INTEGRAL CONDITIONS OF EXISTENCE AND NON-EXISTENCE OF PERIODIC SOLUTIONS OF SOME SIXTH AND FIFTH ORDER ORDINARY DIFFERENTIAL EQUATIONS

H. O. TEJUMOLA ${ }^{1}$

Abstract

New conditions of integral type are obtained for the existence of periodic solutions of a certain class of sixth and fifth order equations, and for non-existence of periodic solutions of their corresponding homogeneous equations.

Keywords and phrases: Ordinary differential equations, Sixth and firth order, Existence and non-existence, Periodic solutions, Scalar functions 2010 Mathematical Subject Classification: 34C25

1. INTRODUCTION

In a recent paper [3] we examined the problem of existence of periodic solutions of fourth order nonlinear ordinary differential equations of the form

$$
\begin{equation*}
x^{(4)}+g_{1}(\dot{x}, \ddot{x}) \dddot{x}+g_{2}(\dot{x}) \ddot{x}+g_{3}(\dot{x})+g_{4}(x)=p(t, x, \dot{x}, \ddot{x}, \dddot{x}), \tag{1.1}
\end{equation*}
$$

$p(t+\omega, x, \dot{x}, \ddot{x}, \dddot{x})=p(t, x, \dot{x}, \ddot{x}, \dddot{x})$ for some periodic $\omega>0$, and the problem of nonexistence of periodic solution for the corresponding homogeneous equation (1.1) with $p \equiv 0$. Our main interest in that study was in obtaining conditions that place restrictions on the integral of g_{1} and, or, g_{3} rather than directly on the functions g_{1} and g_{3} as in previous investigations, and this resulted in relatively weaker conditions for existence and nonexistence of periodic solutions of (1.1). An additional feature of that study [3] is the full blown nonlinear terms involved in the equation. The present paper is a continuation of our study in [3] to a class of sixth and fifth order ordinary differential equations.

[^0]To start with, consider the linear constant-coefficient sixth order ordinary differential equation

$$
\begin{gather*}
x^{(6)}+a_{1} x^{(5)}+a_{2} x^{(4)}+a_{3} \dddot{x}+a_{4} \ddot{x}+a_{5} \dot{x}+a_{6} x=p(t), \tag{1.2}\\
p(t+\omega)=p(t) .
\end{gather*}
$$

It can be readily verified (as in [1,4]) that if either of the conditions
(I) $a_{1} \neq 0$, sgna $_{1}=\operatorname{sgna}_{5},\left(\operatorname{sgna}_{1}\right) a_{3}<0 \quad\left(a_{2}, a_{4}, a_{6}\right.$ arbitrary $)$
(II) $a_{2}<0, a_{4}>0, a_{6}<0 \quad\left(a_{1}, a_{3}, a_{5}\right.$ arbitrary)
holds, then (1.2) with $p \equiv 0$, has no nontrivial periodic solutions, and the equation (1.2) with $p \neq 0$ has a unique ω-periodic solution.
In the fifth order case

$$
\begin{equation*}
x^{(5)}+b_{1} x^{(4)}+b_{2} \dddot{x}+b_{3} \ddot{x}+b_{4} \dot{x}+b_{5} x=p(t), p(t+\omega)=p(t), \tag{1.3}
\end{equation*}
$$

the corresponding conditions are

$$
\text { (III) } b_{1} \neq 0, \operatorname{sgnb}_{1}=\operatorname{sgnb}_{5}, b_{3} \operatorname{sgn}_{1}<0
$$

(IV) $b_{2}<0, b_{4}>0$
$b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ and b_{6} constants. Observe that each of the conditions (I) and (III) incorporates two conditions into one. Furthermore in the two equations $(1,2)$, (1.3) two sets of different conditions, one involving terms with odd subscripts and the other even subscripts ((I), (III); (II), (IV)) ensure the existence or nonexistence of periodic solutions. This odd and even subscripts feature runs through the generalized criteria obtained for the nonlinear equations studied here.

2. STATEMENT OF RESULTS - SIXTH ORDER EQUATIONS

We shall be concerned with sixth order equations of the forms

$$
\begin{gather*}
x^{(6)}+f_{1}\left(x^{(4)}\right) x^{(5)}+f_{2}(\dddot{x}) x^{(4)}+f_{3}(\ddot{x}) \dddot{x}+f_{4}(\ddot{x})+f_{5}(\dot{x}) \\
+a_{6} x=p_{1}\left(t, x, \dot{x}, \ddot{x}, \dddot{x}, x^{(4)}, x^{(5)}\right) \tag{2.1}\\
x^{(6)}+a_{1} x^{(5)}+g_{2}(\dddot{x}) x^{(4)}+g_{3}(\ddot{x}) \dddot{x}+g_{4}(\dot{x}) \ddot{x}+g_{5}(\dot{x}) \\
+g_{6}(x)=p_{2}\left(t, x, \dot{x}, \ddot{x}, \dddot{x}, x^{(4)}, x^{(5)}\right) \tag{2.2}
\end{gather*}
$$

