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CARATHEODORY SOLUTION OF QUANTUM
STOCHASTIC DIFFERENTIAL INCLUSIONS
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ABSTRACT. This work is concerned with the existence of so-
lution of Quantum stochastic differential inclusions in the sense
of Caratheodory. The multivalued stochastic process involved
which is non-convex is Scorza-Dragoni lower semicontinuous
(SD-l.s.c.) hence giving rise to a directionally continuous se-
lection. The Quantum stochastic differential inclusion is driven
by annihilation, creation and gauge operators.
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1. INTRODUCTION

The vast applications of differential inclusions in control theory,
economic model, evolution inclusions to mention a few, had made
the study of differential inclusions of great interest [1], [8], [18].
Likewise, the quantum stochastic differential inclusions which is a
multivalued generalization of quantum stochastic differential equa-
tion of Hudson and Parthasarathy has vast applications. This ex-
tension was first done in [9] in which the existence of solutions of
Lipschitzian quantum stochastic differential inclusions was estab-
lished. The study of solution set of this problem was done in [2], [3]
and references cited there. The case of discontinuous quantum sto-
chastic differential inclusions has application in the study of optimal
quantum stochastic control [15]. The quantum stochastic calculus
is driven by quantum stochastic processes called annihilation, cre-
ation and gauge arising from quantum field operators.

A multivalued map that is lower semicontinuous and convex-valued
has continuous selection by Michael selection theorem, but if the
convexity is dropped the continuous selection does not exist. But
for a differential inclusion with lower semicontinuous multifunction
that is not convex-valued, there is an analogue of Michael selection
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theorem called the directionally continuous selection [4] which gave
rise to a class of discontinuous differential equations. A more gen-
eral case of this selection for infinite dimensional space is found in
[5].

The quantum stochastic differential inclusions considered in this
work has its coefficients to be multivalued stochastic processes that
have a special form of lower semicontinuity called Scorza-Dragoni
lower semicontinuous case. It is noteworthy that the Scorza-Dragoni
property is a multivalued generalization of Lusin property[14]. The
directionally continuous selection of the Scorza-Dragoni of the mul-
tifunction gave rise to a class of quantum stochastic differential
equations considered in [16] which have solutions in the sense of
Caratheodory. Apart from the application of this work in quantum
stochastic control, another motivation for the work is the applica-
tion of the results in the study of non-convex quantum stochastic
evolution inclusions which shall be considered in a later work.

In section 2 we give preliminaries which are essential for the work
and we prove the main results in section 3.

2. PRELIMINARY

In what follows, if U is a topological space, we denote by clos(U),
the collection of all non-empty closed subsets of U.

To each pair (D, H) consisting of a pre-Hilbert space D and its
completion H, we associate the set L (D, H) of all linear maps z
from D into H, with the property that the domain of the operator
adjoint contains D. The members of L} (D, H) are densely-defined
linear operators on H which do not necessarily leave D invariant
and L (D, H) is a linear space when equipped with the usual no-
tions of addition and scalar multiplication.

To H corresponds a Hilbert space I'( H) called the boson Fock space
determined by H. A natural dense subset of I'( H) consists of linear
space generated by the set of exponential vectors(Guichardet, [12])
in I'(H) of the form

() =) Q) f, feH
n=0
where ®” f = 1 and ®" f is the n-fold tensor product of f with
itself for n > 1.
In what follows, D is some pre-Hilbert space whose completion is
R and ~ is a fixed Hilbert.
L2(Ry)(resp. L2([0,1)),resp. L2([t,00)) t € Ry) is the space of
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square integrable y-valued maps on R, (resp.[0,t), resp.[t,o0)).
The inner product of the Hilbert space R @ I'(L2(Ry)) will be
denoted by (.,.) and || . || the norm induced by (.,.) .
Let E, E; and E, ¢ > 0 be linear spaces generated by the exponential
vectors in Fock spaces I'(L2(R,)), [(L2([0,t))) and I'(L2([t, 00)))
respectively ;

A= L}(DEE, R ® T(I2(R,)))

Ay = L (DQE,, R @ T(L2([0,1)))) @ I'

“At =L® L;r)(Eta F(L?y([ta OO)))): t>0

where ® denotes algebraic tensor product and I;(resp.I') denotes
the identity map on R @ I'(L2([0,))))(resp.I(L5([t, 0)))), ¢t >0
For every 7n,£ € DQE define

|z |lpe=] (n,2€) |, v € A

then the family of seminorms

{Il'- llne: m, & € DRE}

generates a topology 7, , weak topology .
The completion of the locally convex spaces (A, 7y,) , (A, Tw) and

