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1. INTRODUCTION

In a recent paper [3] we examined the problem of existence of peri-
odic solutions of fourth order nonlinear ordinary differential equa-
tions of the form

x(4) + g1(ẋ, ẍ)
...
x +g2(ẋ)ẍ+ g3(ẋ) + g4(x) = p(t, x, ẋ, ẍ,

...
x), (1.1)

p(t+ω, x, ẋ, ẍ,
...
x) = p(t, x, ẋ, ẍ,

...
x) for some periodic ω > 0, and the

problem of nonexistence of periodic solution for the corresponding
homogeneous equation (1.1) with p ≡ 0. Our main interest in that
study was in obtaining conditions that place restrictions on the
integral of g1 and, or, g3 rather than directly on the functions g1
and g3 as in previous investigations, and this resulted in relatively
weaker conditions for existence and nonexistence of periodic solu-
tions of (1.1). An additional feature of that study [3] is the full
blown nonlinear terms involved in the equation. The present paper
is a continuation of our study in [3] to a class of sixth and fifth
order ordinary differential equations.
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To start with, consider the linear constant-coefficient sixth order
ordinary differential equation

x(6) + a1x
(5) + a2x

(4) + a3
...
x +a4ẍ+ a5ẋ+ a6x = p(t),

p(t+ ω) = p(t).
(1.2)

It can be readily verified (as in [1,4]) that if either of the conditions

(I) a1 6= 0, sgna1 = sgna5, (sgna1)a3 < 0 (a2, a4, a6 arbitrary)
(II) a2 < 0, a4 > 0, a6 < 0 (a1, a3, a5 arbitrary)

holds, then (1.2) with p ≡ 0, has no nontrivial periodic
solutions, and the equation (1.2) with p 6= 0 has a unique
ω-periodic solution.

In the fifth order case

x(5) + b1x
(4) + b2

...
x +b3ẍ+ b4ẋ+ b5x = p(t), p(t+ ω) = p(t), (1.3)

the corresponding conditions are

(III) b1 6= 0, sgnb1 = sgnb5, b3sgnb1 < 0
(IV) b2 < 0, b4 > 0

b1, b2, b3, b4, b5 and b6 constants. Observe that each of the conditions
(I) and (III) incorporates two conditions into one. Furthermore in
the two equations (1,2), (1.3) two sets of different conditions, one
involving terms with odd subscripts and the other even subscripts
((I), (III); (II), (IV)) ensure the existence or nonexistence of peri-
odic solutions. This odd and even subscripts feature runs through
the generalized criteria obtained for the nonlinear equations studied
here.

2. STATEMENT OF RESULTS - SIXTH ORDER EQUATIONS

We shall be concerned with sixth order equations of the forms

x(6) + f1(x
(4))x(5) + f2(

...
x)x(4) + f3(ẍ)

...
x +f4(ẍ) + f5(ẋ)

+ a6x = p1(t, x, ẋ, ẍ,
...
x, x(4), x(5))

(2.1)

x(6) + a1x
(5) + g2(

...
x)x(4) + g3(ẍ)

...
x +g4(ẋ)ẍ+ g5(ẋ)

+ g6(x) = p2(t, x, ẋ, ẍ,
...
x, x(4), x(5))

(2.2)

in which a1, a6 are constants, fi, i = 1, 2, . . . , 5, gi, i = 2, . . . , 6 and
pi, i = 1, 2, are real-valued continuous functions of their respective
arguments, and pi(t + ω, x, . . . , x(5)) = pi(t, x, . . . , x

(5)), i = 1, 2 for
some constant ω > 0. Corresponding respectively to the conditions
(I) and (II) above we obtain the following results for the equations
(2.1), (2.2). Assume that f ′5(y), g′6(x) exist and are continuous for
all y and x.
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Theorem 1. Let a 6= 0 be an arbitrary constant and suppose that

(sgna)
F1(v)

v
> 0,(sgna)f ′5(y) > 0, (sgna)f3(u) < 0,

F1(v) ≡
∫ v

0

f1(s)ds,
(2.3)

for all y, u and v 6= 0. Then the equation (2.1) with p1 ≡ 0 has no
nontrivial periodic solution of whatever period.

