REVIEW OF SELECTED PUBLICATIONS OF PROFESSOR J. O. C. EZEILO

ANTHONY UYI AFUWAPE¹ AND FRANIC I. OCHOR

1. INTRODUCTION

Any attempt to classify the research works of Professor J.O.C. Ezeilo is a big job. Why? He had spent all his research life, (spanning over fifty-one years), in studying the qualitative properties of higher order nonlinear differential equation of orders 2,3,4,5,6, Nth order (N odd and even) and systems in general. The qualitative properties studied covered many types of properties which include: Boundedness, Ultimate boundedness, Existence and Uniqueness results, Stability, Instability, periodicity, Oscillations, Resonance and Non-resonance, etc. While most of his life-long work was on the construction and use of Lyapunov functions, he spent the latter part of his life occasionally going into the use of topological degree methods and Leray Schauder techniques. These results initiated into higher order differential equations some well known results of the 2nd order, generalizing works of initiators in the subject, such as Cartwright (his Ph.D. supervisor), Barbashin, Loud, Erugin, Malkin, Krasovskii, Ogurcov, Reissig, Tejumola (his Ph.D. student), Pliss, Swick, Chow, Dunninger, among others.

The classifications of Professor Ezeilo's publications in line with the order and qualitative properties are set in section 2. We also list some of the publications of his, as we can easily can lay our hands on them in section 3.

His work among the Mathematical world is best appreciated by continuing to work further in his line of research. Most of his works were all recorded in the book [2] and the review carried out in [1], and in the American Mathematical Reviews as well as the Math. Zentralblat.

We shall miss you as An academic Grand-father and Academic God-father respectively. Rest in peace.

Received by the editors April 27, 2014

¹corresponding author

A. U. AFUWAPE AND F. I. OCHOR

References

- Jan Andres, Recent Results on Third-Order Nonlinear ODEs, J. Nigerian Math. Soc. 14/15 (1995/96), 41-66. MR.2001c:34001.
- [2] Reissig, R., Sansone, G. and Conti, R., Non-linear Differential Equations of Higher Order, Noordhoff International Publishing (1974). MR. 49 # 9295.

2. CLASSIFICATION OF EZEILO'S RESEARCH PUBLICATIONS

S/N	Order	Qualitative results	
1	3rd	Boundedness result and extension of Cartwrights	
		result on 2nd order	
2	3rd	Stability result via the construction of a suitable	
		Lyapunov function	
3	3rd	Existence of periodic solutions via Leray Schauder technique	
4	3rd	Boundedness result and improvement of $\#1$ and Pliss result	
5	4th	Boundedness and stability results by Lyapunov functions	
6	4th	Improvement of $\#5$ in the direction of stability	
7	3rd	Property of phase space trajectories	
8	3rd	Global stability via Lyapunov function	
9	3rd	Boundedness	
10	3rd	Boundedness	
11	3rd	Boundedness	
12	3rd	Stability via Lyapunov second method (see reviewers comment)	
13	4th	Boundedness	
14	3rd	Boundedness and gives a simpler proof of $\#1$	
15	3rd	Systems Boundedness and asymptotic stability. Improves $\#7$	
16	3rd	Generalises, extends $\#2$, $\#6$ and Barbašin results	
17	3rd	Extension of $\#1$	
18	3rd	Continuation of #17	
19	3rd	Improves #7	
20	2nd	Existence of almost periodic solution (see reviewers comment)	
21	Systems	Existence of almost periodic solution, generalization of Demidovic result	
22	3rd, 4th	Generalizes many known results (see reviewers comment)	
22	Systems	Existence of uniform almost periodic solutions via	
20	Systems	Lyapunov function	
24	2nd	Generalization of a result of Loud	
25	Systems	Nth dimensional analogues of some results of Loud	
26	3rd	Stability	
27	Systems	Stability, generalizes earlier results of Erugin, Malkin and Krasovskii	
28	Systems	Extends $\#1$, $\#14$, $\#16$, $\#22$ and some results of Barbašin	
	-	and Pliss	
29	Systems	Improvement of #15	
30	Systems	Erratum of #21	