in which a_{1}, a_{6} are constants, $f_{i}, i=1,2, \ldots, 5, g_{i}, i=2, \ldots, 6$ and $p_{i}, i=1,2$, are real-valued continuous functions of their respective arguments, and $p_{i}\left(t+\omega, x, \ldots, x^{(5)}\right)=p_{i}\left(t, x, \ldots, x^{(5)}\right), i=1,2$ for some constant $\omega>0$. Corresponding respectively to the conditions (I) and (II) above we obtain the following results for the equations (2.1), (2.2). Assume that $f_{5}^{\prime}(y), g_{6}^{\prime}(x)$ exist and are continuous for all y and x.

Theorem 1. Let $a \neq 0$ be an arbitrary constant and suppose that

$$
\begin{gather*}
(\operatorname{sgna}) \frac{F_{1}(v)}{v}>0,(\operatorname{sgna}) f_{5}^{\prime}(y)>0,(\operatorname{sgna}) f_{3}(u)<0 \\
F_{1}(v) \equiv \int_{0}^{v} f_{1}(s) d s \tag{2.3}
\end{gather*}
$$

for all y, u and $v \neq 0$. Then the equation (2.1) with $p_{1} \equiv 0$ has no nontrivial periodic solution of whatever period.

In the non-autonomous case $p_{1} \not \equiv 0$, we have the following result. Theorem 2. Let $a_{1} \neq 0, a_{3}, a_{5}$ be constants satisfying (I) such that

$$
\left.\begin{array}{l}
\left(\operatorname{sgna}_{1}\right) \frac{F_{1}(v)}{v} \geq\left|a_{1}\right| \text { for }|y| \geq 1 \tag{2.4}\\
\left(\operatorname{sgna}_{1}\right) f_{3}(u) \leq\left(\operatorname{sgna}_{1}\right) a_{3} \text { for }|u| \geq 1 \\
\left(\operatorname{sgna}_{1}\right) f_{5}^{\prime}(y) \geq\left|a_{5}\right| \text { for }|y| \geq 1
\end{array}\right\}
$$

Suppose further that there are constants $A_{1}>0, A_{2} \geq 0$, with A_{2} sufficiently small, such that

$$
\begin{equation*}
\left|p_{1}(t, x, y, z, u, v, w)\right| \leq A_{1}+A_{2}(|z|+|u|+|v|) \tag{2.5}
\end{equation*}
$$

for all t, x, y, z, u, v. Then the equation (2.1) has at least one periodic solution of period ω.
Note that the conditions (2.3) and (2.4) are generalizations of the criteria (I); they also involve terms with odd subscripts in equation (2.1). Note also the absence of any conditions on the constant a_{6} and the terms with even subscripts f_{2}, f_{4} in (2.1). Our results in the other direction, that is involving terms with even subscripts, concern the equation (2.2), and are as follows.
Theorem 3. Suppose that

$$
\begin{equation*}
\frac{G_{2}(u)}{u}<0, g_{4}(y)>0, g_{6}^{\prime}(x)<0, G_{2}(u) \equiv \int_{0}^{u} g_{2}(s) d s \tag{2.6}
\end{equation*}
$$

for all x, y and $u \neq 0$. Then the equation (2.2), with $p_{2} \equiv 0$, has no nontrivial periodic solution of whatever period.
Theorem 4. Let a_{2}, a_{4}, a_{6} be constants satisfying (II) such that

$$
\left.\begin{array}{l}
\frac{G_{2}(u)}{u} \leq a_{2} \text { for }|u| \geq 1, g_{4}(y)>a_{4} \text { for }|y| \geq 1 \tag{2.7}\\
g_{6}^{\prime}(x)<a_{6} \text { for }|x| \geq 1, \quad G_{2}(u) \equiv \int_{0}^{u} g_{2}(s) d s,
\end{array}\right\}
$$

and let

$$
g_{6}(x) \operatorname{sgn} x \rightarrow+\infty(-\infty) \text { as } \quad|x| \rightarrow \infty .
$$

Suppose that there exist constants $A_{1}^{*}>0, A_{2}^{*}>0$, with A_{2}^{*} sufficiently small, such that

$$
\begin{equation*}
\left|p_{2}(t, x, y, z, u, v, w)\right| \leq A_{1}^{*}+A_{2}^{*}(|y|+|z|+|u|) \tag{2.8}
\end{equation*}
$$

for all t, x, y, z, u, v, w. Then the equation (2.2) has at least one periodic solution of period ω.

Observe the absence of any restrictions on the constant a_{1} and the functions g_{3}, g_{5} in (2.2). The conditions on F_{1} in (2.3) and (2.4), and on G_{2} in (2.6) and (2.7) are the integral conditions; they place restrictions on the integrals of f_{1} and g_{2} rather than directly on the functions f_{1} and g_{2}.

