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ABSTRACT. This work is concerned with the existence of so-
lution of Quantum stochastic differential inclusions in the sense
of Caratheodory. The multivalued stochastic process involved
which is non-convex is Scorza-Dragoni lower semicontinuous
(SD-l.s.c.) hence giving rise to a directionally continuous se-
lection. The Quantum stochastic differential inclusion is driven
by annihilation, creation and gauge operators.
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1. INTRODUCTION

The vast applications of differential inclusions in control theory,
economic model, evolution inclusions to mention a few, had made
the study of differential inclusions of great interest [1], [8], [18].
Likewise, the quantum stochastic differential inclusions which is a
multivalued generalization of quantum stochastic differential equa-
tion of Hudson and Parthasarathy has vast applications. This ex-
tension was first done in [9] in which the existence of solutions of
Lipschitzian quantum stochastic differential inclusions was estab-
lished. The study of solution set of this problem was done in [2], [3]
and references cited there. The case of discontinuous quantum sto-
chastic differential inclusions has application in the study of optimal
quantum stochastic control [15]. The quantum stochastic calculus
is driven by quantum stochastic processes called annihilation, cre-
ation and gauge arising from quantum field operators.
A multivalued map that is lower semicontinuous and convex-valued
has continuous selection by Michael selection theorem, but if the
convexity is dropped the continuous selection does not exist. But
for a differential inclusion with lower semicontinuous multifunction
that is not convex-valued, there is an analogue of Michael selection

Received by the editors April 20, 2012; Revised: May 31, 2012; Accepted: June 6,
2012

1Corresponding author
81



82 M. O. OGUNDIRAN AND E. O. AYOOLA

theorem called the directionally continuous selection [4] which gave
rise to a class of discontinuous differential equations. A more gen-
eral case of this selection for infinite dimensional space is found in
[5].
The quantum stochastic differential inclusions considered in this
work has its coefficients to be multivalued stochastic processes that
have a special form of lower semicontinuity called Scorza-Dragoni
lower semicontinuous case. It is noteworthy that the Scorza-Dragoni
property is a multivalued generalization of Lusin property[14]. The
directionally continuous selection of the Scorza-Dragoni of the mul-
tifunction gave rise to a class of quantum stochastic differential
equations considered in [16] which have solutions in the sense of
Caratheodory. Apart from the application of this work in quantum
stochastic control, another motivation for the work is the applica-
tion of the results in the study of non-convex quantum stochastic
evolution inclusions which shall be considered in a later work.
In section 2 we give preliminaries which are essential for the work
and we prove the main results in section 3.

2. PRELIMINARY

In what follows, if U is a topological space, we denote by clos(U),
the collection of all non-empty closed subsets of U.
To each pair (D,H) consisting of a pre-Hilbert space D and its
completion H, we associate the set L+

w(D,H) of all linear maps x
from D into H, with the property that the domain of the operator
adjoint contains D. The members of L+

w(D,H) are densely-defined
linear operators on H which do not necessarily leave D invariant
and L+

w(D,H) is a linear space when equipped with the usual no-
tions of addition and scalar multiplication.
To H corresponds a Hilbert space Γ(H) called the boson Fock space
determined by H. A natural dense subset of Γ(H) consists of linear
space generated by the set of exponential vectors(Guichardet, [12])
in Γ(H) of the form

e(f) =
∞⊕
n=0

(n!)−
1
2

n⊗
f, f ∈ H

where
⊗0 f = 1 and

⊗n f is the n-fold tensor product of f with
itself for n ≥ 1.
In what follows, D is some pre-Hilbert space whose completion is
R and γ is a fixed Hilbert.
L2
γ(R+)(resp. L2

γ([0, t)), resp. L2
γ([t,∞)) t ∈ R+) is the space of
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square integrable γ-valued maps on R+ (resp.[0, t), resp.[t,∞)).
The inner product of the Hilbert space R ⊗ Γ(L2

γ(R+)) will be
denoted by 〈., .〉 and ‖ . ‖ the norm induced by 〈., .〉 .
Let E,Et and Et, t > 0 be linear spaces generated by the exponential
vectors in Fock spaces Γ(L2

γ(R+)),Γ(L2
γ([0, t))) and Γ(L2

γ([t,∞)))
respectively ;