In the non-autonomous case p1 6≡ 0, we have the following result.
Theorem 2. Let a1 6= 0, a3, a5 be constants satisfying (I) such that

(sgna1)
F1(v)

v
≥ |a1| for |y| ≥ 1,

(sgna1)f3(u) ≤ (sgna1)a3 for |u| ≥ 1,

(sgna1)f
′
5(y) ≥ |a5| for |y| ≥ 1.


(2.4)

Suppose further that there are constants A1 > 0, A2 ≥ 0, with A2

sufficiently small, such that

|p1(t, x, y, z, u, v, w)| ≤ A1 + A2(|z|+ |u|+ |v|) (2.5)

for all t, x, y, z, u, v. Then the equation (2.1) has at least one peri-
odic solution of period ω.

Note that the conditions (2.3) and (2.4) are generalizations of the
criteria (I); they also involve terms with odd subscripts in equation
(2.1). Note also the absence of any conditions on the constant a6
and the terms with even subscripts f2, f4 in (2.1). Our results in
the other direction, that is involving terms with even subscripts,
concern the equation (2.2), and are as follows.
Theorem 3. Suppose that

G2(u)

u
< 0, g4(y) > 0, g′6(x) < 0, G2(u) ≡

∫ u

0

g2(s)ds, (2.6)

for all x, y and u 6= 0. Then the equation (2.2), with p2 ≡ 0, has no
nontrivial periodic solution of whatever period.
Theorem 4. Let a2, a4, a6 be constants satisfying (II) such that

G2(u)

u
≤ a2 for |u| ≥ 1, g4(y) > a4 for |y| ≥ 1

g′6(x) < a6 for |x| ≥ 1, G2(u) ≡
∫ u

0

g2(s)ds,

 (2.7)
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and let
g6(x)sgnx→ +∞(−∞) as |x| → ∞.

Suppose that there exist constants A∗1 > 0, A∗2 > 0, with A∗2 suffi-
ciently small, such that

|p2(t, x, y, z, u, v, w)| ≤ A∗1 + A∗2(|y|+ |z|+ |u|) (2.8)

for all t, x, y, z, u, v, w. Then the equation (2.2) has at least one
periodic solution of period ω.

Observe the absence of any restrictions on the constant a1 and
the functions g3, g5 in (2.2). The conditions on F1 in (2.3) and (2.4),
and on G2 in (2.6) and (2.7) are the integral conditions; they place
restrictions on the integrals of f1 and g2 rather than directly on the
functions f1 and g2.

3. STATEMENT OF RESULTS - FIFTH ORDER EQUATIONS

We now state parallel results for fifth order equations. We shall
consider equations of the form

x(5) + ϕ1(
...
x)x(4) + ϕ2(ẍ)

...
x +ϕ3(ẋ)ẍ+ ϕ4(ẋ) + ϕ5(x)

= q1(t, x, ẋ, ẍ,
...
x, x(4))

(3.1)

x(5) + bx(4) + ψ2(ẍ)
...
x +ψ3(ẋ)ẍ+ ψ4(ẋ) + ψ5(x)

= q2(t, x, ẋ, ẍ,
...
x, x(4))

(3.2)

where b is an arbitrary constant, ϕi, i = 1, 2, . . . , 5, ψi, i = 2, . . . , 5,
q1, q2 are real-valued continuous functions, ϕ′5(x) exists and is con-
tinuous for all x and q1, q2 are periodic in t, of period ω. Our first
set of results concern (3.1), and are as follows.
Theorem 5. Let