3. STATEMENT OF RESULTS - FIFTH ORDER EQUATIONS

We now state parallel results for fifth order equations. We shall consider equations of the form

$$
\begin{align*}
x^{(5)}+\varphi_{1}(\dddot{x}) x^{(4)} & +\varphi_{2}(\ddot{x}) \dddot{x}+\varphi_{3}(\dot{x}) \ddot{x}+\varphi_{4}(\dot{x})+\varphi_{5}(x) \\
& =q_{1}\left(t, x, \dot{x}, \ddot{x}, \dddot{x}, x^{(4)}\right) \tag{3.1}\\
x^{(5)}+b x^{(4)} & +\psi_{2}(\ddot{x}) \dddot{x}+\psi_{3}(\dot{x}) \ddot{x}+\psi_{4}(\dot{x})+\psi_{5}(x) \tag{3.2}\\
& =q_{2}\left(t, x, \dot{x}, \ddot{x}, \dddot{x}, x^{(4)}\right)
\end{align*}
$$

where b is an arbitrary constant, $\varphi_{i}, i=1,2, \ldots, 5, \psi_{i}, i=2, \ldots, 5$, q_{1}, q_{2} are real-valued continuous functions, $\varphi_{5}^{\prime}(x)$ exists and is continuous for all x and q_{1}, q_{2} are periodic in t, of period ω. Our first set of results concern (3.1), and are as follows.
Theorem 5. Let

$$
\begin{gather*}
(\operatorname{sgna}) \frac{\Phi_{1}(u)}{u}>0,(\operatorname{sgna}) \varphi_{3}(y)<0,(\operatorname{sgna}) \varphi_{5}^{\prime}(x)>0 \\
\Phi_{1}(u) \equiv \int_{0}^{u} \varphi_{1}(s) d s \tag{3.3}
\end{gather*}
$$

for all x, y and $u \neq 0$, where a is an arbitrary constant. Then the equation (3.1), with $q_{1} \equiv 0$, has no nontrivial periodic solutions of any period.
Theorem 6. Let $b_{1} \neq 0, b_{3}, b_{5}$ be constants satisfying (III) such that

$$
\begin{gather*}
\left(\operatorname{sgn}_{1}\right) \frac{\Phi_{1}(u)}{u} \geq\left|b_{1}\right|,\left(\operatorname{sgn} b_{1}\right) \varphi_{3}(y) \leq\left(\operatorname{sgn}_{1}\right) b_{3} \tag{3.4}\\
\left(\operatorname{sgn} b_{5}\right) \varphi_{5}^{\prime}(x) \geq\left|b_{5}\right|, \Phi_{1}(u) \equiv \int_{0}^{u} \varphi_{1}(s) d s
\end{gather*}
$$

for all $|x| \geq 1,|y| \geq 1$ and $|u| \geq 1$. Suppose that

$$
\begin{equation*}
(\operatorname{sgn} x) \varphi_{5}(x) \rightarrow+\infty(-\infty) \text { as }|x| \rightarrow \infty \tag{3.5}
\end{equation*}
$$

Suppose further that there exist constants $B_{1}>0, B_{2}>0$, with B_{2} sufficiently small, such that

$$
\begin{equation*}
\left|q_{1}(t, x, y, z, u, v)\right| \leq B_{1}+B_{2}(|y|+|z|+|u|) \tag{3.6}
\end{equation*}
$$

for all t, x, y, z, u, v. Then the equation (3.1) has at least one periodic solution of period ω.
Observe the absence of any restrictions on terms with even subscripts in (3.1); our results involving terms with even subscripts, and in line with (IV), concerns the equation (3.2) and are as follows.
Theorem 7. Let

$$
\begin{equation*}
\frac{\Psi_{2}(z)}{z}<0, \frac{\psi_{4}(y)}{y}>0, \Psi_{2}(z) \equiv \int_{0}^{z} \psi_{2}(s) d s \tag{3.7}
\end{equation*}
$$

for all $y \neq 0$ and $z \neq 0$. Then the equation (3.2), with $q_{2} \equiv 0$, and b an arbitrary constant, has no nontrivial periodic solution of any period.
Theorem 8. Let b_{2}, b_{4} be constants satisfying (IV) such that

$$
\begin{gather*}
\frac{\Psi_{2}(z)}{z} \leq b_{2}(|z| \geq 1), \frac{\psi_{4}(y)}{y} \geq b_{4}(|y| \geq 1) \tag{3.8}\\
\Psi_{2}(z) \equiv \int_{0}^{z} \psi_{2}(s) d s
\end{gather*}
$$

Suppose that

$$
\begin{equation*}
\psi_{5}(x) \operatorname{sgn} x \rightarrow+\infty(-\infty) \text { as }|x| \rightarrow \infty . \tag{3.9}
\end{equation*}
$$

Suppose further that there are constants $B_{1}^{*}>0, B_{2}^{*} \geq 0$ with B_{2}^{*} sufficiently small, such that

$$
\begin{equation*}
\left|q_{2}(t, x, y, z, u, v)\right| \leq B_{1}^{*}+B_{2}^{*}(|y|+|z|) \tag{3.10}
\end{equation*}
$$

for all t, x, y, z, u, v. Then the equation (3.2) has at least one periodic solution of period ω.
The procedure for the proof of the theorems is as in [1,2] and $[3,4]$: for each nonexistence result we need to exhibit a real-valued function with appropriate properties, while for existence the desired a-priori bound will be obtained for a suitably defined parameterdependent equation.