4

S/N	Order	Qualitative results
31	3rd	Corrigendum of $\#17$
32	3rd	Boundedness and continuation of $\#14$, $\#17$ and $\#18$
33	Systems	Boundedness and stability
34	3rd	Generalizes $#2$ and results of Ogurcov
35	3rd	Boundedness and continuation of $\#17$ and $\#31$
36	3rd	Ultimate boundedness and extends some results of Reissig
37	Nth	Boundedness and generalises some results of Reissig
38	4th	Boundedness via suitable Lyapunov function
39	4th	Boundedness and generalizes $#38$
40	3rd	Generalized boundedness result
41	4th	Boundedness
42	3rd	Boundedness, generalises results of Reissig and Tejumola
43	3rd	Some properties of a certain 3rd equation are given
44	3rd	Existence of periodic solutions via
		Leray Schauder technique
45	4th	Boundedness and stability
46	5th	Boundedness and stability results
47	2nd	Existence of periodic solution
48	3rd	Existence of periodic solution
49	2nd	Related to $#47$
50	3rd	Boundedness and relaxation of some conditions on
		Swicks earlier result
51	Nth	Existence of periodic solution
52	3rd	Generalization of $\#50$
53	Systems	Extension of $\#32$
54	5th	Improvement of #46
55	3rd	Extension of a result of Pliss
56	3rd	Existence of periodic solution
57	4th	Instability results via Lyapunov
58	5th	Instability results via Lyapunov
59	5th	Extension of $\#58$
60	4th	Existence of periodic solution via Leray Schauder
61	6th	Instability
62	4th	Existence of periodic solution
63	3rd	Existence of periodic solution
64	4th	Nonresonance results
65	3rd	Generalization of some Reissigs earlier result
66	4th, 5th	Improvement of $\#57, \#58$
67	Systems	Existence of periodic solution of certain 3rd order systems
68	Systems	Existence of periodic solution of certain 5rd order systems
69	2nd	Periodic solution via a topological theorem of Gussefeldt
70	6th	Existence of periodic solution
71	Pth	Generalization of $#64$ and results of Chow and Dunninger
72	Systems	Periodic solution of certain 4th and 5th order
		systems, generalises $\#28$
73	Odd	Existence of periodic solution via a topological theorem
		of Gussefeldt
74	3rd	Existence of periodic solution

REVIEW OF SELECTED PUBLICATIONS OF PROF. J. O. C. EZEILO... 5

A. U. AFUWAPE AND F. I. OCHOR

S/N	Order	Qualitative results
75	3rd	Survey paper
76	3rd	Survey paper
77	3rd	Resonance and non resonance results
78	3rd	Non resonance results
79	3rd	Periodic solution
80	3rd	Non resonance
81	3rd	Periodic solution
82	3rd	Existence of periodic solutions
83	4th	Existence of periodic solutions
84	3rd	Applications in physics
85	4th	Corrigendum of $\#72$
86	3rd	Non resonance
87	4th	Periodic boundary value problems
88	4th	Instability results
89	4th	Non resonance results
90	3rd	Construction of Lyapunov functions

3. SELECTED J. O. C. EZEILO'S RESEARCH PUBLICATIONS

(90) Ezeilo, J. O. C. and Ogbu, H. M. Construction of Lyapunov-type of functions for some third order nonlinear ordinary differential equations by method of Integration. *Journal of Science Teachers Association of Nigeria*, 45, 1 and 2 (2010), 49-58.
(89) Ezeilo, J. O. C. and Tejumola, H. O. Non resonant oscillations for some fourth order differential equations II. *J. Nigerian Math. Soc.* 20 (2001), 45-58.

(88) **Ezeilo**, J. O. C. Further instability theorem for some fourth order differential equations II. J. Nigerian Math. Soc. **19** (2000), 1-7.

(87) **Ezeilo, J. O. C.** Periodic boundary value problems for some fourth order differential equations. Ordinary differential equations (Abuja, 2000), 1-14, *Proc. Natl. Math. Centre Abuja Nigeria*, 1.1, Natl. Math. Centre, Abuja, 2000.

(86) Ezeilo, J. O. C. Non-resonant oscillations for some third order differential equations III. J. Nigerian Math. Soc. 18 (1999), 11-19.

(85) Ezeilo, J. O. C. Corrigendum: Uniqueness theorems for periodic solutions of certain fourth and fifth order differential systems. J. Nigerian Math. Soc. 2 (1983), 55-59: J. Nigerian Math. Soc. 16/17 (1997/98), 87.

(84) Animalu, A. O. E. and Ezeilo, J. O. C. Some third order differential equations in physics. Fundamental open problems in science at the end of the millennium, Vol. I-III (Beijing, 1997), 575-586, Hadronic Press, Palm Harbor, FL, 1999.