(sgna)
Φ1(u)

u
> 0, (sgna)ϕ3(y) < 0, (sgna)ϕ′5(x) > 0,

Φ1(u) ≡
∫ u

0

ϕ1(s)ds
(3.3)

for all x, y and u 6= 0, where a is an arbitrary constant. Then the
equation (3.1), with q1 ≡ 0, has no nontrivial periodic solutions of
any period.
Theorem 6. Let b1 6= 0, b3, b5 be constants satisfying (III) such
that

(sgnb1)
Φ1(u)

u
≥ |b1|, (sgnb1)ϕ3(y) ≤ (sgnb1)b3,

(sgnb5)ϕ
′
5(x) ≥ |b5|, Φ1(u) ≡

∫ u

0

ϕ1(s)ds
(3.4)
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for all |x| ≥ 1, |y| ≥ 1 and |u| ≥ 1. Suppose that

(sgnx)ϕ5(x)→ +∞(−∞) as |x| → ∞. (3.5)

Suppose further that there exist constants B1 > 0, B2 > 0, with B2

sufficiently small, such that

|q1(t, x, y, z, u, v)| ≤ B1 +B2(|y|+ |z|+ |u|) (3.6)

for all t, x, y, z, u, v. Then the equation (3.1) has at least one peri-
odic solution of period ω.

Observe the absence of any restrictions on terms with even sub-
scripts in (3.1); our results involving terms with even subscripts,
and in line with (IV), concerns the equation (3.2) and are as fol-
lows.
Theorem 7. Let

Ψ2(z)

z
< 0,

ψ4(y)

y
> 0, Ψ2(z) ≡

∫ z

0

ψ2(s)ds (3.7)

for all y 6= 0 and z 6= 0. Then the equation (3.2), with q2 ≡ 0, and
b an arbitrary constant, has no nontrivial periodic solution of any
period.
Theorem 8. Let b2, b4 be constants satisfying (IV) such that

Ψ2(z)

z
≤ b2 (|z| ≥ 1),

ψ4(y)

y
≥ b4 (|y| ≥ 1),

Ψ2(z) ≡
∫ z

0

ψ2(s)ds.

(3.8)

Suppose that

ψ5(x)sgnx→ +∞(−∞) as |x| → ∞. (3.9)

Suppose further that there are constants B∗1 > 0, B∗2 ≥ 0 with B∗2
sufficiently small, such that

|q2(t, x, y, z, u, v)| ≤ B∗1 +B∗2(|y|+ |z|) (3.10)

for all t, x, y, z, u, v. Then the equation (3.2) has at least one peri-
odic solution of period ω.

The procedure for the proof of the theorems is as in [1,2] and
[3,4]: for each nonexistence result we need to exhibit a real-valued
function with appropriate properties, while for existence the desired
a-priori bound will be obtained for a suitably defined parameter-
dependent equation.

In what follows Di, i = 1, 2, . . . will denote finite positive con-
stants whose magnitude depend on the constants and functions in
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an equation but are independent of solutions and of parameter µ
in the equations.

4. OUTLINE OF PROOF OF THEOREMS 1 - 4

We start with Theorems 1 and 2. Consider first the equation
(2.1) with p1 ≡ 0 in the system form

ẋi = xi+1, i = 1, 2, . . . , 5, x ≡ x1

ẋ6 = −f1(x5)x6 − f2(x4)x5 − f3(x3)x4 − f4(x3)
−f5(x2)− a6x1,

 (4.1)

and define the function V = V (x1, x2, . . . , x6) by

V = Usgna1, (4.2)

where

U = x4x6 −
1

2
x25 + a6x1x3 −

1

2
a6x

2
2 + x4F1(x5)

+F2(x4) + F4(x3) + x3f5(x2)

F1(x5) ≡
∫ x5

0

f1(s)ds, F2(x4) ≡
∫ x2

0

sf2(s)ds,

F4(x3) ≡
∫ x3
0
f4(s)ds


(4.3)

Let (x1, x2, . . . , x6) = (x1(t), x2(t), . . . , x6(t)) be an arbitrary pe-
riodic solution of (4.1), then from (4.2) and (4.3) it is clear on
differentiation and using (4.1) that

V̇ = (sgna1)x5F1(x5) + (sgna1)f
′
5(x2)x

2
3

− (sgna1)f3(x3)x
2
4 ≥ 0

(4.4)

by (2.3). The conclusion of Theorem 1 now follows in view of the
arguments in [1,4].