In what follows $D_{i}, i=1,2, \ldots$ will denote finite positive constants whose magnitude depend on the constants and functions in
an equation but are independent of solutions and of parameter μ in the equations.

4. OUTLINE OF PROOF OF THEOREMS 1-4

We start with Theorems 1 and 2 . Consider first the equation (2.1) with $p_{1} \equiv 0$ in the system form

$$
\left.\begin{array}{rl}
\dot{x}_{i}=x_{i+1}, \quad i=1,2, \ldots, 5, \quad x \equiv x_{1} \tag{4.1}\\
\dot{x}_{6}= & -f_{1}\left(x_{5}\right) x_{6}-f_{2}\left(x_{4}\right) x_{5}-f_{3}\left(x_{3}\right) x_{4}-f_{4}\left(x_{3}\right) \\
& -f_{5}\left(x_{2}\right)-a_{6} x_{1},
\end{array}\right\}
$$

and define the function $V=V\left(x_{1}, x_{2}, \ldots, x_{6}\right)$ by

$$
\begin{equation*}
V=U \operatorname{sgna}_{1}, \tag{4.2}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
U=x_{4} x_{6}-\frac{1}{2} x_{5}^{2}+a_{6} x_{1} x_{3}-\frac{1}{2} a_{6} x_{2}^{2}+x_{4} F_{1}\left(x_{5}\right) \\
+F_{2}\left(x_{4}\right)+F_{4}\left(x_{3}\right)+x_{3} f_{5}\left(x_{2}\right) \\
F_{1}\left(x_{5}\right) \equiv \int_{0}^{x_{5}} f_{1}(s) d s, F_{2}\left(x_{4}\right) \equiv \int_{0}^{x_{2}} s f_{2}(s) d s \tag{4.3}\\
F_{4}\left(x_{3}\right) \equiv \int_{0}^{x_{3}} f_{4}(s) d s
\end{array}\right\}
$$

Let $\left(x_{1}, x_{2}, \ldots, x_{6}\right)=\left(x_{1}(t), x_{2}(t), \ldots, x_{6}(t)\right)$ be an arbitrary periodic solution of (4.1), then from (4.2) and (4.3) it is clear on differentiation and using (4.1) that

$$
\begin{align*}
\dot{V}=\left(\operatorname{sgna}_{1}\right) x_{5} F_{1}\left(x_{5}\right) & +\left(\operatorname{sgna}_{1}\right) f_{5}^{\prime}\left(x_{2}\right) x_{3}^{2} \tag{4.4}\\
& -\left(\operatorname{sgna}_{1}\right) f_{3}\left(x_{3}\right) x_{4}^{2} \geq 0
\end{align*}
$$

by (2.3). The conclusion of Theorem 1 now follows in view of the arguments in $[1,4]$.
To prove Theorem 2, consider, instead of (2.1), the parameter μ-dependent equation

$$
\begin{gather*}
x^{(6)}+f_{1}^{\mu}\left(x^{(4)}\right) x^{(5)}+\mu f_{2}(\dddot{x}) x^{(4)}+f_{3}^{\mu}(\ddot{x}) \dddot{x}+\mu f_{4}(\ddot{x}) \tag{4.5}\\
+f_{5}^{\mu}(\dot{x})+a_{6} x=\mu \rho_{1}, \quad 0 \leq \mu \leq 1,
\end{gather*}
$$

or, as is more convenient, the equivalent system

$$
\left.\begin{array}{rl}
\dot{x}_{i}=x_{i+1}, i=1,2, \ldots, 5, \quad x_{1} \equiv x \tag{4.6}\\
\dot{x}_{6}=-f_{1}^{\mu}\left(x_{5}\right) x_{6}-\mu f_{2}\left(x_{4}\right) x_{5}-f_{3}^{\mu}\left(x_{3}\right) x_{4}-\mu f_{4}\left(x_{3}\right) \\
& -f_{5}^{\mu}\left(x_{2}\right)-a_{6} x+\mu p_{1}, \quad 0 \leq \mu \leq 1
\end{array}\right\}
$$

where

$$
\begin{align*}
f_{1}^{\mu}\left(x_{5}\right) & =(1-\mu) a_{1}+\mu f_{1}\left(x_{5}\right) \\
f_{3}^{\mu}\left(x_{3}\right) & =(1-\mu) a_{3}+\mu f_{3}\left(x_{3}\right), \tag{4.7}\\
f_{5}^{\mu}\left(x_{2}\right) & =(1-\mu) a_{5} x_{2}+\mu f_{5}\left(x_{2}\right)
\end{align*}
$$