(A, 7,) are respectively denoted by A ,jt~and At
We define the Hausdorff topology on clos(A) as follows:
Forz € A, M,N € clos(A) and 7, £ € DRE, define

png(M,N) = maX(éné(MvN)v 5715(/\/7 M))
where
One(M,N) = sup d¢(z, V) and
rzeM

dye(. N) = inf [| 2=y e

The Hausdorff topology which shall be employed in what follows,
denoted by, 74 , is generated by the family of pseudometrics {pye(.) :
n,§ € DQE}

Moreover, if M € clos(A) , then || M ||le is defined by

| M [e= ppe(M,{0});
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for arbitrary n, £ € DRE.
For A, B € clos(C) and x € C | a complex number, define

d(z,B) = inf [z —y|
5(A, B) = supd(z, B)
€A
and p(A, B) = max(d(A, B),§(B, A)).
Then p is a metric on clos(C) and induces a metric topology on the

space.

Let I C R,. A stochastic process indexed by [ is an A-valued mea-

surable map on [. N

A stochastic process X is called adapted if X (t) € A, for each t € I.

We write Ad(.Z) for the set of all adapted stochastic processes in-

dexed by I. N

Definition 1: A member X of Ad(A) is called

(i) weakly absolutely continuous if the map ¢ — (n, X (¢)¢) , t € [

is absolutely continuous for arbitrary n, ¢ € DQE

(ii) locally absolutely p-integrable if || X (.) ||7; is Lebesgue - mea-

surable and integrable on [0,¢) C I for each ¢t € I and arbitrary

n, € € DRE.

We denote by Ad(A)yqec(resp.L2 (A)) the set of all weakly, abso-

lutely continuous(resp. locally absolutely p-integrable) members of

Ad(A).

Stochastic integrators: Let L, (Ry) [resp.LE ) ;,.(R4)] be the lin-

ear space of all measurable , locally bounded functions from R, to

7 [resp. to B(y) , the Banach space of bounded endomorphisms of
~). If f e LSS (R+) and m € L (Ry) , then 7 f is the member

v,loc (7),loc
of L'y lOC(R“F) glVGH by (ﬂ-f) (t) = W(t)f(t) te R-l—
For f € LZ(R), and 7 € L% 10(R+); the annihilation , creation

and gauge operators, a(f),a*(f) and A(7) in Lj(D,T(L2(R),))
respectively, are defined as:

a(f)e(g) = (f. 9)r2r.re(9)
@ (f)elg) = +-elg +of) lomo

d
A(mlelg) = +-e(e7 1) =g

geLi(R),

For arbitrary f € L

Saoc(Ry) and m € L, (Ry) , they give rise
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to the operator-valued maps Ay, A;f and A, defined by:

Ap(t) = a(fxjou)
Af(t) = a™ (fxon)
Ax(t) = M7X(0))

t € R, , where y; denotes the indicator function of the Borel set I C
R.. The maps Ay, A}L and A are stochastic processes , called anni-
hilation, creation and gauge processes , respectively, when their val-
ues are identified with their amplifications on R@I'(L2 (Ry.)). These
are the stochastic integrators in Hudson and Parthasarathy[13] for-
mulation of boson quantum stochastic integration.

For processes p, q,u,v € LZOC(A), the quantum stochastic integral:

/ (p(5)dAn(5) + q()dAL(s) + u(s)dAT (3) + v(s)ds), 0.t € R,

to

is interpreted in the sense of Hudson-Parthasarathy[13] The defini-
tion of Quantum stochastic differential Inclusions follows as in [9].
A relation of the form

dX(t) € E(t,X(t))dA (t) + F(t, X(t))dA(t)
+ H(t,X(t))dt almost allt € I (1)

is called Quantum stochastic differential inclusions(QSDI) with co-
efficients E, F, G, H and initial data (o, o).
Equation(1) is understood in the integral form:

X(t) ex0+/ (E(s, X (s))dAx(s) + F(s, X (s))dA,(s)

to

+G(s, X (s))dA/ (s) + H(s,X(s))ds), t € I

called a stochastic integral inclusion with coefficients F, F, G, H and
initial data (g, xo)
An equivalent form of (1) has been established in [9], Theorem 6.2
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(E)(t,2) (0, €) = {1, pap()p(t, ©)€) = p(t, x) € E(t, x)}