A ≡ L+
w(D⊗E,R⊗ Γ(L2

γ(R+)))

At ≡ L+
w(D⊗Et,R⊗ Γ(L2

γ([0, t))))⊗ It

At ≡ It ⊗ L+
w(Et,Γ(L2

γ([t,∞)))), t > 0

where ⊗ denotes algebraic tensor product and It(resp.It) denotes
the identity map on R⊗ Γ(L2

γ([0, t))))(resp.Γ(L2
γ([t,∞)))), t > 0

For every η, ξ ∈ D⊗E define

‖ x ‖η,ξ=| 〈η, xξ〉 |, x ∈ A

then the family of seminorms

{‖ . ‖ηξ: η, ξ ∈ D⊗E}

generates a topology τw , weak topology .
The completion of the locally convex spaces (A, τw) , (At, τw) and

(At, τw) are respectively denoted by Ã , Ãt and Ãt.
We define the Hausdorff topology on clos(Ã) as follows:

For x ∈ Ã , M,N ∈ clos(Ã) and η, ξ ∈ D⊗E, define

ρηξ(M,N ) ≡ max(δηξ(M,N ), δηξ(N ,M))

where

δηξ(M,N ) ≡ sup
x∈M

dηξ(x,N ) and

dηξ(x,N ) ≡ inf
y∈N
‖ x− y ‖ηξ .

The Hausdorff topology which shall be employed in what follows,
denoted by, τH , is generated by the family of pseudometrics {ρηξ(.) :
η, ξ ∈ D⊗E}
Moreover, if M∈ clos(Ã) , then ‖ M ‖ηξ is defined by

‖ M ‖ηξ≡ ρηξ(M, {0});
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for arbitrary η, ξ ∈ D⊗E.
For A,B ∈ clos(C) and x ∈ C , a complex number, define

d(x,B) ≡ inf
y∈B
| x− y |

δ(A,B) ≡ sup
x∈A

d(x,B)

and ρ(A,B) ≡ max(δ(A,B), δ(B,A)).

Then ρ is a metric on clos(C) and induces a metric topology on the
space.

Let I ⊆ R+. A stochastic process indexed by I is an Ã-valued mea-
surable map on I.

A stochastic process X is called adapted if X(t) ∈ Ãt for each t ∈ I.
We write Ad(Ã) for the set of all adapted stochastic processes in-
dexed by I.

Definition 1: A member X of Ad(Ã) is called
(i) weakly absolutely continuous if the map t 7→ 〈η,X(t)ξ〉 , t ∈ I
is absolutely continuous for arbitrary η, ξ ∈ D⊗E
(ii) locally absolutely p-integrable if ‖ X(.) ‖pηξ is Lebesgue - mea-
surable and integrable on [0, t) ⊆ I for each t ∈ I and arbitrary
η, ξ ∈ D⊗E.

We denote by Ad(Ã)wac(resp.Lploc(Ã)) the set of all weakly, abso-
lutely continuous(resp. locally absolutely p-integrable) members of

Ad(Ã).
Stochastic integrators : Let L∞γ,loc(R+) [resp.L∞B(γ),loc(R+)] be the lin-
ear space of all measurable , locally bounded functions from R+ to
γ [resp. to B(γ) , the Banach space of bounded endomorphisms of
γ]. If f ∈ L∞γ,loc(R+) and π ∈ L∞B(γ),loc(R+) , then πf is the member

of L∞γ,loc(R+) given by (πf)(t) = π(t)f(t) , t ∈ R+.

For f ∈ L2
γ(R)+ and π ∈ L∞B(γ),loc(R+); the annihilation , creation

and gauge operators, a(f), a+(f) and λ(π) in L+
w(D,Γ(L2

γ(R)+))
respectively, are defined as:

a(f)e(g) = 〈f, g〉L2
γ(R+)e(g)

a+(f)e(g) =
d

dσ
e(g + σf) |σ=0

λ(π)e(g) =
d

dσ
e(eσπf) |σ=0

g ∈ L2
γ(R)+

For arbitrary f ∈ L∞γ,loc(R+) and π ∈ L∞B(γ),loc(R+) , they give rise
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to the operator-valued maps Af , A
+
f and Λπ defined by:

Af (t) ≡ a(fχ[0,t))

A+
f (t) ≡ a+(fχ[0,t))

Λπ(t) ≡ λ(πχ[0,t))

t ∈ R+ , where χI denotes the indicator function of the Borel set I ⊆
R+. The maps Af , A

+
f and Λπ are stochastic processes , called anni-

hilation, creation and gauge processes , respectively, when their val-
ues are identified with their amplifications onR⊗Γ(L2

γ(R+)). These
are the stochastic integrators in Hudson and Parthasarathy[13] for-
mulation of boson quantum stochastic integration.

