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ABSTRACT. This paper establishes some new sufficient condi-
tions under which all solutions of nonlinear third-order ordinary
differential equation

x′′′ + ψ(x, x′, x′′)x′′ + f(x, x′) = p(t, x, x′, x′′)

are bounded. For illustration, an example is also given on the
bounded solutions.
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1. INTRODUCTION

This paper is concerned with the boundedness of solutions of the
third order ordinary differential equation

x′′′ + ψ(x, x′, x′′)x′′ + f(x, x′) = p(t, x, x′, x′′) (1)

or its equivalent system

x′ = y, y′ = z, z′ = −ψ(x, y, z)z − f(x, y) + p(t, x, y, z) (2)

where ψ ∈ C(R×R×R,R), f ∈ C(R×R,R) and p ∈ C([0,∞)×
R × R × R,R). The functions ψ, f and p depends only on the ar-
gument displayed explicitly, and the primes denote differentiation
with respect to t. The derivatives ψx, ψy, ψz, fx and fy exist and
are continuous. For over five decades, many authors have dealt
with ordinary differential equations and obtained many interesting
results, for example, see([1] - [15 ]) and the references cited therein.
In many of these references, the authors made use of the second
method of Lyapunov by considering Lyapunov functions and ob-
tained conditions which ensure some qualitative behaviors of the
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problem. However, the construction of these Lyapunov functions
remain a general problem. Many special cases of (1) exist in the
literature, see[8], where authors discussed some qualitative behav-
iors of solutions of the equations. In particular, recently, Tunc[12]
studied the differential equation

x′′′ + ψ(x, x′)x′′ + f(x, x′) = p(t, x, x′, x′′) (3)

and obtained sufficient conditions which ensure the boundedness of
solutions of the equation. The motivation for the present paper has
been inspired basically by the paper of Tunc[12] and the papers
mentioned above. The main objective of this paper is to extend
results obtained in Tunc[12] to obtain sufficient conditions for the
boundedness of solutions of (1).

2. MAIN RESULTS

Our main result is the following theorem.

Theorem 1: In addition to the basic assumptions imposed on the
functions ψ, f and p appearing in (2), we assume that there ex-
ist positive constants δ0, a, b and c(ab > c) such that the following
conditions hold:

(i) f(x,0)
x

≥ δ0, (x �= 0), f ′(x, 0) ≤ c, ψ(x, y, z) ≥ a,
fy(x, θy) ≥ b, yψz(x, y, θz) ≥ 0, 0 ≤ θ ≤ 1 and
a
[
f(x, y)− f(x, 0)− ∫ y

0
ψx(x, ν, 0)νdν

]
y ≥ y

∫ y

0
fx(x, ν)dν,

(ii) |p(t, x, y, z)| ≤ q1(t) + q2(t)(|y|+ |z|),
where q1, q2 ∈ L1(0,∞), L1(∞, 0), is a space of integrable
Lebesgue functions.

Then, there exists a finite positive constant K such that every so-
lution (x(t), y(t), z(t)) of system (2) satisfies

|x(t)| ≤
√
K |y(t)| ≤

√
K |z(t)| ≤

√
K

Remark 1: Equation (3) is a special case of (1) if ψ(x, x′, x′′) =
ψ(x, x′). Thus, if q2(t) = 0, we still obtain a boundedness result
obtained by Tunc[12].

Proof: The proof of this theorem depends on a scalar differentiable
Lyapunov’s function V = V (x, y, z). This function and its time
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derivative satisfy some fundamental inequalities. Let

V =

∫ x

0

f(u, 0)du+

∫ y

0

ψ(x, ν, 0)νdν+
1

a

∫ y

0

f(x, ν)dν+
1

2a
z2+yz.

(4)
This function can be rearranged as follows:

V = 1
2a
(ay + z)2 + 1

2ab
(f(x, 0) + by)2 +

∫ y

0
[ψ(x, ν, 0)− a] νdν

+ 1
a

∫ y

0
[fν(x, θν)− b] νdν +

∫ x

0

[
1− 1

ab
f ′(u, 0)

]
f(u, 0)du,

(5)

since fν(x, θν) =
f(x,ν)−f(x,0)

ν
, (ν �= 0, 0 ≤ θ ≤ 1).