To prove Theorem 2, consider, instead of (2.1), the parameter
µ-dependent equation

x(6) + fµ1 (x(4))x(5) + µf2(
...
x)x(4) + fµ3 (ẍ)

...
x +µf4(ẍ)

+fµ5 (ẋ) + a6x = µρ1, 0 ≤ µ ≤ 1,
(4.5)
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or, as is more convenient, the equivalent system

ẋi = xi+1, i = 1, 2, . . . , 5, x1 ≡ x

ẋ6 = −fµ1 (x5)x6 − µf2(x4)x5 − fµ3 (x3)x4 − µf4(x3)
−fµ5 (x2)− a6x+ µp1, 0 ≤ µ ≤ 1,

 (4.6)

where
fµ1 (x5) = (1− µ)a1 + µf1(x5),

fµ3 (x3) = (1− µ)a3 + µf3(x3),

fµ5 (x2) = (1− µ)a5x2 + µf5(x2).

(4.7)

Now let V µ = V µ(x1, x2, . . . , x6) be defined by

V µ = Uµ(sgna1) (4.8)

where Uµ is obtained from U in (4.3) by replacing F1(x5), F2(x4),
F4(x3), f5(x2) respectively with F µ

1 (x5) = (1 − µ)a1x5 + µF1(x5),
µF2(x4), µF4(x3), f

µ
5 (x2 = (1− µ)a5x2 + µf5(x2). By the continu-

ity of F µ
1 , f

µ
3 and f

′µ
5 , it can be verified from (2.4) that for some

constants Di > 0, i = 1, 2, 3 and for all x2, x3, x5,

(sgna1)x5F
µ
1 (x5) ≥ |a1|x25 −D1,

(sgna5)f
′µ
5 (x2)x

2
3 ≥ |a5|x23 −D2,

((sgna1)f
µ
3 (x3))x

2
4 ≤ (sgna1)a3x

2
4 +D3.

 (4.9)

Let (x, x1, . . . , x6) be an ω-periodic solution of (4.6). Then on dif-
ferentiating (4.8) and using (4.2), (4.3), it will follow from (4.9)
that

V̇ µ = (sgna1)x5F
µ
1 (x5)+x

2
3(sgna1)f

′µ
5 (x2)−x24(sgna1)f

µ
3 (x3)−µx4p1

≥ |a1|x25 + |a5|x23 + γx24 − A1|x4| − 2A2(x
2
3 + x24 + x25)−D4,

γ = −(sgna1)a3 > 0,

so that if

A2 <
1

4
min(|a1|, |a5|, γ) ≡ D5

then

V̇ µ ≥ D5(x
2
3 + x24 + x25)−D6, D6 = D4 + γ−1A2

1. (4.10)

By the ω-periodicity of V µ, (4.10) implies that∫ ω

0

(x23(t) + x24(t) + x25(t))dt ≤ D7,
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and hence

|x2(t)| ≤ D8, |x3(t)| ≤ D8, |x4(t)| ≤ D8

for some constants D7, D8. The rest of the arguments follow as in
[1§5].

Turning now to Theorems 3 and 4, consider first the equation
(2.2), with p2 ≡ 0, in the system form

ẋi = xi+1, i = 1, 2, . . . , 5, x ≡ x1

ẋ6 = −a1x6 − g2(x4)x5 − g3(x3)x4 − g4(x2)x3
−a5x5 − g6(x1)

 (4.11)

Let V = V (x1, x2, . . . , x6) be defined by

V = −U (4.12)

where

U = x3G2(x4) +G3(x3) +G5(x2) + x2g6(x1) + x3x6

+a1x3x5 − 1
2
a1x

2
4

G2(x4) ≡
∫ x4

0

g2(s)ds, G3(x3) ≡
∫ x3

0

sg3(s)ds,

G5(x2) ≡
∫ x2

0

g5(s)ds


(4.13)