Now let $V^{\mu}=V^{\mu}\left(x_{1}, x_{2}, \ldots, x_{6}\right)$ be defined by

$$
\begin{equation*}
V^{\mu}=U^{\mu}\left(\operatorname{sgna}_{1}\right) \tag{4.8}
\end{equation*}
$$

where U^{μ} is obtained from U in (4.3) by replacing $F_{1}\left(x_{5}\right), F_{2}\left(x_{4}\right)$, $F_{4}\left(x_{3}\right), f_{5}\left(x_{2}\right)$ respectively with $F_{1}^{\mu}\left(x_{5}\right)=(1-\mu) a_{1} x_{5}+\mu F_{1}\left(x_{5}\right)$, $\mu F_{2}\left(x_{4}\right), \mu F_{4}\left(x_{3}\right), f_{5}^{\mu}\left(x_{2}=(1-\mu) a_{5} x_{2}+\mu f_{5}\left(x_{2}\right)\right.$. By the continuity of F_{1}^{μ}, f_{3}^{μ} and f_{5}^{μ}, it can be verified from (2.4) that for some constants $D_{i}>0, \quad i=1,2,3$ and for all x_{2}, x_{3}, x_{5},

$$
\left.\begin{array}{l}
\left(\operatorname{sgna}_{1}\right) x_{5} F_{1}^{\mu}\left(x_{5}\right) \geq\left|a_{1}\right| x_{5}^{2}-D_{1} \tag{4.9}\\
\left(\operatorname{sgna}_{5}\right) f_{5}^{\prime \mu}\left(x_{2}\right) x_{3}^{2} \geq\left|a_{5}\right| x_{3}^{2}-D_{2} \\
\left(\left(\operatorname{sgna}_{1}\right) f_{3}^{\mu}\left(x_{3}\right)\right) x_{4}^{2} \leq\left(\operatorname{sgna}_{1}\right) a_{3} x_{4}^{2}+D_{3}
\end{array}\right\}
$$

Let $\left(x, x_{1}, \ldots, x_{6}\right)$ be an ω-periodic solution of (4.6). Then on differentiating (4.8) and using (4.2), (4.3), it will follow from (4.9) that

$$
\begin{gathered}
\dot{V}^{\mu}=\left(\operatorname{sgna}_{1}\right) x_{5} F_{1}^{\mu}\left(x_{5}\right)+x_{3}^{2}\left(\operatorname{sgna}_{1}\right) f_{5}^{\prime \mu}\left(x_{2}\right)-x_{4}^{2}\left(\operatorname{sgna}_{1}\right) f_{3}^{\mu}\left(x_{3}\right)-\mu x_{4} p_{1} \\
\geq\left|a_{1}\right| x_{5}^{2}+\left|a_{5}\right| x_{3}^{2}+\gamma x_{4}^{2}-A_{1}\left|x_{4}\right|-2 A_{2}\left(x_{3}^{2}+x_{4}^{2}+x_{5}^{2}\right)-D_{4}, \\
\gamma=-\left(\operatorname{sgna}_{1}\right) a_{3}>0,
\end{gathered}
$$

so that if

$$
A_{2}<\frac{1}{4} \min \left(\left|a_{1}\right|,\left|a_{5}\right|, \gamma\right) \equiv D_{5}
$$

then

$$
\begin{equation*}
\dot{V}^{\mu} \geq D_{5}\left(x_{3}^{2}+x_{4}^{2}+x_{5}^{2}\right)-D_{6}, \quad D_{6}=D_{4}+\gamma^{-1} A_{1}^{2} \tag{4.10}
\end{equation*}
$$

By the ω-periodicity of V^{μ}, (4.10) implies that

$$
\int_{0}^{\omega}\left(x_{3}^{2}(t)+x_{4}^{2}(t)+x_{5}^{2}(t)\right) d t \leq D_{7}
$$

and hence

$$
\left|x_{2}(t)\right| \leq D_{8},\left|x_{3}(t)\right| \leq D_{8},\left|x_{4}(t)\right| \leq D_{8}
$$

for some constants D_{7}, D_{8}. The rest of the arguments follow as in [1§5].