WE)(t, x)(n,€) = {{n,vs(t)q(t, ©)€) - q(t,2) € F(i,2)}

(0G)(t,2)(n, ) = {(n, oa()u(t, ©)¢) : u(t,z) € G(t, )}
P(t, ) (n, &) = (uE)(t, x)(n,§) + (WEF)(t, 2)(n, ) (2)

+ (0G)(t,2)(n, §) + H(t,x)(n,§)
H(t, x)(n,§) = {v(t, 2)(n, &) - v(., X())
is a selection of H(., X())V X € L2 _(A)}
Then Problem (1) is equivalent to

Lo X(1)€) € B(t, X(5)(1.)

dt (3)
X(to) =X

for arbitrary 7, € DQE , almost all £ € I. Hence the existence
of solution of (1) implies the existence of solution of (3) and vice-
versa.

As explained in [9], for the map P,

P(t, x)(n,€) # P(t, (n, z€))

for some complex-valued multifunction P defined on I xC for t € I ,
re A n € e DQE.

Definition 2: For an arbitrary n,¢ € DQE, let M > 0 , we define
a set F% , as

D= {(t.z) € I x A:| (n,2€) |< Mt}

Let (tg, z0) € I x A and € > 0. For an arbitrary 1, & € DQE, (to, o)
€ I x Aand ¢ > 0, the family of conical neighbourhoods;

D) ((to,w0), 6) = {(t, ) € I x A:|| @ — g ||pe< M(t — to),

to <t <ty+0}

generates a topology, 71, which satisfies the following property:
(P) For every pair of sets A C B, with A closed and B open(in the
original topology), there exists a set C', closed-open with respect to
7+, such that A C C C B.

This topology follows from [5] and the references cited there.
Definition 3: (i) For an arbitrary pair 7, € DQE a map & : [ x

A — A will be said to be F%—Continuous(directionally continuous
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or 7t-continuous) at a point (t,z0) € I X A , if for every ¢ > 0
there exists 0 > 0 such that

| ©(t,x) — D(to, wo) |[ne< eif to <t <tp+0d and || x— x¢ ||
< M(t —to)

(ii) For an arbitrary n,{ € DRE, S C ,Z, a sesquilinear-form valued
map ¥ : S — 25¢5¢PEE)° wil] be said to be lower semicontinuous on
S if for every closed subset C' of C the set {s € S : ¥(s)(n,&) C C}
is closed in S.

We remark that if E, F, G, H are lower semicontinuous on S, then
the sesquilinear-form valued PP is lower semicontinuous on S.

A multivalued generalization of Lusin property which is called Scor-
za - Dragoni property [14] employed in [6] is used to define the form
of lower semicontinuity in this work. The well-known Lusin prop-
erty is the following.

Definition 4:(Lusin’s property)Let X and Y be two separable met-
ric spaces and let f: I x X — Y be function such that

(i)t — f(t,u) is measurable for every u € X

(ii) u — f(t,u) is continuous for almost every t € I , I C R,.
Then, for each € > 0, there exists a closed set A C [ such that
A\ A) <€, (X\is the Lebesgue measure on R) and the restriction
of f to A x X is continuous. B
Definition 5: A sequilinear- form valued map ¥ : [0,7] x A —
95¢sa(PER)* ig Scorza-Dragoni lower semicontinuous (SD-Ls.c.) on
[0,T] x A if there exists a sequence of disjoint compact sets J, C
[0, T, with meas([0, T'] \ U,cny, ) = 0 such that ¥ is lower semicon-

tinuous on each set J,, x A.

If ¥ is lower semicontinuous and convex-valued then by Michael se-
lection theorems, there exists continuous selection of W. But if the
convexity is removed and W is not decomposable valued multifunc-
tion then the existence of continuous selection is not guaranteed.
However, a non-convex analogue of Michael selection is Directional
continuous selection result in [4] and for infinite dimensional space
in [5]. We established in this work that such selection exists for
SD-lsc multivalued stochastic process.

For an arbitrary 0, € DQE , if U € pFE,vF,0G, H appearing in
(1) are SD-Isc then the map (¢,x) — P(¢, z)(n, ) is SD-Isc.

A quantum stochastic differential inclusion will be said to be SD-
lower semicontinuous if the coefficients are SD-Isc.

3. MAIN RESULTS
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Theorem 1: For almost all ¢ € I, n,£ € DQE. Suppose the
following holds:
(i) The maps X — ¥ (t,X)(n,&), ¥ € {uE,vF,cG, H} are non-
empty lower semicontinuous multivalued stochastic processes
(ii)The maps t — V(t, X)(n, &) are closed

(iii) 7" is a topology on I X A with property (P).
Then the sesquilinear form valued multifunction, (¢, X (¢)) —
P(t, X(¢))(n, €)
P(t, X(8))(n,€) = (uE)(t, X (&) (0, &) + WF)(t, X(t))(n,€)
+ (0G)(t, X (1) (n, &) + H(t, X (1)) (n, )

admits a 7F-continuous selection.