Let (x1, x2, . . . , x6) = (x1(t), x2(t), . . . , x6(t)) be an arbitrary solu-
tion of (4.11) of period α say. Then, on differentiating (4.12) and
using (4.13) and (4.11), it will follow, after some calculation, that

V̇ = −x4G2(x4) + x23g4(x2)− x22g′6(x1) ≥ 0

by (2.6). The rest of the argument is as in [1,4].
For Theorem 4, consider the parameter µ-dependent system

ẋi = xi+1, i = 1, 2, . . . , 5 x ≡ x1

ẋ6 = −a1x6 − gµ2 (x4)x5 − µg3(x3)x4 − gµ4 (x2)x3
−µg5(x2)− gµ6 (x1) + µp2(t, x1, . . . , x6)

 (4.14)

where
gµ2 (x4) = (1− µ)a2 + µg2(x4),

gµ4 (x2) = (1− µ)a4 + g4(x2),

gµ6 (x1) = (1− µ)a6x1 + µg6(x1),
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a1 is an arbitrary constant and a2, a4, a6 are constants satisfying
(II). Let V µ = V µ(x1, x2, . . . , x6) be defined by V µ = −Uµ, where

Uµ = x3G
µ
2(x4) + µG3(x3) + µG5(x2) + x2g

µ
6 (x1)

+ x3x6 + a1x3x5 −
1

2
a1x

2
4

and Gµ
2(x4) = (1 − µ)a2x4 + µG2(x4). By the continuity of g2, g

′
6

and g4, and by (2.7), it will be clear that for some constants D9

and D10,

x4G
µ
2(x4) ≥ |a2|x24 −D9,

−x22g
′µ
6 (x1) ≥ |a6|x22 −D9,

gµ4 (x2)x
2
3 ≥ −(sgna2)a4x

2
3 −D10

(4.16)

for all x1, x2, x3 and x4. Thus, for any arbitrary ω-periodic solution
(x1, x2, . . . , x6) = (x1(t), x2(t), . . . , x6(t) of (4.14), it can shown that

V̇ µ = −x4Gµ
2(x4)− x22g

′µ
6 (x1) + x23g

µ
4 (x2)− µx3p2

≥ |a2|x24 + βx23 + |a6|x22 − A∗1|x3| − 2A∗2(x
2
2 + x23 + x24)−D11

≥ D12(x
2
2 + x23 + x24)−D11,

β ≡ −(sgna2)a4 > 0, by (4.16) and (2.8), for some constants
D11, D12. The rest of the proof follows as in [1,4].

5. INDICATION OF PROOF OF THEOREMS 5 - 8

Since the arguments are essentially the same as those in §4, we
shall merely indicate the appropriate equivalent system and the
scalar function V required for nonexistence and, for existence, the
parameter µ-dependent system and its corresponding scalar func-
tion V µ.

We start with Theorem 5. The equivalent system (to (3.1) with
q1 ≡ 0) is

ẋi = xi+1, i = 1, 2, . . . , 4 x1 ≡ x

ẋ5 = ϕ1(x4)x5 − ϕ2(x3)x4 − ϕ3(x2)x3 − ϕ4(x2)− ϕ5(x1),


(5.1)

and the scalar function V = V (x1, x2, . . . , x5) is defined by

V = (sgnb1)U, (5.2)

U = x3Φ1(x4) + Φ2(x3) + Φ4(x2) + x2ϕ5(x1) + x3x5 −
1

2
x24, (5.3)
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Φ1(x4) ≡
∫ x4

0

ϕ1(s)ds,

Φ2(x3) ≡
∫ x3

0

sϕ2(s)ds,

Φ4(x2) ≡
∫ x2

0

ϕ4(s)ds.


