2
)][

∂2V (x, t)

∂t2

+(c+ at)
∂2V (x, t)

∂x∂t
+ (c+ at)2

∂2V (x, t)

∂x2
+ a

∂V (x, t)

∂x

]
=
MH

μ0

[
x−

(
x0 + ct+

1

2
at2
)]
(10)

For our analysis, the Rayleigh beam under consideration is to be
taken to be simply supported. Thus, the boundary conditions are
given by

V (0, t) = V (L, t) = 0;
∂2V (0, t)

∂x2
=
∂2V (L, t)

∂x2
(11)

The initial conditions, without any loss of generality, is taken to
be

V (x, 0) = 0 =
∂V (x, 0)

∂t
(12)

Equation (10) is the fourth order partial differential equation with
variable coefficients of the non-uniform Rayleigh beam under the ac-
tion of uniform partially distributed loads travelling at non-uniform
velocity. The beam properties such as the moment of inertia and
the mass per unit length of the beam are considered as varying
along the length L of the beam. Evidently, the method of sepa-
ration of variables is inapplicable as a difficulty arises in getting
separate equations whose functions are functions of a single vari-
able. In fact, an exact closed form solution of the above equation
does not exist.

3. ANALYTICAL APPROXIMATE SOLUTION

As a result of the foregoing difficulty, an approximate analytical
solution is sought. One of the approximate methods best suited for
solving diverse problems in dynamics of structures is the General-
ized Galerkin method discussed in [2]. This method requires that
the solution of equation (10) takes the form

Vn(x, t) =
∞∑

m=1

Zm(t)Um(x) (13)

where Um(x) is chosen such that the pertinent boundary conditions
are satisfied. Equation (13) is substituted into equation (10) and
after some simplifications and rearrangements one obtains
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n∑
m=1

{[
EI0

μ0

(
5

2
U iv
m (x) +

15

4
sin

πx

L
− 1

4
sin

3πx

L
U iv
m (x)− 3

2
cos

2πx

L
U iv
m (x)

)
+

(
9π2

4L2
sin

3πx

L
Un
m(x) − 15π2

4L2
sin

πx

L
Un
m(x) +

6π2

L2
cos

2πx

L
Un
m(x)

)]
Zm(t)

−
(
N +G

μ0

)
Un
m(x)Zm(t) +

(
1 + sin

πx

L

)
Um(x)Z̈m(t)

− r0
[(

1 + sin
πx

L

)
Un
m(x)Z̈m(t) +

π

L
cos

πx

L
Un
m(x)Z̈m(t)

]
+
K

μ0
Um(x)Zm(t)

+
MH

μ0

[
x−

(
x0 + ct+

1

2
at2
)] [

Um(x)Z̈m(t) + (c+ at)U ′
m(x)Żm(t)

+(c+ at)2Un
m(x)Zm(t)

]}
=
MgH

μ0

[
x−
(
x0 + ct+

1

2
at2
)]

(14)

where U ′
m(x) and Żm(x) are first derivatives of Um(x) and Zm(x)with

respect to x and t respectively. In order to determine Zm(x), it is
required that the expression on the right hand side of equation (14)
be orthogonal to function Uk(k). Hence

n∑
m

{[
D1(m, k)− r0(D2(m, k) +D3(m, k))

]
Z̈m(t) + [α1(T0 + T1) + α2D4(m, k)

+α3D5(m, k) Zm +
M

μ0

[
D1(t)Z̈m(t) +D2(t)Żm(t) +D3(t)Zm +D4(t)Zm(t)

]}

=
Mg

μ0
D5(t) (15)

where

T0 = D6 +D7 − (D8 +D9); T1 = D10 −D11 +D12 (16)

α1 =
EI0

μ0
; α2 =

G+N

μ0
; α3 =

K

μ0
(17)

D1(t) =

∫ L

0
H

[
x−

(
x0 + ct+

1

2
at2
)]

Um(x)Uk(m)dx

D2(t) =

∫ L

0
2(c+ at)H

[
x−
(
x0 + ct+

1

2
at2
)]

U ′
m(x)Uk(x)dx
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D3(t) =

∫ L

0
(c+ at)2H

[
x−

(
x0 + ct+

1

2
at2
)]

Un
m(x)Uk(x)dx

D4(t) =

∫ L

0
aH

[
x−

(
x0 + ct+

1

2
at2
)]

U ′
m(x)Uk(x)dx

D5(t) =

∫ L

0
H

[
x−

(
x0 + ct+

1

2
at2
)]