For processes p, q, u, v ∈ L2
loc(Ã), the quantum stochastic integral:

∫ t

t0

(
p(s)dΛπ(s) + q(s)dAf (s) + u(s)dA+

g (s) + v(s)ds
)
, t0, t ∈ R+

is interpreted in the sense of Hudson-Parthasarathy[13] The defini-
tion of Quantum stochastic differential Inclusions follows as in [9].
A relation of the form

dX(t) ∈ E(t,X(t))dΛπ(t) + F (t,X(t))dAf (t)

+G(t,X(t))dA+
g (t) +H(t,X(t))dt almost all t ∈ I

X(t0) = x0

(1)

is called Quantum stochastic differential inclusions(QSDI) with co-
efficients E,F,G,H and initial data (t0, x0).
Equation(1) is understood in the integral form:

X(t) ∈ x0 +

∫ t

t0

(
E(s,X(s))dΛπ(s) + F (s,X(s))dAf (s)

+G(s,X(s))dA+
g (s) +H(s,X(s))ds

)
, t ∈ I

called a stochastic integral inclusion with coefficients E,F,G,H and
initial data (t0, x0)
An equivalent form of (1) has been established in [9], Theorem 6.2
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as :

(µE)(t, x)(η, ξ) = {〈η, µαβ(t)p(t, x)ξ〉 : p(t, x) ∈ E(t, x)}
(νF )(t, x)(η, ξ) = {〈η, νβ(t)q(t, x)ξ〉 : q(t, x) ∈ F (t, x)}
(σG)(t, x)(η, ξ) = {〈η, σα(t)u(t, x)ξ〉 : u(t, x) ∈ G(t, x)}

P(t, x)(η, ξ) = (µE)(t, x)(η, ξ) + (νF )(t, x)(η, ξ)

+ (σG)(t, x)(η, ξ) +H(t, x)(η, ξ)

H(t, x)(η, ξ) = {v(t, x)(η, ξ) : v(., X(.))

is a selection of H(., X(.))∀ X ∈ L2
loc(Ã)}

(2)

Then Problem (1) is equivalent to

d

dt
〈η,X(t)ξ〉 ∈ P(t,X(t))(η, ξ)

X(t0) = x0

(3)

for arbitrary η, ξ ∈ D⊗E , almost all t ∈ I. Hence the existence
of solution of (1) implies the existence of solution of (3) and vice-
versa.
As explained in [9], for the map P,

P(t, x)(η, ξ) 6= P̃(t, 〈η, xξ〉)

for some complex-valued multifunction P̃ defined on I×C for t ∈ I,

x ∈ Ã, η, ξ ∈ D⊗E.
Definition 2: For an arbitrary η, ξ ∈ D⊗E, let M > 0 , we define
a set ΓMηξ , as

ΓMηξ = {(t, x) ∈ I × Ã :| 〈η, xξ〉 |≤Mt}

Let (t0, x0) ∈ I×Ã and ε > 0. For an arbitrary η, ξ ∈ D⊗E, (t0, x0)

∈ I × Ã and δ > 0, the family of conical neighbourhoods;

ΓMηξ((t0, x0), δ) = {(t, x) ∈ I × Ã :‖ x− x0 ‖ηξ≤M(t− t0),

t0 ≤ t < t0 + δ}
generates a topology, τ+, which satisfies the following property:
(P) For every pair of sets A ⊂ B, with A closed and B open(in the
original topology), there exists a set C, closed-open with respect to
τ+, such that A ⊂ C ⊂ B.
This topology follows from [5] and the references cited there.
Definition 3: (i) For an arbitrary pair η, ξ ∈ D⊗E a map Φ : I ×
Ã → Ã will be said to be ΓMηξ -continuous(directionally continuous
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or τ+-continuous) at a point (t0, x0) ∈ I × Ã , if for every ε > 0
there exists δ > 0 such that