(83) Ezeilo, J. O. C. Periodic solutions of some fourth order differential equations. Proc. Seventh Intern. Coll. Differential Equations, Plovdiv, Bulgaria 1996.

(82) **Ezeilo, J. O. C.** On the conditions for existence of periodic solutions of a certain third order differential equation. *Proc. Sixth Intern. Coll. Differential Equations, Plovdiv, Bulgaria 1995.*

(81) **Ezeilo, J. O. C.** The differential equation $\ddot{x} + \psi(\dot{x})\ddot{x} + \varphi(x)\dot{x} + \theta(x, \dot{x}, \ddot{x}, t) = p(t)$ with a bounded θ , the existence of periodic solutions subject to one sided condition on ψ . Proc. Fifth Intern. Coll. Differential Equations, Plovdiv, Bulgaria 1994.

(80) Ezeilo, J. O. C. Non-resonant oscillations for some third order differential

equations in \mathbb{R}^n . Proc. Fourth Intern. Coll. Differential Equations, Plovdiv, Bulgaria 1993.

(79) **Ezeilo, J. O. C.** An L^2 -convergent iterative scheme for the periodic solution of a certain third order differential equation. *Computational Ordinary Differential Equations, ed, S. O. Fatunla, Univ. of Ibadan Press*, 1992, 79-86.

(78) **Ezeilo, J. O. C.** and **Omari, P.** Non-resonant oscillations for some third order differential equations II, *J. Nigerian Math. Soc.* 8 (1989), 25-48.

(77) **Ezeilo, J. O. C.** and **Nkashama, M. N.** Resonant and nonresonant oscillations for some third order nonlinear ordinary differential equations. *Nonlinear Anal.* **12** (1988), no. 10, 1029-1046.

(76) **Ezeilo, J. O. C.** Two eigenvalue problems associated with recent results of the oscillation of certain forced non-linear third order differential equations. (Paper presented at the *Southern African Mathematical Sciences Association. Conference in Arusha Tanzania*), 1987.

(75) **Ezeilo, J. O. C.** Periodic solutions of third order differential equations in the past 25 years or so. (Invited paper presented at the *Second Pan-African Congress of the African Mathematical Union, University of Jos, Nigeria*), 1986 23-29.

(74) **Ezeilo, J. O. C.** and **Onyia, J.** Nonresonant oscillations for some third-order differential equations. J. Nigerian Math. Soc. **3** (1984), 83-96 (1986).

(73) **Ezeilo, J. O. C.** An application of a theorem of Güssefeldt in the proof of the existence of periodic solutions of a certain class of differential equations. *J. Nigerian Math. Soc.* **2** (1983), 79-89.

(72) **Ezeilo, J. O. C.** Uniqueness theorems for periodic solutions of certain fourth and fifth order differential systems. J. Nigerian Math. Soc. 2 (1983), 55-59.

(71) **Ezeilo, J. O. C.** Some properties of the differential equation $f(u) = \frac{d^P u}{dt^P}$ of arbitrary order $p \ge 1$ Qualitative theory of differential equations, Vol. I, II (Szeged, 1979), 231-241, Colloq. Math. Soc. János Bolyai, **30**, North-Holland, Amsterdam-New York, 1981.

(70) Ezeilo, J. O. C. Periodic solutions of certain sixth order differential equations. J. Nigerian Math. Soc. 1 (1982), 1-9.

(69) **Ezeilo, J. O. C.** A Leray-Schauder technique for the investigation of periodic solutions of the equation $\ddot{x} + x + x^2 = \varepsilon \cos \omega t (\varepsilon \neq 0)$. Acta Math. Acad. Sci. Hungar. **39** (1982), no. 1-3, 59-63.

(68) **Ezeilo, J. O. C.** Existence of periodic solutions of a certain system of fifth-order differential equations. *Ninth international conference on nonlinear oscillations*, Vol. 1 (Kiev, 1981), 420-422, 454, "Naukova Dumka", Kiev, 1984.

(67) **Ezeilo, J. O. C.** On the existence of periodic solutions of certain third order nondissipative differential systems. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* (8) **66** (1979), no. 2, 126-135.

(66) **Ezeilo, J. O. C.** Extension of certain instability theorems for some fourth and fifth order differential equations. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* (8) **66** (1979), no. 4, 239-242.