Turning now to Theorems 3 and 4, consider first the equation (2.2), with $p_{2} \equiv 0$, in the system form

$$
\left.\begin{array}{c}
\dot{x}_{i}=x_{i+1}, i=1,2, \ldots, 5, \quad x \equiv x_{1} \tag{4.11}\\
\dot{x}_{6}=-a_{1} x_{6}-g_{2}\left(x_{4}\right) x_{5}-g_{3}\left(x_{3}\right) x_{4}-g_{4}\left(x_{2}\right) x_{3} \\
-a_{5} x_{5}-g_{6}\left(x_{1}\right)
\end{array}\right\}
$$

Let $V=V\left(x_{1}, x_{2}, \ldots, x_{6}\right)$ be defined by

$$
\begin{equation*}
V=-U \tag{4.12}
\end{equation*}
$$

where

$$
\begin{gather*}
U=x_{3} G_{2}\left(x_{4}\right)+G_{3}\left(x_{3}\right)+G_{5}\left(x_{2}\right)+x_{2} g_{6}\left(x_{1}\right)+x_{3} x_{6} \\
+a_{1} x_{3} x_{5}-\frac{1}{2} a_{1} x_{4}^{2} \\
G_{2}\left(x_{4}\right) \equiv \int_{0}^{x_{4}} g_{2}(s) d s, G_{3}\left(x_{3}\right) \equiv \int_{0}^{x_{3}} s g_{3}(s) d s \tag{4.13}\\
G_{5}\left(x_{2}\right) \equiv \int_{0}^{x_{2}} g_{5}(s) d s
\end{gather*}
$$

Let $\left(x_{1}, x_{2}, \ldots, x_{6}\right)=\left(x_{1}(t), x_{2}(t), \ldots, x_{6}(t)\right)$ be an arbitrary solution of (4.11) of period α say. Then, on differentiating (4.12) and using (4.13) and (4.11), it will follow, after some calculation, that

$$
\dot{V}=-x_{4} G_{2}\left(x_{4}\right)+x_{3}^{2} g_{4}\left(x_{2}\right)-x_{2}^{2} g_{6}^{\prime}\left(x_{1}\right) \geq 0
$$

by (2.6). The rest of the argument is as in $[1,4]$.
For Theorem 4, consider the parameter μ-dependent system

$$
\left.\begin{array}{rl}
\dot{x}_{i}= & x_{i+1}, i=1,2, \ldots, 5 \quad x \equiv x_{1} \\
\dot{x}_{6}= & -a_{1} x_{6}-g_{2}^{\mu}\left(x_{4}\right) x_{5}-\mu g_{3}\left(x_{3}\right) x_{4}-g_{4}^{\mu}\left(x_{2}\right) x_{3} \tag{4.14}\\
& -\mu g_{5}\left(x_{2}\right)-g_{6}^{\mu}\left(x_{1}\right)+\mu p_{2}\left(t, x_{1}, \ldots, x_{6}\right)
\end{array}\right\}
$$

where

$$
\begin{aligned}
g_{2}^{\mu}\left(x_{4}\right) & =(1-\mu) a_{2}+\mu g_{2}\left(x_{4}\right), \\
g_{4}^{\mu}\left(x_{2}\right) & =(1-\mu) a_{4}+g_{4}\left(x_{2}\right), \\
g_{6}^{\mu}\left(x_{1}\right) & =(1-\mu) a_{6} x_{1}+\mu g_{6}\left(x_{1}\right),
\end{aligned}
$$

a_{1} is an arbitrary constant and a_{2}, a_{4}, a_{6} are constants satisfying (II). Let $V^{\mu}=V^{\mu}\left(x_{1}, x_{2}, \ldots, x_{6}\right)$ be defined by $V^{\mu}=-U^{\mu}$, where

$$
\begin{aligned}
U^{\mu} & =x_{3} G_{2}^{\mu}\left(x_{4}\right)+\mu G_{3}\left(x_{3}\right)+\mu G_{5}\left(x_{2}\right)+x_{2} g_{6}^{\mu}\left(x_{1}\right) \\
& +x_{3} x_{6}+a_{1} x_{3} x_{5}-\frac{1}{2} a_{1} x_{4}^{2}
\end{aligned}
$$

and $G_{2}^{\mu}\left(x_{4}\right)=(1-\mu) a_{2} x_{4}+\mu G_{2}\left(x_{4}\right)$. By the continuity of g_{2}, g_{6}^{\prime} and g_{4}, and by (2.7), it will be clear that for some constants D_{9} and D_{10},

$$
\begin{align*}
x_{4} G_{2}^{\mu}\left(x_{4}\right) & \geq\left|a_{2}\right| x_{4}^{2}-D_{9} \\
-x_{2}^{2} g_{6}^{\prime \mu}\left(x_{1}\right) & \geq\left|a_{6}\right| x_{2}^{2}-D_{9} \tag{4.16}\\
g_{4}^{\mu}\left(x_{2}\right) x_{3}^{2} & \geq-\left(\text { sgna }_{2}\right) a_{4} x_{3}^{2}-D_{10}
\end{align*}
$$

for all x_{1}, x_{2}, x_{3} and x_{4}. Thus, for any arbitrary ω-periodic solution $\left(x_{1}, x_{2}, \ldots, x_{6}\right)=\left(x_{1}(t), x_{2}(t), \ldots, x_{6}(t)\right.$ of (4.14), it can shown that

$$
\begin{aligned}
\dot{V}^{\mu} & =-x_{4} G_{2}^{\mu}\left(x_{4}\right)-x_{2}^{2} g_{6}^{\prime \mu}\left(x_{1}\right)+x_{3}^{2} g_{4}^{\mu}\left(x_{2}\right)-\mu x_{3} p_{2} \\
& \geq\left|a_{2}\right| x_{4}^{2}+\beta x_{3}^{2}+\left|a_{6}\right| x_{2}^{2}-A_{1}^{*}\left|x_{3}\right|-2 A_{2}^{*}\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-D_{11} \\
& \geq D_{12}\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-D_{11},
\end{aligned}
$$