Uk(x)dx

D1(m, k) =

∫ L

0

(
1 + sin

πx

L

)
Um(x)Uk(x)dx

D2(m, k) =

∫ L

0

(
1 + sin

πx

L

)
Un
m(x)Uk(x)dx

D3(m, k) =

∫ L

0
cos

πx

L
U ′
m(x)Uk(x)dx

D4(m, k) =

∫ L

0
Un
m(x)Uk(x)dx

D5(m, k) =

∫ L

0
Um(x)Uk(x)dx

D6(m, k) =
5

2

∫ L

0
U iv
m (x)Uk(x)dx

D7(m, k) =
15

4

∫ L

0
sin

πx

L
U iv
m (x)Uk(x)dx

D6(m, k) =
5

2

∫ L

0
U iv
m (x)Uk(x)dx

D7(m, k) =
15

4

∫ L

0
sin

πx

L
U iv
m (x)Uk(x)dx

D8(m, k) =
1

4

∫ L

0
sin

3πx

L
U iv
m (x)Uk(x)dx

D9(m, k) =
3

2

∫ L

0
cos

2πx

L
U iv
m (x)Uk(x)dx

D10(m, k) =
9π2

4L2

∫ L

0
sin

3πx

L
Un
m(x)Uk(x)dx

D9(m, k) =
3

2

∫ L

0
cos

2πx

L
U iv
m (x)Uk(x)dx
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D10(m, k) =
9π2

4L2

∫ L

0
sin

3πx

L
Un
m(x)Uk(x)dx

D11(m, k) =
15π2

4L2

∫ L

0
sin

πx

L
Un
m(x)Uk(x)dx

D12(m, k) =
6π2

L2

∫ L

0
cos

2πx

L
Un
m(x)Uk(x)dx (18)

Since our elastic system has simple supports at edges x = 0 and
x = L, we choose

Um(x) = sin
mπx

L
and Uk(x) = sin

kπx

L
(19)

Substitution of expressions for Um(x) and Uk(x) into equation (15)
and the use of the Fourier series representation of the Heaviside
unit step function namely;

H =
1

4
+

1

π

∞∑
n=0

sin(2n+ 1)π
[
x− (x0 + ct+ 1

2
at2
)]

2n+ 1
, 0 < x < L, (20)

after some simplifications and rearrangements give

[(
1− r0

m2π2

L2

)
I49(m, k)− r0

m2π2

L2
I65(m, k)

]
d2Zm(t)

dt2

{
α1
m2π4

L4

[
5

2
I1(m, k)

+

(
30m2 + 15

4

)
I81(m, k)

]
−
(
4m2 + 9

4

)
I97(m, k)−

(
3m2 + 12

2

)
I113(m, k)

+

[
α2
m2π2

L2
+ α3

]
I1(m, k)

}
Żm(t) + Γ0L

[(
1

4
I1(m, k) +

1

π

∞∑
n=0

cos(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)
I17(n,m, k)− 1

π

∞∑
n=0

sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)
I33(n,m, k)

)

Z̈m(t) + 2(c+ at)

(
mπ

4L
I5(m, k) +

1

π

∞∑
n=0

cos(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)
mπ

L
I21(n,m, k)

− 1

π

∞∑
n=0

sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)
mπ

L
I37(n,m, k)

)
Żm(t) − (c+ at)2

(
m2π2

4L2
I1(m, k) +

1

π

∞∑
n=0

cos(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)
I17(n,m, k)
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− 1

π

∞∑
n=0

sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)
m2π2

L2
I33(n,m, k)

)
Zm(t) + a

(mπ
4L

I5(m, k)

+
1

π

∞∑
n=0

cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)
mπ

L
I21(n,m, k)− 1

π

∞∑
n=0

sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)
mπ

L
I37(n,m, k)

)
Zm(t)

]
=

PL

μ0kπ

[
−(−1)k + cos

kπx

L

(
x0 + ct+

1

2
at2
)]

(21)

where

I1(m, k) =

∫ L

0
sin

mπx

L
sin

kπx

L
dx

I5(m, k) =

∫ L

0
cos

mπx

L
sin

kπx

L
dx

I17(n,m, k) =

∫ L

0
sin(2n+ 1)πx sin

mπx

L
sin

kπx

L
dx

I21(n,m, k) =

∫ L

0
sin(2n+ 1)πx cos

mπx

L
sin

kπx

L
dx

I33(n,m, k) =

∫ L

0
cos(2n+ 1)πx sin

mπx

L
sin

kπx

L
dx

I37(n,m, k) =

∫ L

0
cos(2n+ 1)πx cos

mπx

L
sin

kπx

L
dx

I49(m, k) =

∫ L

0

(
1 + sin

πx

L

)
sin

mπx

L
sin

kπx

L
dx

I65(m, k) =

∫ L

0
cos

πx

L
cos

mπx

L
sin

kπx

L
dx

I81(m, k) =

∫ L

0
sin

πx

L
cos

mπx

L
sin

kπx

L
dx

I97(m, k) =

∫ L

0
sin

3πx

L
cos

mπx

L
sin

kπx

L
dx

I113(m, k) =

∫ L

0
cos

2πx

L
sin

mπx

L
sin

kπx

L
dx (22)