Proof: P is non-empty , since each of ¥ € {uF,vF,cG, H} is non-
empty.

Therefore, P is a non-empty lower semicontinuous sesquilinear form-
valued multifunction.

We shall employ a similar procedure as in the proof of Theorem 3.2
in [5] to construct a 71-continuous e-approximate selections P, of IP,
hence by inductive hypothesis we obtain a 7F-continuous selection
P of P.

Let € > 0 be fixed , since X — P(t, X)(n, ) is lower semicontinuous
, for every X(t) € A, we choose point yye x(t) € P(t, X (t))(n,€)
and neighbourhood Ux of X (¢) such that

inf t) — H]<eVX({H)eU 4
iesOem @ | 1EX (0) ~ Uner (D) | elx @

Now , let (Vi)aepe be a local finite open refinement of (Ux)x e 7 »

with V,, C Uy, , and let (W, )aepe be another open refinement such
that cl(W,) C V,, for all a € p¢. By property (P), for each o , we
can choose a set Z, , clopen w.r.t. 71, such that

(W) Cint(Zy) C cl(Zy) C 'V, (5)

Then (Z,), is a local finite 77 clopen covering of A. Let < bea
well-ordering of the set ¢, define for each o € 3¢,

% =2\ (U 2)

A<
Set O° = (€2,), « € 5. By well-ordering , every x € A belongs to
exactly one set Qf where @ = min{a € 5°: xz € Z,}. Hence , O°
is a partition of A. Moreover, since Z, is locally finite(wrt 7 and
therefore wrt 7%), the sets | J,_, Zx are 77 clopen. Hence O° is a
7+ clopen disjoint covering of A such that, {cl(Q5)} refines (V,)a.
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By setting yre o = yne,x, and Pe(t, X(t))(1,£) = yne x,, Yo € B°
we have 71 continuous function P,, which by (4), satisfies

inf P.(t, X (t &) — t)|<e€

oo e | Pe(t, X () (1,€) — ynep(t) |

Therefore , there exists an e-approximate selection P, of IP.
Since € was arbitrarily chosen ,thus we have a 7 -continuous selec-
tion P of P. [J
Theorem 2: Suppose the following holds for an arbitrary n,¢ €
DRE, Ve {uE,vF,0oG,H} :
(i) t = W(t, X(t))(n,&) are measurable for all X € A
(i) X — W(t, X(t))(n, &) are SD-lower semicontinuous with respect
to a seminorm || . ||,¢ , for almost all t € 1
(ili) ¥ are integrably bounded, that is, there exists Ly, (t) € L*(I)
such that, a.e. t € I, for all X € j,

inf < LY(t).
yeU(t,)(1,€) 1< Lye®)

Then the SD-lower semicontinuous quantum stochastic differential
inclusions

L X (1)E) € P(t, X (1) (1,€)

dt (6)
X(to) = 29

has an adapted weakly absolutely continuous solution in the sense
of Caratheodory.
Proof: Since for arbitrary ,¢ € DQE, ¥ € uE,vF, oG, H are SD-
lower semicontinuous then P(¢, x)(n, £) is SD-lower semicontinuous,
Vo € ./Z(, a.e. t € I. The sequence of disjoint compact sets .J, =
Ny Y and meas(I \ UpenJ,) = 0 such that P(.,.)(n, ) restricted
to Q, = J,, x A is lower semicontinuous, with respect to || . ||e.
Also, suppose L, = 5 max Lg’ﬁ(t), then a.e. t € I,

septne | ¥ 1< Le(0)
for all X € A
For each n > 1, we can apply Theorem (1) and obtain 7" -continuous
selections P, € P.
For an arbitrary selection g from P, if we define

P,(t,X)(n,&) ifteJ,,

P(t,X)(n,§) = {g(t,X)(n,f) if t € UpenJn
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then P is a 71-continuous selection of P, such that | P(¢,z)(n,§) |<
Lye(t) < Ly e, for every (t,X) € I x A, n,{ € DQE.

Then by applying Lusin’s property to each bound of L, ¢, n € N
the set of solutions of 7"-continuous quantum stochastic differential
equations is the solution set of (6) in the sense of Caratheodory. O
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