Obviously, it follows from (4) that

V ≥ 1

2a
(ay + z)2 +

1

2ab
(f(x, 0) + by)2 +

1

2

(
1− c

ab

)
δ0x

2.

Thus, there exist a positive constant K1 such that

V ≥ K1

(
x2 + y2 + z2

)
.

Now, let (x, y, z) = (x(t), y(t), z(t)) be any solution of the system
(2). Differentiating the function V given by (4) along the system
(2) with respect to t, we obtain

d
dt
V (x, y, z) = − 1

a
(ψ(x, y, z)− a)z2 − ψz(x, y, θz)yz

2

− [
f(x, y)− f(x, 0)− ∫ y

0
ψx(x, ν, 0)νdν

]

+ 1
a
y
∫ y

0
fx(x, ν)dν +

1
a
(ay + z)p(t, x, y, z).

Making use of assumption (i) of Theorem 1, we have that

d

dt
V (x, y, z) ≤ 1

a
(ay + z)p(t, x, y, z).

On using assumption (ii) of Theorem 1, the inequality 2|uν| ≤
u2 + ν2 and the fact that

y2 + z2 ≤ x2 + y2 + z2 ≤ K−1
1 V (x, y, z), (6)

we easily obtain

d
dt
V (.) ≤ (|y|+ 1

a
|z|) (q1(t) + q2(t)) (|y|+ |z|)

≤ K2(|y|+ |z|) (q1(t) + q2(t)) (|y|+ |z|)
≤ K2q1(t) (2 + y2 + z2) + 2K2q2(t) (y

2 + z2)
≤ K2

(
2 +K−1

1 V (x, y, z)
)
q1(t) + 2K−1

2 V (x, y, z)q2(t)
= 2K2q1(t) +K2K

−1
1 V (x, y, z)(q1(t) + 2q2(t))

(7)
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where K2 = min
{
1, 1

a

}
. Integrating(7) from 0 to t, using the as-

sumption q1, q2 ∈ L1(0,∞) and Gronwall-Reid-Bellman inequality,
we have

V (x, y, z) ≤ (V (0, 0, 0) + 2K2A1) exp
(
K2K

−1
1 (A1 + 2A2)

)
= K3 <∞ (8)

where K3 > 0 is a constant, A1 =
∫∞
0
q1(s)ds and A2 =

∫∞
0
q2(s)ds.

In view of the inequalities (6) and (8), we get

x2(t) + y2(t) + z2(t) ≤ K−1
1 V (x, y, z) ≤ K

where K = K3K
−1
1 . Aforementioned inequality implies that

|x(t)| ≤
√
K, |y(t)| ≤

√
K, |z(t)| ≤

√
K

for all t ≥ t0 ≥ 0. Hence

|x(t)| ≤
√
K, |x′(t)| ≤

√
K, |x′′(t)| ≤

√
K

for all t ≥ t0 ≥ 0. Thus, the proof of the theorem is now complete.
�

Example 1: Consider equation (2) with

ψ(x, y, z) = ln
(
1 + x2

)
+ eyz + 2, f(x, y)

= x+
x

1 + x2
(
1 + y2

)
+ y +

1

3
y3

and

p(t, x, y, z) =
1

1 + t2 + x2 + y2 + z2
.

It is easy to check that the hypotheses in Theorem 1 are satisfied.

Since f(x,0)
x

= 1 + 1
1+x2 > 1 = δ0, (x �= 0), f ′(x, 0) = 1 + 1−x2

(1+x2)2
≤

2 = c, ψ(x, y, z) > 2 = a and

2[f(x, y)− f(x, 0) − ∫ y

0
ψx(x, ν, 0)νdν]y

= 2
[

x
1+x2y

2 + y + 1
3
y3 − x

1+x2y
2
]
y

= 2
(
y2 + 1

3
y4
)

≥ y2 + 1−x2

(1+x2)2

(
y2 + 1

3
y4
)
= y

∫ y

0
fx(x, ν)dν.