Equation (21) is the transformed equation governing the problem
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of a non-uniform Rayleigh beam on a Pasternak foundation being
traversed by uniform partially distributed masses.
Solving integrals in (22) and substituting into (21) after some

simplifications and rearrangements, yield

[
L

2
+

L

4π
HH1− r0

(
mπ

4L
HH2− m2π2

2L
− m2π

4L
HH1

)]
Z̈m(t)

+

[
α1

(
5m4π4

4L3
+

15m2π3

16L3

(
2m2 + 1

)
HH1

)
− m2π4

4L4
(4m2 + 9)HH3+

α2
m2π2

2L
+ α3

L

2

]
Zm(t) + Γ0L

{
L

8
+

∞∑
n=0

(2n+ 1)L2

2π2

(
(−1)m+k cos(2n+ 1)πL− 1

[(2n+ 1)L]2 − (m + k)2

− (−1)m−k cos(2n+ 1)πL− 1

[(2n+ 1)L]2 − (m− k)2

)
cos(2n + 1)π

(
x0 + ct+ 1

2
at2
)

2n+ 1

−
∞∑

n=0

(2n+ 1)L2

2π2

(
(−1)m−k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m − k)2
− (−1)m+k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m+ k)2

)

sin(2n+ 1)π
(
x0 + ct+ 1

2
at2
)

2n+ 1

]
Żm(t) +

[
2(c+ at)

(
m

2π

∞∑
n=0

cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

(
(m+ k)

(−1)m+k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m + k)2
− (m − k)(−1)m−k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m− k)2

)

− m

2π

∞∑
n=0

(
(m + k)(−1)m+k cos(2n+ 1)πL − 1

[(2n+ 1)L]2 − (m+ k)2
− (m− k)(−1)m−k sin(2n+ 1)πL− 1

[(2n+ 1)L]2 − (m − k)2

)

sin(2n+ 1)π
(
x0 + ct+ 1

2
at2
)

2n+ 1

))]
Żm(t)

[
(c+ at)2m2π2

L2

(
L

8
+

∞∑
n=0

(2n+ 1)L2

2π2

(
(−1)m+k cos(2n+ 1)πL− 1

[(2n+ 1)L]2 − (m + k)2
− (−1)m−k sin(2n+ 1)πL− 1

[(2n+ 1)L]2 − (m− k)2

)
cos(2n+ 1)π

(
x0 + ct+ 1

2
at2
)

2n+ 1

)

−
∞∑

n=0

(2n+ 1)L2

2π2

(
(−1)m−k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m − k)2
− (−1)m+k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m+ k)2

)
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sin(2n+ 1)π
(
x0 + ct+ 1

2
at2
)

2n+ 1
+
m

2π

∞∑
n=0

(
(m+ k)(−1)m+k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m− k)2

− (m − k)(−1)m−k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m+ k)2

)
cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

− m

2π

∞∑
n=0

(
(m− k)(−1)m−k cos(2n+ 1)πL

[(2n+ 1)L]2 − (m − k)2
− (m − k)(−1)m−k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m+ k)2

)

sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)]

Zm(t)

}
=

PL

μ0kπ

[
−(−1)k + cos

kπx

L

(
x0 + ct+

1

2
at2
)]
(23)

where

HH1 =
cos(1 + 2m)π − 1

1 + 2m
+

cos(1 − 2m)π − 1

1− 2m
+ 4 (24)

HH2 =
cos(1− 2m)π − 1

1− 2m
+

cos(1 + 2m)π − 1

1 + 2m
(25)

HH3 =
L

3π
+

L

4π

[
cos(3 + 2m)π − 1

3 + 2m
+

cos(3− 2m)π − 1

3− 2m

]
(26)

Equation (23) is the fundamental transformed equation of the
simply supported non-uniform Rayleigh beam resting on Paster-
nak foundation and under partially distributed masses travelling at
varying velocities. In what follows, we shall discuss two cases of the
equation.

