SOME EXAMPLES OF FINITE OSBORN LOOPS

A. O. ISERE, J. O. ADENIRAN ${ }^{1}$ AND A. R. T. SOLARIN

Abstract

In this work we give a number of constructions of finite Osborn loops of order $4 n$, with two generators. All the loops are found to satisfy both Langrange's theorem and Sylow's first theorem. They are found to be non-universal Osborn loops except when $k=1$ and $n \leq 3$. Moreover, all the examples are found not to be flexible and do not have the LAP or RAP or LIP or RIP or AAIP, consequently not Moufang. The first three cases are particular examples for demonstration purpose. Therefore, finite Osborn loops of order 16, 24, 36, 48 and 72 has been constructed.

Keywords and phraces: Binary operations, Osborn loops, finite examples, non-universal 2010 Mathematical Subject Classification: primary 20N05; secondary 08 A 05

In memory of a great Mathematician: Professor Haroon Oladipo Tejumola

1. INTRODUCTION

A loop $I(\cdot)$ is called an Osborn loop if it obeys the identity:

$$
\begin{equation*}
\left(x^{\lambda} \backslash y\right) \cdot z x=x(y z \cdot x) \tag{1}
\end{equation*}
$$

for all $x, y, z \in I$. The term Osborn loops first appeared in a work of Huthnance Jr [3] in 1968, on generalized Moufang loops. However, the definition (1) above is according to Basarab [1] in 1979. For detail review of Osborn loops-see Isere et al submitted in another Journal [4], and other authors as [8],[12],[14]. Moreover, the most popularly known varieties of Osborn loops are CC-loops, Moufang loops, VD-loops and universal weak inverse property loops. All these four varieties of Osborn loops are universal [6]. This is what makes non-universal Osborn loops interesting to researchers like Kinyon, Phillips and others [5], [11]. Therefore, it would be a

[^0]worthwhile effort to be able to construct a finite Osborn loop that is non-universal.
Following the pattern of example of finite Bol loops constructed by Solarin and Sharma [13], and CC-loops by Chiboka and Solarin [2], we develop new methods of constructing finite Osborn loops. We established that all the constructions are non-universal Osborn loops using the identity for universal Osborn loops derived by Jaiyeola and Adeniran in [5] as used in [6]. Strikingly, constructions 4 is a ' k ' number of constructions where k is any integer. All of them are non-universal except when $k=1$, and $n \leq 3$ where it gives a group, and atmost a Moufang loop respectively. In section 3, we prove that all the construtions to satisfy the Osborn identity, and for conservation of space, we shall prove one of the Osborn identity. In section 4, some properties of the constructed examples are presented.

2. PRELIMINARY

Definition 1. A loop is a set I with binary operation (denoted here simply by juxtaposition) such that

- for each a in I, the left multiplication map $L_{a}: I \rightarrow I, x \rightarrow$ ax is bijective,
- for each a in I, the right multiplication map $R_{a}: I \rightarrow I, x \rightarrow$ xa is bijective; and
- I has a two-sided identity 1.

The order of I is its cardinality $|I|$.
Definition 2. A loop (G, \cdot) is called, for all $x, y, z \in G:[10],[14]$
(1) a left inverse property loop (LIPL) if it has the left inverse property i.e. if there exists a bijection $J_{\lambda}: x \rightarrow x^{\lambda}$ on G such that $x^{\lambda} \cdot x y=y$
(2) a RIPL if it has the right inverse property(RIP)i.e. if there exists a bijection: $J_{\rho}: x \rightarrow x^{\rho}$ on G such that $y x \cdot x^{\rho}=y$
(3) an automorphic inverse property loop (AIPL) if and only if it obeys the identity: $(x y)^{\lambda}=x^{\lambda} y^{\lambda}$ or $(x y)^{\rho}=x^{\rho} y^{\rho}$
(4) a left alternative property loop (LAPL)if it obeys the left alternative property (LAP): $x x \cdot y=x \cdot x y$
(5) a right alternative property loop (RAPL) if it obeys the right alternative property $(R A P): y \cdot x x=y x \cdot x$.
(6) a conjugacy closed loop(CC-loop) if and only if it obeys x. $y z=(x y) /(x \cdot x z)$ and $z y \cdot x=z x \cdot x \backslash(y x)$.
(7) a weak inverse property loop (WIPL) if it obeys the identity: $x(y x)^{\rho}=y^{\rho}$ or $(x y)^{\lambda} x=y^{\lambda}$
(8) a cross inverse property loop (CIPL) if and only if it obeys the identity: $x y \cdot x^{\rho}=y$ or $x \cdot y x^{\rho}=y$ OR $x^{\lambda} \cdot(y x)=y$ or $x^{\lambda} y \cdot x=y$.
(9) a flexible loop if and only if it obeys $x y \cdot x=x \cdot y x$.
(10) a power associative loop if and only if each element of G generates an associative subloop.
(11) a diassociative loop if and only if each pair generates an associative subloop.
(12) an anti-automorphic inverse property loop (AAIPL) if and only if it obeys the identity: $(x y)^{\rho}=y^{\rho} x^{\rho}$ or $(x y)^{\lambda}=y^{\lambda} x^{\lambda}$.
(13) a semi-automorphic inverse property loop (SAIPL) if and only if it obeys the identity: $(x y \cdot x)^{\rho}=x^{\rho} y^{\rho} \cdot x^{\rho}$ or $(x y \cdot x)^{\lambda}=$ $x^{\lambda} y^{\lambda} \cdot x^{\lambda}$.
(14) the left nuclus of G is denoted by:

$$
N_{\lambda}(G, \cdot)=\{a \in G: a x \cdot y=a \cdot x y \forall x, y \in G\} .
$$