$\beta \equiv-\left(\right.$ sgna $\left._{2}\right) a_{4}>0$, by (4.16) and (2.8), for some constants D_{11}, D_{12}. The rest of the proof follows as in $[1,4]$.

5. INDICATION OF PROOF OF THEOREMS 5-8

Since the arguments are essentially the same as those in §4, we shall merely indicate the appropriate equivalent system and the scalar function V required for nonexistence and, for existence, the parameter μ-dependent system and its corresponding scalar function V^{μ}.
We start with Theorem 5. The equivalent system (to (3.1) with $\left.q_{1} \equiv 0\right)$ is

$$
\left.\begin{array}{l}
\dot{x}_{i}=x_{i+1}, \quad i=1,2, \ldots, 4 \quad x_{1} \equiv x \tag{5.1}\\
\dot{x}_{5}=\varphi_{1}\left(x_{4}\right) x_{5}-\varphi_{2}\left(x_{3}\right) x_{4}-\varphi_{3}\left(x_{2}\right) x_{3}-\varphi_{4}\left(x_{2}\right)-\varphi_{5}\left(x_{1}\right),
\end{array}\right\}
$$

and the scalar function $V=V\left(x_{1}, x_{2}, \ldots, x_{5}\right)$ is defined by

$$
\begin{gather*}
V=\left(\operatorname{sgn}_{1}\right) U \tag{5.2}\\
U=x_{3} \Phi_{1}\left(x_{4}\right)+\Phi_{2}\left(x_{3}\right)+\Phi_{4}\left(x_{2}\right)+x_{2} \varphi_{5}\left(x_{1}\right)+x_{3} x_{5}-\frac{1}{2} x_{4}^{2}, \tag{5.3}
\end{gather*}
$$

$$
\left.\begin{array}{l}
\Phi_{1}\left(x_{4}\right) \equiv \int_{0}^{x_{4}} \varphi_{1}(s) d s \tag{5.4}\\
\Phi_{2}\left(x_{3}\right) \equiv \int_{0}^{x_{3}} s \varphi_{2}(s) d s \\
\Phi_{4}\left(x_{2}\right) \equiv \int_{0}^{x_{2}} \varphi_{4}(s) d s
\end{array}\right\}
$$

For Theorem 6 the appropriate equivalent system to consider is

$$
\left.\begin{array}{c}
\dot{x}_{i}=x_{i+1}, \quad i=12,3,4 \quad x \equiv x_{1} \\
\dot{x}_{5}=-\varphi_{1}^{\mu}\left(x_{4}\right) x_{5}-\mu \varphi_{2}\left(x_{3}\right) x_{4}-\varphi_{3}^{\mu}\left(x_{2}\right) x_{3} \\
-\mu \varphi_{4}\left(x_{2}\right)-\varphi_{5}^{\mu}\left(x_{1}\right)+\mu q_{1}, \quad 0 \leq \mu \leq 1, \tag{5.6}
\end{array}\right\}
$$

and the scalar function $V^{\mu}=V^{\mu}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is defined by

$$
V^{\mu}=\left(\operatorname{sgn}_{1}\right) U^{\mu},
$$

with U^{μ} obtained from (5.3) by replacing Φ_{1} with Φ_{1}^{μ}, Φ_{2} with $\mu \Phi_{2}$, Φ_{4} with Φ_{4}^{μ} and φ_{5} with φ_{5}^{μ}, noting the appropriate definitions in (5.4) and (5.6). It can be readily verified that

$$
\begin{aligned}
\dot{V}^{\mu}= & \left(\operatorname{sgnb}_{1}\right) x_{4} \Phi_{1}^{\mu}\left(x_{4}\right)-\left(\operatorname{sgnb}_{1}\right) x_{3}^{2} \varphi_{3}^{\mu}\left(x_{2}\right)+\left(\operatorname{sgnb}_{1}\right) x_{2}^{2} \varphi_{5}^{\prime \mu}\left(x_{1}\right) \\
& -\mu x_{3} q_{1} \geq D_{13}\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-D_{14}
\end{aligned}
$$

for some constants D_{13}, D_{14}, if B_{2} is sufficiently small.
We turn lastly to Theorems 7 and 8. The equivalent system (to (3.2) with $q_{2} \equiv 0$) is