CASE I: SIMPLY SUPPORTEDNON-PRISMATIC RAYLEIGH BEAM

TRAVERSED BY MOVING DISTRIBUTED FORCE

If we neglect the inertia term, we have the classical case of a
moving force problem. Under this assumption Γ0 = 0 and equation
(23) after some simplifications and rearrangements becomes

[
L

2
+

L

4π
HH1− r0

(
mπ

4L
HH2− m2π2

2L
− m2π

4L
HH1

)]
Z̈m(t)

+

[
α1

(
5m4π4

4L3
+

15m2π3

16L3
(2m2 + 1)HH1

)
− m2π4

4L4
(4m2 + 9)HH3 + α2

m2π2

2L

+α3
L

2

]
Zm(t) =

PL

μ0kπ

[
−(−1k) + cos

kπ

L

(
x0 + ct+

1

2
at2
)]

(27)
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where

ψ11 =
L

2
+

L

4π

[
cos(1− 2m)π − 1

1 + 2m
+

cos(1− 2m)π − 1

1− 2m
+ 4

]

− r0
{
mπ

4L

(
cos(1− 2m)π − 1

1− 2m
+

cos(1 + 2m)π − 1

1 + 2m

)
− m2π2

2L
−

m2π

4L

(
cos(1 + 2m)π − 1

1 + 2m
+

cos(1− 2m)π − 1

1− 2m
+ 4

)}

ψ22 =α1

{
5m4π4

4L3
+

15m2π3

16L3

(
m3 − 1

)( cos(1 + 2m)π − 1

1 + 2m
+

cos(1 + 2m)π − 1

1− 2m
+ 4

)

− m2π4

4L4
(9 + 4m2)

[
L

3π
+

L

4π

(
cos(3 + 2m)π − 1

3 + 2m
+

cos(3− 2m)π − 1

3− 2m

)
α2

m2π2

2L
+ α3

L

2

]
(28)

Equation (27) can further be rearranged to give

Z̈m(t) + Ω2
ppZm(t) = Pmm

[
−(−1)k + cos

kπ

L

(
x0 + ct+

1

2
at2
)]

(29)

where Ω2
pp =

ψ22

ψ11
and Pmm =

Γ0L2g

kπψ11
(30)

In order to solve equation (29), variation of parameters technique
is resorted to. Firstly, it is straight forward to show that the general
solution of the homogeneous part of (29) is given by

Zc(t) = C1 cosΩppt+ C2 sinΩppt (31)

where C1 and C2 are constants. Thus a particular solution to
equation (29) takes the form

Zp(t) = P1 cos Ωppt+ P2 sinΩppt (32)

where P1(t) and P2(t) are functions to be determined. From equa-
tion (33), it is straight forward to show that

P1(t) = −Pmm

Ωpp

∫ [
− cosλk + cos

λk

L

(
x0 + ct+

1

2
at2
)]

sinΩppt (33)

P2(t) = −Pmm

Ωpp

∫ [
− cosλk + cos

λk

L

(
x0 + ct+

1

2
at2
)]

cosΩppt (34)

Equations (33) and (34) can be simplified by using Fresnel func-
tions which are integrals that involve quadratic expressions in the
sine and cosine functions. They are defined as follows;
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S(x) =

∫
sin(az2)dz =

1√
a

√
π

2
S

(
√
a

√
2

π
z

)

and

C(x) =

∫
cos(az2)dz =

1√
a

√
π

2
C

(
√
a

√
2

π
z

)
(35)

where S(x) is the Fresnel Sine function and C(x) is the Fresnel
Cosine function. Using (35) in equations (33) and (34) after some
simplifications and rearrangements one obtains

P1(t) =− Pmm
√
π√

2a

{
cos

(
b21
4a

− C0

)
S

(
b1 + 2at√

2πa

)
− sin

(
b21
4a

− C0

)
C

(
b1 + 2at√

2πa

)

− cos

(
b22
4a

− C0

)
S

(
b2 + 2at√

2πa

)
+ sin

(
b22
4a

− C0

)
C

(
b2 + 2at√

2πa

)

+
1

2Ωpp
[cos (λk − Ωppt) + cos (λk +Ωppt)]

}
(36)

and

P2(t) =− Pmm
√
π√

2a

{
cos

(
b21
4a

− C0

)
C

(
b1 + 2at√

2πa

)
+ sin

(
b21
4a

− C0

)
S

(
b1 + 2at√

2πa

)

+ cos

(
b22
4a

− C0

)
C

(
b2 + 2at√

2πa

)
+ sin

(
b22
4a

− C0

)
S

(
b2 + 2at√

2πa

)

+
1

2Ωpp
[sin (λk +Ωppt)− sin (λk − Ωppt)]

}
(37)

Using (36) and (37), the particular solution of the non-homogeneous
second order differential equation takes the form

Zp(t) =
Pmm

√
π√

2a

{
sin

(
b21
4a

− C0

)
C

(
b1 + 2at√

2πa

)
− cos

(
b21
4a

− C0

)
S

(
b1 + 2at√

2πa

)

+ cos

(
b22
4a

− C0

)
S

(
b2 + 2at√

2πa

)
− sin

(
b22
4a

− C0

)
C

(
b2 + 2at√

2πa

)
+

cosλk

Ωpp

− 1

2Ωpp
[cos (λk − Ωppt) + cos (λk +Ωppt)] + cos

(
b21
4a

− C0

)
C

(
b1 + 2at√

2πa

)