(15) the right nuclus of G is denoted:

$$
N_{\rho}(G, \cdot)=\{a \in G: y \cdot x a=y x \cdot a \forall x, y \in G\} .
$$

(16) the middle nuclus of G is denoted by:

$$
N_{\mu}(G, \cdot)=\{a \in G: y a \cdot x=y \cdot a x \forall x, y \in G\} .
$$

(17) the nuclus of G is denoted by:

$$
N(G, \cdot)=N_{\lambda}(G, \cdot) \cap N_{\rho}(G, \cdot) \cap N_{\mu}(G, \cdot) .
$$

(18) the centrum of G denoted by:

$$
C(G, \cdot)=\{a \in G: a x=x a \forall x \in G\} .
$$

(19) the center of G is denoted by:

$$
Z(G, \cdot)=N(G, \cdot) \cap C(G, \cdot)
$$

Theorem 1. (Kinyon [7]) The smallest order for which proper (non-Moufang and non-CC) Osborn loops with non-trivial nucleus exists is 16. There are two of such loops.

- Each of the two is a G-loop.
- Each contains as a subgroup, the dihedral group $\left(D_{4}\right)$ of order 8.
- For each loop, the center coincides with the nucleus and has order 2. The quotient by the center is a non-associative CC-loop of order 8 .
- The second center is $Z_{2} \times Z$, and the quotient is Z_{4}.
- One loop satisfies $L_{x}^{4}=R_{x}^{4}=I$, the other does not.

AIP Osborn loops include :

- commutative Moufang loops and
- AIP CC-loops.

Lemma 1. (Jaiyeola and Adeniran [5]) An Osborn loop that is flexible or which has the LAP or RAP or LIP or RIP or AAIP is a Moufang loop. But an Osborn loop that is commutative or which has the CIP is a Commutative Moufang loop.
Lemma 2. (Jaiyeola and Adeniran [5]) Let ($Q, \cdot, \backslash, /$) be a left universal Osborn loop. The following identities are satisfied:

$$
v \cdot v v=v^{\lambda} \backslash v \cdot v \quad \text { and } \quad v v \cdot v v=v^{\lambda} \backslash\left(v^{\lambda^{2}} v\right) \cdot v
$$

Theorem 2. (Huthnance [3] and Basarab) Let G be an Osborn loop. $N_{\rho}(G)=N_{\lambda}(G)=N_{\mu}(G)=N(G) \unlhd G$

According to Huthnance [3], for a WIPL, the four nuclei N_{ρ}, N_{λ}, N_{μ} and N coincide, i.e. $N_{\rho}=N_{\lambda}=N_{\mu}=N$. The same statement is true for a CIPL and an IPL since they are WIPLs. This fact was observered also by Osborn-see [7],[6].

Example 1. (Huthnance [3]) Let $H=Z \times Z \times Z$. Define a binary operation \star on H by :

$$
\begin{gathered}
{[2 i, k, m] \star[2 j, p, q]=[2 i+2 j, k+p-i j(2 j-1), q+m-i j(2 j-1)]} \\
{[2 i+1, k, m] \star[2 j, p, q]=\left[2 i+2 j+1, k+p-i j(2 j-1)-j^{2}+j\right.} \\
\left., q+m-i j(2 j-1)-j^{2}\right] \\
{[2 i, k, m] \star[2 j+1, p, q]=[2 i+2 j+1, m+p-i j(2 j+1), q+k-i j(2 j+1)]} \\
{[2 i+1, k, m] \star[2 j+1, p, q]=\left[2 i+2 j+2, m+p-i j(2 j+1)-j^{2}+j\right.} \\
\left., q+k-i j(2 j+1)-j^{2}\right]
\end{gathered}
$$

$\forall i, j, k, m, p, q \in Z .(H, \star)$ is an Osborn loop.
Jaiyeola \& Adeniran in 2009 [6] used this example to show that all Osborn loops are not universal. They began by saying: assuming that (H, \star) is a universal Osborn loop, then it should obey the identity $v \cdot v v=v^{\lambda} \backslash v \cdot v[4]$. Let $v=[2 i+1, k, m]$ then by direct computation, we have $v \cdot v v=\left[6 i+3, m+2 k-10 i^{3}-12 i^{2}-2 i, 2 m+\right.$ $\left.k-10 i^{3}-12 i^{2}-i-1\right]$ and $v^{\lambda} \backslash v \cdot v=\left[6 i+3, m+2 k-14 i^{3}-18 i^{2}-\right.$ $\left.7 i-1,2 m+k-14 i^{3}-16 i-6 i-1\right]$. So, $v \cdot v v \neq v^{\lambda} \backslash v \cdot v$. Thus, (H, \star) is not a universal Osborn loop-see [4].