(65) **Ezeilo, J. O. C.** A further result on the existence of periodic solutions of the equation $\ddot{x} + (\dot{x})\ddot{x} + \varphi(x)\dot{x} + \theta(t, x, \dot{x}, \ddot{x}) = p(t)$ with a bounded θ . Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) **65** (1978), no. 1-2, 51-57 (1979).

(64) Ezeilo, J. O. C. Non resonant oscillations for some fourth order differential equations I. Directions in mathematics (Ibadan, 1997), 15-35, Y-Books, Ibadan, 1999.
(63) Ezeilo, J. O. C. Periodic solutions of certain third order differential equations of the nondissipative type. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 63 (1977), no. 3-4, 212-224 (1978).

(62) Ezeilo, J. O. C. Periodic solutions of a certain fourth order differential equation. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 63 (1977), no. 3-4, 204-211 (1978). (61) **Ezeilo, J. O. C.** An instability theorem for a certain sixth order differential equation. J. Austral. Math. Soc. Ser. A **32** (1982), no. 1, 129-133.

(60) Ezeilo, J. O. C. and Tejumola, H. O. Periodic solutions of a certain fourth order differential equation. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 66 (1979), no. 5, 344-350.

(59) **Ezeilo**, **J. O. C.** A further instability theorem for a certain fifth-order differential equation. *Math. Proc. Cambridge Philos. Soc.*, **86**, 1979, 491-493.

(58) **Ezeilo**, J. O. C. Instability theorems for certain fifth-order differential equations. *Math. Proc. Cambridge Philos. Soc.*, 84, 1978, 343-350.

(57) **Ezeilo, J. O. C.** An instability theorem for a certain fourth order differential equation. *Bull. London Math. Soc.* **10** (1978), no. 2, 184-185.

(56) **Ezeilo, J. O. C.** Further results on the existence of periodic solutions of a certain third-order differential equation. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* (8) **64** (1978), no. 1, 48-58.

(55) **Ezeilo, J. O. C.** Further results on the existence of periodic solutions of a certain third order differential equation. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* (8) **63** (1977), no. 6, 493-503 (1978).

(54) Ezeilo, J. O. C. and Tejumola, H. O. Further remarks on the existence of periodic solutions of certain fifth order non-linear differential equations, *Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* 58, 1975, 323-327.

(53) **Ezeilo**, J. O. C. and **Tejumola**, H. O. Further results for a system of third order differential equations. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* 58, 1975, 143-151.

(52) **Ezeilo, J. O. C.** A further result on the existence of periodic solutions of the equation $\ddot{x} + a\ddot{x} + b\dot{x} + h(x) = p(t, x, \dot{x}, \ddot{x})$. *Proc. Cambridge Philos. Soc.*, **77**, 1975, 547-551.

(51) **Ezeilo, J. O. C.** Periodic solutions of certain non-autonomous nth order differential equations with a polynomial perturbation term. *Proc. 15th Annual Conf. Science Asso. of Nigeria*, 1974, 72-74.

(50) Ezeilo, J. O. C. and Tejumola, H. O. Boundedness theorems for certain third order differential equations. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.*, 55, 1973, 194-201.

(49) **Ezeilo, J. O. C.** Periodic solutions of the equation $\ddot{x} + f(x)\dot{x} + g(x) = p(t, x, \dot{x})$. Congress of Mathematicians, Vancouver. Abstracts of short communications, 1974, 73.

(48) **Ezeilo, J. O. C.** Periodic solutions of certain third order differential equations. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* **57**, 1974, 54-60.

(47) **Ezeilo, J. O. C.** Some new criteria for the existence of periodic solutions of a certain second order differential equation. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* **56**, 1974, 675-683.

(46) **Ezeilo, J. O. C.** and **Tejumola, H. O.** Periodic solutions of certain fifth order differential equations. *Nonlinear vibration problems*, No. 15 (Proc. Sixth Internat. Conf. Nonlinear Oscillations, Pozna?, 1972, Part II), 75-84.

(45) **Ezeilo, J. O. C.** and **Tejumola, H. O.** On the boundedness and the stability properties of solutions of certain fourth order differential equations, *Ann. Mat. Pura Appl.*, **95**, 1973, 131-145.

(44) **Ezeilo, J. O. C.** Periodic solutions of a certain third order differential equation. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* **54**, 1973, 34-41.