+ sin

(
b21
4a

− C0

)
S

(
b1 + 2at√

2πa

)
+ cos

(
b22
4a

− C0

)
C

(
b2 + 2at√

2πa

)

+ sin

(
b22
4a

− C0

)
S

(
b2 + 2at√

2πa

)
− 1

2Ωpp
[sin (λk +Ωppt)− sin (λk −Ωppt)] (38)
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Consequently,

ZG(t) = Zc(t) + Zp(t) (39)

Applying the initial conditional (11) to (39), the constants are
found to be

C1 =
Pmm

√
π√

2a

{
cos

(
b21
4a

− C0

)
S

(
b1√
2πa

)
− sin

(
b21
4a

− C0

)
C

(
b1√
2πa

)
− cos

(
b22
4a

− C0

)

S

(
b2√
2πa

)
+ sin

(
b22
4a

− C0

)
+C

(
b2√
2πa

)
+

cosλk

Ωpp

}
(40)

and

C2 = −Pmm
√
π√

2a

{
cos

(
b21
4a

− C0

)
C

(
b1√
2πa

)
+ sin

(
b21
4a

− C0

)
S

(
b1√
2πa

)
+ cos

(
b22
4a

− C0

)

C

(
b2√
2πa

)
+ sin

(
b22
4a

− C0

)
+S

(
b2√
2πa

)}
(41)

Substituting (40) and (41) into (39) and inverting after some sim-
plifications and rearrangements yield

Vn(x, t) =
∞∑

m=1

2Pmm
√
π

L
√
2aτ(x)

{
sinΩppt

Ωpp

[
cos

(
b21
4a

− C0

)
C

(
b1 + 2at√

2πa

)
+ sin

(
b21
4a

− C0

)

S

(
b1 + 2at√

2πa

)
+ cos

(
b22
4a

− C0

)
C

(
b2 + 2at√

2πa

)
+ sin

(
b22
4a

− C0

)
S

(
b2 + 2at√

2πa

)

− cos

(
b21
4a

− C0

)
C

(
b1√
2πa

)
− sin

(
b21
4a

− C0

)
S

(
b1√
2πa

)
− cos

(
b22
4a

− C0

)

C

(
b2√
2πa

)
− sin

(
b22
4a

− C0

)
S

(
b2√
2πa

)
− 1

2Ωpp
[sin (λk +Ωppt)− sin (λk − Ωppt)]

− cosΩppt

Ωpp

[
cos

(
b21
4a

− C0

)
S

(
b1 + 2at√

2πa

)
− sin

(
b21
4a

− C0

)
C

(
b1 + 2at√

2πa

)

− cos

(
b22
4a

− C0

)
S

(
b2 + 2at√

2πa

)
sin

(
b22
4a

− C0

)
C

(
b2 + 2at√

2πa

)
− cos

(
b21√
2πa

)

− cos

(
b21
4a

− C0

)
S

(
b1√
2πa

)
+ sin

(
b21
4a

− C0

)
C

(
b1√
2πa

)
+ cos

(
b22
4a

− C0

)

S

(
b2√
2πa

)
− sin

(
b22
4a

− C0

)
C

(
b2√
2πa

)
− cosλk

Ωpp

+
1

2Ωpp
[cos(λk − Ωppt) + cos(λk +Ωppt)]

]}(
sin

mπx

L

)
(42)
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as the transverse displacement response to forces moving at vari-
able velocities of a prestressed non-uniform Rayleigh beam resting
on Pasternak elastic foundation.

CASE II: SIMPLY SUPPORTEDNON-PRISMATIC RAYLEIGH BEAM

TRAVERSED BY MOVING DISTRIBUTED MASS

If the moving load is heavy, the inertia effect of the moving load
is not negligible and must be considered. In this case Γ0 �= 0 and
we are required to solve the entire equation (23). This is termed
the moving mass problem. Evidently, an exact closed form solution
of the equation is not possible. Thus, we resort to the approximate
analytical solution technique which is a modification of the asymp-
totic method of Struble extensively discussed in [10]. To this end,
we rearrange equation (27) to take the form

Z̈m(t) +

Γ0(c+ at)

⎡
⎢⎢⎢⎢⎣
Rd(k,m) +

∞∑
n=0

Re(k,m, n)
cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Rf (k,m, n)
sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣1 + Γ0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ra(k,m) +
∞∑

n=0

Rb(k,m, n)
cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Rc(k,m, n)
sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

Żm(t)

+

Ω2
pp + Γ0(c+ at)2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rg(k,m) +
∞∑

n=0

Rh(k,m, n)
cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Ri(k,m, n)
sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭⎡

⎢⎢⎢⎢⎣1 + Γ0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ra(k,m) +
∞∑

n=0

Rb(k,m, n)
cos(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Rc(k,m, n)
sin(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