Finally, we have

|p(t, x, y, z)| ≤ 1

1 + t2
+

2

1 + t2
(|y(t)|+ |z(t)|) ,

∫ ∞

0

q1(s)ds =

∫ ∞

0

1

1 + s2
ds =

π

2
<∞
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and ∫ ∞

0

q2(s)ds =

∫ ∞

0

2

1 + s2
ds = π <∞

that is, q1, q2 ∈ L1(0,∞).
Hence all the hypotheses in Theorem 1 are satisfied, and so for
every solution x(t) of equation(1) there is a constant K > 0 such
that

|x(t)| ≤
√
K, |x′(t)| ≤

√
K, |x′′(t)| ≤

√
K for t ≥ 0.

REFERENCES
[1] A. Y. Aleksandrov and A. V. Platonov, Conditions of ultimate boundedness of so-

lutions for a class of nonlinear systems, Nonlinear Dynamics and System Theorey
8(2) 109 - 122, 2008.

[2] E. A. Barbashin, The Lyapunov Function. Moscow, Nauka, 1970.
[3] E. A. Barbshin and V. A. Tabueva, Theorem on the stabilty of the solution of a

third order differential equation with a discontinuous characteristic, Prikl. Mat.
Mech 27 664-671, 1963 (Russian); translated as J. Appl. Math. Mech. 27 1005 -
1018, 1963.

[4] E. A. Barbshin and V. A. Tabueva, Theorem on the stabilty of the solution of a
third order differential equation with a discontinuous characteristic, Prikl. Mat.
Mech 28 523-528, 1964 (Russian); translated as J. Appl. Math. Mech. 28 643-
649, 1964.

[5] M. O. Omeike, Further results on global stability of third-order nonlinear differ-
ential equations, Nonlinear Analysis: Theory Methods and Apllications 67(12)
3394-3400, 2007.

[6] M. O. Omeike, New result on the asymptotic behavior of a third-order non-linear
differential equation, Differential equations and application 2 (1) 39-51, 2010.

[7] C. Qian, On global stability of third-order non-linear differential equations, Non-
linear Analysis 42 651-661, 2000.

[8] R. Reissig, G. Sansone and R. Conti, Nonlinear Differntial Equations of Higher
Order, No-ordhoff Inter.Pub. Leyden, 1974.

[9] C. Tunc, Global stability of solutions of certain third-order non-linear difrential
equations, Panamer.Math.J. 14 (4) 31-35, 2004.

[10] C. Tunc, On the asympotic behaivour of solutions of certain third-order non-linear
diffrential equations, J. Appl. Math.Stoch. Anal. (1) 29-35, 2005.

[11] C. Tunc, Uniform ultimate boundedness of solutions of third-order non-linear
diffrential equations, Kuwait J.Sci. Engrg.32 (1) 39-48, 2005.

[12] C. Tunc, The boundedness of soluions to nonlinear third-order diffremtial equa-
tions, Nonlinear Dynamics and System Theory 10(1) 97-102, 2010.

[13] T. Yoshizawa, On the evaluation of derivatives of solution of y′′ = f(x, y, x′),
Mem. Coll.Sc. Univ.Kyoto,Series A28 27-32, 1953.

[14] T. Yoshizawa, Asympototic behavior of solutions of a system of diffrential equa-
tions, Contrib.diffential equations I 371-387, 1963.

[15] T. Yoshizawa, Stability Theory by Lyapunov’s second method, Math. Soc. Japan,
1966.

DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF AGRICULTURE,
ABEOKUTA, NIGERIA
E-mail address: moomeike@yahoo.com



54 M. O. OMEIKE, A. L. OLUTIMO AND O. O. OYETUNDE

DEPARTMENTOFMATHEMATICS, LAGOS STATE UNIVERSITY, OJO, LAGOS, NIG-
ERIA
E-mail address: aolutimo@yahoo.com

DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF AGRICULTURE,
ABEOKUTA, NIGERIA
E-mail address: bistunp@yahoo.com