(43) **Ezeilo, J. O. C.** New properties of the equation $\ddot{x} + ax + bx + h(x) = p(t, x, \dot{x}, \ddot{x})$ for certain values of the incrementary ratio $y^{-1}{h(x+y)-h(x)}$. Équations différentielles et fonctionnelles non linéaires (Actes Confrence Internat. "Equa-Diff 73", Brussels/Louvain-la-Neuve, 1973, 447-462. Hermann, Paris.

(42) Ezeilo, J. O. C. A generalization of some boundedness results by Reissig and

Tejumola. J. Math. Anal. Appl., 41, 1973, 411-419.

(41) **Ezeilo, J. O. C.** A boundedness theorem for a certain fourth order differential equation. *J. London Math. Soc.*, **5**, 1972, 376-384.

(40) **Ezeilo, J. O. C.** A generalization of a boundedness theorem for the equation $\ddot{x} + a\ddot{x} + \varphi_2(\dot{x}) + \varphi_3(x) = \psi(t, x, \dot{x}, \ddot{x})$. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. **50**, 1971, 424-431.

(39) **Ezeilo**, J. O. C. and **Tejumola**, H. O. Boundedness theorems for some fourth order differential equations. *Ann. Mat. Pura Appl.*, **89**, 1971, 259-275.

(38) **Ezeilo**, J. O. C. and **Tejumola**, H. O. A boundedness theorem for a certain fourth order differential equation. *Ann. Mat. Pura Appl.*, **88**, 1971, 207-216.

(37) **Ezeilo, J. O. C.** A boundedness theorem for a certain n^{th} order differential equation. Ann. Mat. Pura Appl., 88, 1971, 135-142.

(36) **Ezeilo, J. O. C.** A generalization of a theorem of Reissig for a certain third order different equation. *Ann. Mat. Pura Appl.*, **87**, 1970, 349-356.

(35) **Ezeilo, J. O. C.** On the boundedness of the solutions of the equation $\ddot{x} + a\ddot{x} + f(x)\dot{x} + g(x) = p(t)$. Ann. Mat. Pura Appl., **80**, 1968, 281-299.

(34) **Ezeilo**, **J. O. C.** On the stability of the solutions of some third order differential equations. *J. London Math. Soc.*, **43**, 1968, 161-167.

(33) **Ezeilo, J. O. C.** *n*-dimensional extensions of boundedness and stability theorems for some third order differential equations. *J. Math. Anal. Appl.*, **18**, 1967, 395-416.

(32) **Ezeilo**, **J. O. C.** A generalization of a boundedness theorem for a certain thirdorder differential equation. *Proc. Cambridge Philos. Soc.*, **63**, 1967, 735-742.

(31) **Ezeilo**, **J. O. C.** Corrigendum: A boundedness theorem for a certain third-order differential equation in *Proc. London Math. Soc.* **13**, 1963, 99-124: *Proc. London Math. Soc.*, **17**, 1967, 382-384.

(30) Ezeilo, J. O. C. Erratum: On the existence of almost periodic solutions of some dissipative second order differential equations in Ann. Mat. Pura Appl. (4) 65 1964, 389-405. Ann. Mat. Pura Appl. (4) 74 1966, 399.

(29) **Ezeilo**, **J. O. C.** An estimate for the solutions of a certain system of differential equations. *Nigerian J. Sci.*, **1**, 1966, 5-10.

(28) Ezeilo, J. O. C. and Tejumola, H. O. Boundedness and periodicity of solutions of a certain system of third-order non-linear differential equations. *Ann. Mat. Pura Appl.* **74**, 1966, 283-316.

(27) **Ezeilo, J. O. C.** On the stability of solutions of certain systems of ordinary differential equations. *Ann. Mat. Pura Appl.*, **73**, 1966, 17-26.

(26) **Ezeilo, J. O. C.** A stability result for a certain third order differential equation. Ann. Mat. Pura Appl., **72**, 1966, 1-10.

(25) **Ezeilo**, J. O. C. On the convergence of solutions of certain systems of second order differential equations. *Ann. Mat. Pura Appl.* **72**, 1966, 239-252.

(24) **Ezeilo**, **J. O. C.** A note on the convergence of solutions of certain second order differential equations. *Portugal. Math.*, **24**, 1965, 49-58.

(23) **Ezeilo, J. O. C.** A generalization of a result of Demidovič on the existence of a limiting regime of a system of differential equations. *Portugal. Math.* **24**, 1965, 65-82.

(22) **Ezeilo, J. O. C.** Stability results for the solutions of some third and fourth order differential equations . *Ann. Mat. Pura Appl.* **66**, 1964, 233-250.