$$
\left.\begin{array}{l}
\dot{x}_{i}=x_{i+1}, i=1,2,3,4 \quad x_{1} \equiv x \tag{5.7}\\
\dot{x}_{5}=-b x_{5}-\psi_{2}\left(x_{3}\right) x_{4}-\psi_{3}\left(x_{2}\right) x_{3}-\psi_{4}\left(x_{2}\right)-\psi_{5}\left(x_{1}\right),
\end{array}\right\}
$$

and the appropriate scalar function V is given by

$$
\begin{gather*}
V=-x_{2} \Psi_{2}\left(x_{3}\right)-x_{2} x_{5}-\Psi_{3}\left(x_{2}\right)-\Psi_{5}\left(x_{1}\right) \\
-b_{1} x_{2} x_{4}+\frac{1}{2} b_{1} x_{3}^{2}+x_{3} x_{4} \tag{5.8}\\
\Psi_{2}\left(x_{3}\right)=\int_{0}^{x_{3}} \psi_{2}(s) d s, \Psi_{3}\left(x_{2}\right)=\int_{0}^{x_{2}} s \psi_{3}(s) d s \\
\Psi_{5}\left(x_{1}\right)=\int_{0}^{x_{1}} \psi_{5}(s) d s
\end{gather*}
$$

For Theorem 8, the equivalent parameter μ-dependent system to consider is

$$
\left.\begin{array}{c}
\dot{x}_{i}=x_{i+1}, \quad i=1,2,3,4, \quad x_{1} \equiv x \\
\dot{x}_{5}=-b x_{5}-\psi_{2}^{\mu}\left(x_{3}\right) x_{4}-\mu \psi_{3}\left(x_{2}\right) x_{3}-\psi_{4}^{\mu}\left(x_{2}\right) \tag{5.10}\\
-\mu \psi_{5}\left(x_{1}\right)+\mu q_{2}, \quad 0 \leq \mu \leq 1
\end{array}\right\}
$$

The corresponding function $V^{\mu}=V^{\mu}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is given by

$$
\begin{align*}
V^{\mu} & =-x_{2} \Psi_{2}^{\mu}\left(x_{3}\right)-\mu \Psi_{3}\left(x_{2}\right)-\mu \Psi_{5}\left(x_{1}\right) \\
& -b_{1} x_{2} x_{4}+\frac{1}{2} b_{1} x_{3}^{2}+x_{3} x_{4} \tag{5.11}
\end{align*}
$$

with $\Psi_{2}^{\mu}\left(x_{3}\right) \equiv \int_{0}^{x_{3}} \psi_{2}^{\mu}(s) d s$, and ψ_{2}^{μ} defined by (5.10).
From (5.11), (5.9), (5.10) and (3.9) it will be clear that

$$
\begin{aligned}
\dot{V}^{\mu} & =x_{4}^{2}-x_{3} \Psi_{2}^{\mu}\left(x_{3}\right)+x_{2}^{2} \Psi_{4}^{\mu}\left(x_{1}\right)-\mu x_{2} q_{2} \\
& \geq x_{4}^{2}-b_{2} x_{3}^{2}+b_{4} x_{2}^{2}-B_{1}^{*}\left|x_{2}\right|-2 B_{2}^{*}\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)
\end{aligned}
$$

so that if B_{2}^{*} is sufficiently small, then for some constants D_{15}, D_{16},

$$
\dot{V}^{\mu} \geq D_{15}\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-D_{16} .
$$

Because of some technical difficulties we have not been able to extend the results in $\S 3$ to full blown nonlinear sixth order equations of the form

$$
\begin{aligned}
& x^{(6)}+f_{1}\left(x^{(4)}\right) x^{(5)}+f_{2}(\ddot{x}) x^{(4)}+f_{3}(\ddot{x}) \dddot{x}+f_{4}(\ddot{x})+f_{5}(\dot{x}) \\
&+f_{6}(x)=p\left(t, x, \dot{x}, \ldots, x^{(5)}\right)
\end{aligned}
$$

efforts are still continuing in this direction. This remark also holds for equation (3.2).

REFERENCES

[1] J. O. C. Ezeilo, J. Nigeria Math. Soc. Vol. 1 (1982), 1-9.
[2] H. O. Tejumola, Proc. NMC Abuja Nigeria Vol. 1, No. 1 (2000), 56-65.
[3] H. O. Tejumola, J. Nigeria Math. Soc. Vol. 27(2008), 19-31.
[4] H. O. Tejumola and S. A. Iyase. Ann. Diff. Equations No. 3 (1997), 209-221.
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LAGOS, Ojo, LAGOS, NIGERIA
E-mail address:

[^0]: Received by the editors December 29, 2011; Revised: April 16, 2012; Accepted: April 18, 2012
 ${ }^{1}$ Permanent Address: Department of Mathematics, University of Ibadan, Ibadan, Nigeria