Zm(t)

+

Γ0

⎡
⎢⎢⎢⎢⎣
aRd(k,m) + a

∞∑
n=0

Re(k,m, n)
cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Rf (k,m, n)
sin(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣1 + Γ0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ra(k,m) +
∞∑

n=0

Rb(k,m, n)
cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Rc(k,m, n)
sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

Zm(t)
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=

Γ0L2g

kπψ11(k,m)

[
−(−1)k + cos

kπ

L

(
x0 + ct+

1

2
at2
)]

⎡
⎢⎢⎢⎢⎣1 + Γ0 +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ra(k,m) +
∞∑

n=0

Rb(k,m, n)
cos(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Rc(k,m, n)
sin(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

(43)

where

Ra(k,m) =
L2

8ψ11(k,m)

Rb(k,m, n) =
(2n+ 1)L3

2ψ11(k,m)π

(
(−1)m+k cos(2n+ 1)πL − 1

[(2n+ 1)L]2 − (m+ k)2
− (−1)m−k cos(2n+ 1)πL − 1

[(2n+ 1)L]2 − (m − k)2

)

Rc(k,m, n) =
(2n+ 1)L3

2ψ11(k,m)π

(
(−1)m−k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m − k)2
− (−1)m+k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m+ k)2

)

Rd(k,m) =
mkL

ψ11(k,m)(k2 −m2)

Re(k,m, n) =
mL

2ψ11(k,m)π

(
(m + k)(−1)m+k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m + k)2

− (m− k)(−1)m−k sin(2n+ 1)πL

[(2n+ 1)L]2 − (m− k)2

)

Rf (k,m, n) =
mL

2ψ11(k,m)π

(
(m + k)

(−1)m+k cos(2n+ 1)πL− 1

[(2n+ 1)L]2 − (m + k)2

− (m− k)(−1)m−k cos(2n+ 1)πL− 1

[(2n+ 1)L]2 − (m − k)2

)

Rg =
m2π2

L2
Ra(k,m); Rh(k,m) =

m2π2

L2
Rb(k,m, n)

Ri(k,m) =
m2π2

L2
Rc(k,m, n) (44)

Specifically, by means of this technique, one seeks the modified
frequency corresponding to the frequency of the free system due
to the presence of the moving mass. An equivalent free system
operator defined by the modified frequency then replaces equation
(43). Thus, we set the right hand side of (43) to zero and consider
a parameter Γ1 < 1 for any arbitrary mass ratio Γ0 defined as

Γ1 =
Γ0

1 + Γ0
(45)

which implies that
Γ0 = Γ1 +O(Γ2

1) (46)
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and

1

1 + Γ0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ra(k,m) +
∞∑

n=0

Rb(k,m, n)
cos(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Rc(k,m, n)
sin(2n + 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 1− Γ0

{
Ra(k,m) +

∞∑
n=0

Rb(k,m, n)
cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Rc(k,m, n)
sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

+ O(Γ2
0)

}
(47)

∣∣∣∣∣∣∣∣∣∣
Γ0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ra(k,m) +
∞∑

n=0

Rb(k,m, n)
cos(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

−
∞∑

n=0

Rc(k,m, n)
sin(2n+ 1)π

2n+ 1

(
x0 + ct+

1

2
at2
)

+O(Γ2
0)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣∣
< 1 (48)

When Γ1 is set to zero in equation (43), a situation corresponding
to the case in which the inertia effect of the mass of the system is
regarded as negligible is obtained. In such case, the solution is of
the form

Zm(t) = Cmm cos�Ωppt− Φmm� (49)

where Cmm,Ωmm and Φmm are constants. Furthermore, as Γ1 < 1,
the Struble’s technique requires that the solution of equation (43)
be of the form

Zm(t) = A(m, t) cos[Ωppt− Φppt] + Γ1Z1(t) + O(Γ2
1) (50)

Where A(m, t) and Φ(m, t) are slowly varying functions of time.
In order to obtain the modified frequency, equation (50) and its

derivatives are substituted into the homogeneous part of equation
(43). Thereafter, we extract only the variational part of the equa-
tion describing the behaviour of A(m, t) and Φ(m, t) during the
motion of the mass. Thus, making this substitution and neglecting
terms that do not contribute to the variational equations we obtain

− 2A(m, t)Ωpp sin[Ωppt − φ(m, t)] + 2A(m, t)φ(m, t)Ωpp cos[Ωppt− φ(m, t)]− cΓ1A(m, t)

ΩpptRd(k,m) sin[Ωppt− φ(m, t)]− cΓ1A(m, t)Ω
2
ppRa(k,m) cos[Ωppt− φ(m, t)]