(21) **Ezeilo**, **J. O. C.** On the existence of an almost periodic solution of a non-linear system of differential equations. *Contributions to Differential Equations*, **3**, 1964, 337-349.

(20) **Ezeilo**, **J. O. C.** On the existence of almost periodic solutions of some dissipative second order differential equations. *Ann. Mat. Pura Appl.*, **65**, 1964, 389-405.

(19) Ezeilo, J. O. C. An extension of a property of the phase space trajectories of

a third order differential equation. Ann. Mat. Pura Appl. 63, 1963, 387-397.

(18) **Ezeilo**, **J. O. C.** A boundedness theorem for a differential equation of the third order. *Qualitative methods in the theory of non-linear vibrations (Proc. Internat. Sympos. Non-linear Vibrations, Vol. II, 1961)*, 513-538, Izdat. Akad. Nauk Ukrain. SSR, Kiev.

(17) **Ezeilo, J. O. C.** A boundedness theorem for a certain third-order differential equation. *Proc. London Math. Soc.*, **13**, 1963, 99-124.

(16) **Ezeilo, J. O. C.** Further results for the solutions of a third-order differential equation. *Proc. Cambridge Philos. Soc.*, **59**, 1963, 111-116.

(15) **Ezeilo**, **J. O. C.** Some results for the solutions of a certain system of differential equations. *J. Math. Anal. Appl.*, **6**, 1963, 387-393.

(14) **Ezeilo**, **J. O. C.** An elementary proof of a boundedness theorem for a certain third order differential equation. *J. London Math. Soc.* **38**, 1963, 11-16.

(13) **Ezeilo, J. O. C.** Some boundedness results for a fourth order nonlinear differential equation. 1964 Nonlinear Vibration Problems. 5, Second Conf. on Nonlinear Vibrations, Warsaw, 1962, 252-257 Panstwowe Wydawnictwo Naukowe, Warsaw.

(12) Ezeilo, J. O. C. and Fallside, F. Application of the second method of Lyapunov to the stability of certain position control systems containing a back e.m.f. non-linearity. *Proc. Inst. Electrical Engineers*, **110**, 1963, 1855-1866.

(11) Ezeilo, J. O. C. A property of the phase space trajectories of a third order differential equation, *Internat. Congress of Mathematicians, Stockholm (1962), Abstracts of short communications, 74-75.*

(10) **Ezeilo, J. O. C.** Some integrability results for the solutions of a non-linear third order differentiated equation. *Abstracts Czechoslovak Conf. Diff. Eqns.*, 1962, 57.

(9) Ezeilo, J. O. C. A boundedness theorem for some non-linear differential equations of the third order. J. London Math. Soc., **37**, 1962, 469-474.

(8) Ezeilo, J. O. C. A stability result for the solutions of certain third order differential equations. J. London Math. Soc., **37**, 1962, 405-409.

(7) Ezeilo, J. O. C. A property of the phase-space trajectories of a third-order nonlinear differential equation. J. London Math. Soc., **37**, 1962, 33-41.

(6) Ezeilo, J. O. C. A stability result for solutions of a certain fourth order differential equation. J. London Math. Soc., 37, 1962, 28-32.

(5) Ezeilo, J. O. C. On the boundedness and the stability of solutions of some differential equations of the fourth order. J. Math. Anal App., 5, 1962, 136-146.

(4) Ezeilo, J. O. C. A note on a boundedness theorem for some third order differential equations. J. London Math. Soc., 36, 1961, 439-444.

(3) **Ezeilo, J. O. C.** On the existence of periodic solutions of a certain third-order differential equation. *Proc. Cambridge Philos. Soc.*, **66**, 1960, 381-389.

(2) Ezeilo, J. O. C. On the stability of solutions of certain differential equations of the third order. *Quart. J. Math. (Oxford)*, **11**, 1960, 64-69.

(1) Ezeilo, J. O. C. On the boundedness of solutions of a certain differential equation of the third order. *Proc. London Math. Soc.*, **9**, (1959), 74-114.

INSTITUTO DE MATEMÁTICAS, UNIVERSIDAD DE ANTIOQUIA, CALLE 67, NO. 53-108, MEDELLÍN AA 1226, COLOMBIA

E-mail address: aafuwape@yahoo.co.uk

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NIGERIA, NSUKKA, NIGERIA.

E-mail address: franjoku@yahoo.com