‖ Φ(t, x)− Φ(t0, x0) ‖ηξ≤ ε if t0 ≤ t ≤ t0 + δ and ‖ x− x0 ‖ηξ
≤M(t− t0)

(ii) For an arbitrary η, ξ ∈ D⊗E, S ⊂ Ã, a sesquilinear-form valued

map Ψ : S → 2sesq(D⊗E)2 will be said to be lower semicontinuous on
S if for every closed subset C of C the set {s ∈ S : Ψ(s)(η, ξ) ⊂ C}
is closed in S.
We remark that if E,F,G,H are lower semicontinuous on S, then
the sesquilinear-form valued P is lower semicontinuous on S.
A multivalued generalization of Lusin property which is called Scor-
za - Dragoni property [14] employed in [6] is used to define the form
of lower semicontinuity in this work. The well-known Lusin prop-
erty is the following.
Definition 4:(Lusin’s property)Let X and Y be two separable met-
ric spaces and let f : I ×X → Y be function such that
(i)t→ f(t, u) is measurable for every u ∈ X
(ii) u→ f(t, u) is continuous for almost every t ∈ I , I ⊆ R+.
Then, for each ε > 0, there exists a closed set A ⊆ I such that
λ(I \A) < ε , (λ is the Lebesgue measure on R) and the restriction
of f to A×X is continuous.

Definition 5: A sequilinear- form valued map Ψ : [0, T ] × Ã →
2sesq(D⊗E)2 is Scorza-Dragoni lower semicontinuous (SD-l.s.c.) on

[0, T ] × Ã if there exists a sequence of disjoint compact sets Jn ⊂
[0, T ], with meas([0, T ]\

⋃
n∈NJn) = 0 such that Ψ is lower semicon-

tinuous on each set Jn × Ã.
If Ψ is lower semicontinuous and convex-valued then by Michael se-
lection theorems, there exists continuous selection of Ψ. But if the
convexity is removed and Ψ is not decomposable valued multifunc-
tion then the existence of continuous selection is not guaranteed.
However, a non-convex analogue of Michael selection is Directional
continuous selection result in [4] and for infinite dimensional space
in [5]. We established in this work that such selection exists for
SD-lsc multivalued stochastic process.
For an arbitrary η, ξ ∈ D⊗E , if Ψ ∈ µE, νF, σG,H appearing in
(1) are SD-lsc then the map (t, x)→ P(t, x)(η, ξ) is SD-lsc.
A quantum stochastic differential inclusion will be said to be SD-
lower semicontinuous if the coefficients are SD-lsc.

3. MAIN RESULTS
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Theorem 1: For almost all t ∈ I, η, ξ ∈ D⊗E. Suppose the
following holds:
(i) The maps X → Ψ(t,X)(η, ξ), Ψ ∈ {µE, νF, σG,H} are non-
empty lower semicontinuous multivalued stochastic processes
(ii)The maps t→ Ψ(t,X)(η, ξ) are closed

(iii) τ+ is a topology on I × Ã with property (P).
Then the sesquilinear form valued multifunction, (t,X(t))→
P(t,X(t))(η, ξ)

P(t,X(t))(η, ξ) = (µE)(t,X(t))(η, ξ) + (νF )(t,X(t))(η, ξ)

+ (σG)(t,X(t))(η, ξ) +H(t,X(t))(η, ξ)

admits a τ+-continuous selection.
Proof: P is non-empty , since each of Ψ ∈ {µE, νF, σG,H} is non-
empty.
Therefore, P is a non-empty lower semicontinuous sesquilinear form-
valued multifunction.
We shall employ a similar procedure as in the proof of Theorem 3.2
in [5] to construct a τ+-continuous ε-approximate selections Pε of P,
hence by inductive hypothesis we obtain a τ+-continuous selection
P of P.
Let ε > 0 be fixed , since X → P(t,X)(η, ξ) is lower semicontinuous

, for every X(t) ∈ Ã , we choose point yηξ,X(t) ∈ P(t,X(t))(η, ξ)
and neighbourhood UX of X(t) such that

inf
yηξ,P(t)∈P(t,X(t′))(η,ξ)

| yηξ,X(t)− yηξ,P(t) |< ε ∀ X(t′) ∈ UX (4)