(5.4)

For Theorem 6 the appropriate equivalent system to consider is

ẋi = xi+1, i = 12, 3, 4 x ≡ x1

ẋ5 = −ϕµ1(x4)x5 − µϕ2(x3)x4 − ϕµ3(x2)x3
−µϕ4(x2)− ϕµ5(x1) + µq1, 0 ≤ µ ≤ 1,

 (5.5)

ϕµ1(x4) = (1− µ)b1 + µϕ1(x4),

ϕµ3(x2) = (1− µ)b3 + µϕ3(x2),

ϕµ5(x1) = (1− µ)b5 + µϕ5(x1)

 (5.6)

and the scalar function V µ = V µ(x1, x2, x3, x4, x5) is defined by

V µ = (sgnb1)U
µ,

with Uµ obtained from (5.3) by replacing Φ1 with Φµ
1 , Φ2 with µΦ2,

Φ4 with Φµ
4 and ϕ5 with ϕµ5 , noting the appropriate definitions in

(5.4) and (5.6). It can be readily verified that

V̇ µ = (sgnb1)x4Φ
µ
1(x4)− (sgnb1)x

2
3ϕ

µ
3(x2) + (sgnb1)x

2
2ϕ

′µ
5 (x1)

−µx3q1 ≥ D13(x
2
2 + x23 + x24)−D14

for some constants D13, D14, if B2 is sufficiently small.
We turn lastly to Theorems 7 and 8. The equivalent system (to

(3.2) with q2 ≡ 0) is

ẋi = xi+1, i = 1, 2, 3, 4 x1 ≡ x

ẋ5 = −bx5 − ψ2(x3)x4 − ψ3(x2)x3 − ψ4(x2)− ψ5(x1),

 (5.7)

and the appropriate scalar function V is given by

V = −x2Ψ2(x3)− x2x5 −Ψ3(x2)−Ψ5(x1)

− b1x2x4 +
1

2
b1x

2
3 + x3x4,

(5.8)

Ψ2(x3) =

∫ x3

0

ψ2(s)ds, Ψ3(x2) =

∫ x2

0

sψ3(s)ds,

Ψ5(x1) =

∫ x1

0

ψ5(s)ds.
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For Theorem 8, the equivalent parameter µ-dependent system to
consider is

ẋi = xi+1, i = 1, 2, 3, 4, x1 ≡ x

ẋ5 = −bx5 − ψµ2 (x3)x4 − µψ3(x2)x3 − ψµ4 (x2)
−µψ5(x1) + µq2, 0 ≤ µ ≤ 1,

 (5.9)

ψµ2 (x3) = (1−µ)b2+µψ2(x3), ψ
µ
4 (x2) = (1−µ)b4+µψ4(x2). (5.10)

The corresponding function V µ = V µ(x1, x2, x3, x4, x5) is given by

V µ = −x2Ψµ
2(x3)− µΨ3(x2)− µΨ5(x1)

− b1x2x4 +
1

2
b1x

2
3 + x3x4,

(5.11)

with Ψµ
2(x3) ≡

∫ x3

0

ψµ2 (s)ds, and ψµ2 defined by (5.10).

From (5.11), (5.9), (5.10) and (3.9) it will be clear that

V̇ µ = x24 − x3Ψ
µ
2(x3) + x22Ψ

µ
4(x1)− µx2q2

≥ x24 − b2x23 + b4x
2
2 −B∗1 |x2| − 2B∗2(x22 + x23 + x24),

so that if B∗2 is sufficiently small, then for some constants D15, D16,

V̇ µ ≥ D15(x
2
2 + x23 + x24)−D16.

Because of some technical difficulties we have not been able to
extend the results in §3 to full blown nonlinear sixth order equations
of the form

x(6) + f1(x
(4))x(5) + f2(

...
x)x(4) + f3(ẍ)

...
x +f4(ẍ) + f5(ẋ)

+ f6(x) = p(t, x, ẋ, . . . , x(5)),

efforts are still continuing in this direction. This remark also holds
for equation (3.2).
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