+ c2Γ1A(m, t)Rg(k,m) cos[Ωppt− φ(m, t)] + aΓ1A(m, t)Rd(k,m)

cos[Ωppt− φ(m, t)] to O(Γ1) only. (51)
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The variational equations of our problem are obtained by setting
coefficients of sin[Ωppt−φ(m, t)] and cos[Ωppt−φ(m, t)] in equation
(51) to zero respectively. Thus, we have

−2A(m, t)Ωpp − cΓ1A(m, t)ΩppRd(k,m) = 0 (52)

and

2A(m, t)φ(m, t)− cΓ1A(m, t)Ω
2
ppRa(k,m)+ c2Γ1A(m, t)Rg(k,m)+aΓ1A(m, t)Rd(k,m) = 0

(53)

Solving equations (52) and (53) respectively, one obtains

A(m, t) = A0e
−Γ1cRd(k,m)t (54)

and

φ(m, t) =
Γ1

2A

{
ΩppRa(k,m) −

[
c2Rg(k,m) + aRd(k,m)

Ωpp

]}
t+Ψm (55)

where A0 and Ψm are constants.
Therefore when the effect of the mass of the moving load is consid-
ered, the first approximation to the homogeneous system is

Zm(t) = Cmm cos[Ωmmt−Φmm] (56)

where

Ωmm = Ωpp

{
1− Γ1

2

[
Ra(k,m) −

[
c2Rg(k,m) + aRd(k,m)

]
Ω2

pp

]}
(57)

To solve the non-homogeneous equation (43), the differential oper-
ator which acts on zm(t) is replaced by the equivalent free system
operator defined by the modified frequency Ωmm. That is

Z̈m(t) + Ω2
mmZm(t) =

Γ1L2g

kπϕ11

[
−(−1)k + cos

kπ

L

(
x0 + ct+

1

2
at2
)]

(58)

Clearly, equation (58) is analogous to equation (29). Thus, us-
ing similar argument as in case I, Zm(t) can be obtained and on
inversion yields

Vn(x, t) =
∞∑

m=1

Γ1Lg
√
π

λkϕ11

√
2aτ(x)

{
sinΩmmt

Ωmm

[
cos

(
b21
4a

− C0

)
C

(
b1 + 2at√

2πa

)
+ sin

(
b21
4a

− C0

)

S

(
b1 + 2at√

2πa

)
+ cos

(
b22
4a

− C0

)
C

(
b2 + 2at√

2πa

)
+ sin

(
b22
4a

− C0

)
S

(
b2 + 2at√

2πa

)

− cos

(
b21
4a

− C0

)
C

(
b1√
2πa

)
− sin

(
b21
4a

− C0

)
S

(
b1√
2πa

)
− cos

(
b22
4a

− C0

)
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C

(
b2√
2πa

)
− sin

(
b22
4a

− C0

)
S

(
b2√
2πa

)
− 1

2Ωmm
[sin(λk + Ωmmt)− sin(λk −Ωmmt)]

− cos Ωmmt

Ωmm

[
cos

(
b21
4a

− C0

)
S

(
b1 + 2at√

2πa

)
− sin

[
b21
4a

− C0

]
C

(
b1 + 2at√

2πa

)

− cos

(
b22
4a

− C0

)
S

(
b2 + 2at√

2πa

)
+ sin

(
b22
4a

− C0

)
C

(
b2 + 2at√

2πa

)
− cos

(
b21
4a

− C0

)

S

(
b1√
2πa

)
+ sin

(
b21
4a

− C0

)
C

(
b1√
2πa

)
+ cos

(
b22
4a

− C0

)
S

(
b2√
2πa

)

− sin

(
b22
4a

− C0

)
C

(
b2√
2πa

)
− cosλk

Ωmm
+

1

2Ωmm
[cos(λk −Ωmmt)

+ cos(λkΩmmt)]

}(
sin

mπx

L

)
(59)

4. DISCUSSION OF THE ANALYTICAL SOLUTION

In studying undamped system such as this, the deflection of the
beam may increase without bound. Equation (43) reveals clearly
that the simply supported non-uniform Rayleigh beam on a bi-
parametric subgrade and under a partially distributed moving force
encounters a resonance effect when

Ωpp =
mπcc

L
(60)

while (59) shows that the same beam under the action of moving
mass experiences resonance when

Ωmm =
mπcc

L
(61)

where Ωmm = Ωpp

{
1− Γ1

2

[
Ra(k,m)−

[
c2Rg(k,m) + aRd(k,m)

]
Ω2

pp

]}
(62)

equating (61) and (62) imply that

Ωpp =

mπcc

L[
1− Γ1

2

(
Ra(k,m) −

[
c2Rg(k,m) + aRd(k,m)

]
Ω2

pp

)] (63)