Now , let (Vα)α∈βε be a local finite open refinement of (UX)X(t)∈Ã ,

with Vα ⊂ UXα , and let (Wα)α∈βε be another open refinement such
that cl(Wα) ⊂ Vα for all α ∈ βε. By property (P), for each α , we
can choose a set Zα , clopen w.r.t. τ+, such that

cl(Wα) ⊂ int(Zα) ⊂ cl(Zα) ⊂ Vα (5)

Then (Zα)α is a local finite τ+ clopen covering of Ã . Let � be a
well-ordering of the set βε, define for each α ∈ βε ,

Ωε
α = Zα \ (

⋃
λ<α

Zλ)

Set Oε = (Ωε
α), α ∈ βε. By well-ordering , every x ∈ Ã belongs to

exactly one set Ωε
α where α = min{α ∈ βε : x ∈ Zα}. Hence , Oε

is a partition of Ã. Moreover, since Zα is locally finite(wrt τ and
therefore wrt τ+), the sets

⋃
λ<α Zλ are τ+ clopen. Hence Oε is a

τ+ clopen disjoint covering of Ã such that, {cl(Ωε
α)} refines (Vα)α.
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By setting yεηξ,α = yηξ,Xα and Pε(t,X(t))(η, ξ) = yηξ,Xα , ∀α ∈ βε
we have τ+ continuous function Pε, which by (4), satisfies

inf
yηξ,P(t)∈P(t,X(t))(η,ξ)

| Pε(t,X(t))(η, ξ)− yηξ,P(t) |< ε

Therefore , there exists an ε-approximate selection Pε of P.
Since ε was arbitrarily chosen ,thus we have a τ+-continuous selec-
tion P of P. �
Theorem 2: Suppose the following holds for an arbitrary η, ξ ∈
D⊗E, Ψ ∈ {µE, νF, σG,H} :

(i) t→ Ψ(t,X(t))(η, ξ) are measurable for all X ∈ Ã
(ii) X → Ψ(t,X(t))(η, ξ) are SD-lower semicontinuous with respect
to a seminorm ‖ . ‖ηξ , for almost all t ∈ I
(iii) Ψ are integrably bounded, that is, there exists LΨ

ηξ(t) ∈ L1(I)

such that, a.e. t ∈ I, for all X ∈ Ã,

inf
y∈Ψ(t,x)(η,ξ)

| y |≤ LΨ
ηξ(t).

Then the SD-lower semicontinuous quantum stochastic differential
inclusions

d

dt
〈η,X(t)ξ〉 ∈ P(t,X(t))(η, ξ)

X(t0) = x0

(6)

has an adapted weakly absolutely continuous solution in the sense
of Caratheodory.
Proof: Since for arbitrary η, ξ ∈ D⊗E, Ψ ∈ µE, νF, σG,H are SD-
lower semicontinuous then P(t, x)(η, ξ) is SD-lower semicontinuous,

∀x ∈ Ã, a.e. t ∈ I. The sequence of disjoint compact sets Jn =⋂
Ψ J

Ψ
n and meas(I \ ∪n∈NJn) = 0 such that P(., .)(η, ξ) restricted

to Ωn = Jn × Ã is lower semicontinuous, with respect to ‖ . ‖ηξ.
Also, suppose Lηξ = 5 maxLΨ

ηξ(t), then a.e. t ∈ I,

inf
y∈P(t,x)(η,ξ)

| y |≤ Lηξ(t),

for all X ∈ Ã
For each n ≥ 1, we can apply Theorem (1) and obtain τ+-continuous
selections Pn ∈ P.
For an arbitrary selection g from P, if we define

P (t,X)(η, ξ) =

{
Pn(t,X)(η, ξ) if t ∈ Jn,
g(t,X)(η, ξ) if t 6∈ ∪n∈NJn
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then P is a τ+-continuous selection of P, such that | P (t, x)(η, ξ) |≤
Lηξ(t) < Ln,ηξ, for every (t,X) ∈ I × Ã, η, ξ ∈ D⊗E.
Then by applying Lusin’s property to each bound of Ln,ηξ, n ∈ N
the set of solutions of τ+-continuous quantum stochastic differential
equations is the solution set of (6) in the sense of Caratheodory. �
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