It can be deduce from (60) and (63) that, for the same natural
frequency, the critical velocity of a non-uniform simply supported
Rayleigh beam traversed by partially distributed mass moving with
variable velocity is smaller than that traversed by distributed mov-
ing force. Thus, resonance is reached earlier in moving distributed
mass system than in the moving distributed force system.
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5. NUMERICAL CALCULATIONS AND DISCUSSIONS

In order to illustrate the foregoing analysis, the non-uniform beam
of length 12.129m is considered. Furthermore, EI = 6.068 ×
106m3/s2 and M/μ = 0.25. The values of foundation stiffness K
between 0N/m3 and 4000000N/m3 are used. Axial force N is var-
ied between 0N and 2×106N and shear modulus is varied between
0N/m and 3 × 105N/m. The transverse deflections of the simply
supported non-uniform Rayleigh beam are calculated and plotted
against time for various values of foundation stiffness K, axial force
N , shear modulus G and rotatory inertia correction factor r0.
Figure 5.1 displays the deflection profile of the simply supported

Rayleigh beam under the action of partially distributed moving
force for various values of foundation stiffness K and fixed values
of axial force N , shear modulus G and rotatory inertia correction
factor r0. The figure shows that as K increases the deflection of
the non-uniform Rayleigh beam decreases. The same results is ob-
tained when the simply supported Rayleigh beam is traversed by
a partially distributed mass moving at variable speed as shown in
figure 5.5. Also for various time t, the displacement of the beam for
various values of N and fixed values of K, G and r0 are shown in
figure 5.2. It is shown that higher values of axial force reduce the
displacement amplitudes of the beam. The same behaviour char-
acterizes the deflection profile of the simply supported Rayleigh
beam under partially distributed masses moving at variable veloc-
ity as shown in figure 5.6.

The effect of shear modulus on the transverse deflection of the

Rayleigh beam under partially distributed moving force for fixed
values of K,N and r0 is displayed in figures 5.3. It is observed
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that higher values of the shear modulus reduce the deflection of
the dynamical system. Figure 5.7 depicts similar behaviour for the
transverse displacement of the simply supported Rayleigh beam un-
der the action of partially distributed masses. Figure 5.4 shows the

deflection profile of the non-uniform Rayleigh beam traversed by
a partially distributed moving force for various values of rotatory
inertia correction factor r0 and for fixed values of K,N and G. It is
observed that higher values of rotatory inertia correction factor r0

decrease the deflection of the beam. Clearly, figure 5.8 shows that
as the values of rotatory inertia correction factor increases, the
response amplitude of the non-uniform Rayleigh beam under the
action of partially distributed masses travelling at variable veloc-
ity decreases. Finally, figure 5.9 compares the displacement curves
of the partially distributed moving force and partially distributed
moving mass for fixed K = 40000, N = 200000, G = 100000 and
r0 = 0.5. Clearly the response amplitude of the moving distributed
force is greater than that of the moving distributed mass problem.

6. CONCLUDING REMARKS

This paper presents an analytical solution for the transverse dis-
placement of a non-uniform Rayleigh beam on a bi-parametric sub-
grade and under partially distributed masses moving at varying ve-
locities. The versatile method of Galerkin has been used to reduce
the governing fourth order singular partial differential equation with
variable coefficients to a sequence of second order ordinary differ-
ential equations with variable coefficients. This equation is treated
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using a modification of Struble’s asymptotic techniques. The re-
sulting second order ordinary differential equation is solved using
the method of integral transformations. Numerical analyses are
carried out and the results show the following:

(i) For the moving distributed force and moving distributed mass
problems the response amplitudes of the beam traversed by
distributed load moving with variable velocity decrease with
an increase in the values of foundation stiffness K for fixed
values of N,G and r0.

(ii) Higher values of axial force N reduce the response amplitudes
for both the moving force and moving mass problems.

(iii) The response amplitudes of the Rayleigh beam decrease with
an increase in the values of shear modulus G for fixed values
of K,N and r0.

(iv) Greater values of the sub grade’s shear modulus G and rota-
tory inertia r0 for fixed values of foundation stiffness K, axial
force N and shear modulus G are required for a noticeable
effect on the response amplitudes due to moving force and
moving mass in the vibrating system.

(v) As K increases, the response amplitude of the non-uniform
Rayleigh beams decreases. However the effect of K is more
noticeable than that of G.

(vi) For the problem of a non-uniform beam under the actions of
a partially distributed load moving with variable velocity, the
transverse displacement of the moving force is greater than
that of moving mass. This result is at variance with the result
in [5]. In particular, the reverse was the case. Hence inertia
of the moving load must always be taken into consideration
for accurate and safe assessment of the response to moving
distributed load of elastic structural members.

Finally, for this dynamical system, for the same natural frequency,
the critical speed for moving mass problem is smaller than that of
the moving force problem. Hence, resonance is reached earlier in
moving mass problem.
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