MAIN RESULTS

Example 2. Construction 1
Let $I(\cdot)=C_{2 n} \times C_{2}$ that is $I=\left\{\left(x^{\alpha}, p^{\beta}\right), 0 \leq \alpha \leq 2 n-1,0 \leq \beta \leq 1\right\}$ and the binary operation is defined as follows:

$$
\begin{gathered}
\left(x^{a}, e\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+b}, p^{\beta}\right) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, e\right)=\left(x^{a+b}, p^{\alpha}\right) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+b}, p^{\alpha+\beta}\right) \text { if } b \equiv 0(\bmod 2) \\
=\left(x^{a+3 b}, p^{\alpha+\beta}\right) \text { if } b \equiv 1(\bmod 2) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+3 b}, p^{\alpha+3 \beta}\right) \text { if } a \equiv 1(\bmod 2), b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\delta}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{a+b+c}, p^{\alpha+\delta}\right) \text { if } b \equiv 0(\bmod 2) \\
\left(x^{b+c}, p^{\delta}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{a+3 b+c}, p^{\alpha+\delta}\right) \text { if } b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\beta+\gamma}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{3 a+3 b+c}, p^{\alpha+3 \beta+\gamma}\right) \text { if } a \equiv 1(\bmod 2) \\
, b \equiv 1(\bmod 2)
\end{gathered}
$$

Then $I(\cdot)$ is an Osborn loop of order $4 n$, where $n=2,3,4,6,9$, 12 and 18

Proof

We first show that $I(\cdot)$ satisfies Osborn identity (1):

$$
\left(x^{\lambda} \backslash y\right) \cdot z x=x(y z \cdot x) \forall x, y, z \in I
$$

(a): Let $x=\left(x^{a}, e\right) ; y=\left(x^{b}, e\right) ; z=\left(x^{c}, e\right)$, then by direct computation we have

$$
\begin{gathered}
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+b+c}, e\right) \\
x(y z \cdot x)=\left(x^{2 a+b+c}, e\right)
\end{gathered}
$$

(b): Let $x=\left(x^{a}, e\right) ; y=\left(x^{b}, e\right) ; z=\left(x^{c}, p^{\gamma}\right)$

$$
\begin{gathered}
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+b+c}, p^{\gamma}\right) \\
x(y z \cdot x)=\left(x^{2 a+b+c}, p^{\gamma}\right)
\end{gathered}
$$

(c): Let $x=\left(x^{a}, e\right) ; y=\left(x^{b}, p^{\beta}\right) ; z=\left(x^{c}, e\right)$

$$
\begin{gathered}
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+b+c}, p^{\beta}\right) b=\text { even } \\
x(y z \cdot x)=\left(x^{2 a+b+c}, p^{\beta}\right) b=\text { even } \\
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+3 b+c}, p^{\beta}\right) b=\text { odd } \\
x(y z \cdot x)=\left(x^{2 a+3 b+c}, p^{\beta}\right) b=\text { odd }
\end{gathered}
$$

(d): Let $x=\left(x^{a}, p^{\alpha}\right) ; y=\left(x^{b}, e\right) ; z=\left(x^{c}, e\right)$

$$
\begin{gathered}
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+b+c}, p^{2 \alpha}\right) a=\text { even } \\
x(y z \cdot x)=\left(x^{2 a+b+c}, p^{2 \alpha}\right) a=\text { even } \\
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{4 a+b+c}, p^{2 \alpha}\right) a=\text { odd } \\
x(y z \cdot x)=\left(x^{4 a+b+c}, p^{2 \alpha}\right) a=\text { odd }
\end{gathered}
$$

(e): Let $x=\left(x^{a}, e\right) ; y=\left(x^{b}, p^{\beta}\right) ; z=\left(x^{c}, p^{\gamma}\right)$

$$
\begin{gathered}
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+b+c}, p^{\beta+\gamma}\right) b=\text { even } \\
x(y z \cdot x)=\left(x^{2 a+b+c}, p^{\beta+\gamma}\right) b=\text { even } \\
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+3 b+c}, p^{\beta+\gamma}\right) b=\text { odd } \\
x(y z \cdot x)=\left(x^{2 a+3 b+c}, p^{\beta+\gamma}\right) b=\text { odd }
\end{gathered}
$$

(f): Let $x=\left(x^{a}, p^{\alpha}\right) ; y=\left(x^{b}, e\right) ; z=\left(x^{c}, p^{\gamma}\right)$

$$
\begin{gathered}
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+b+c}, p^{2 \alpha+\gamma}\right) a=\text { even } \\
x(y z \cdot x)=\left(x^{2 a+b+c}, p^{2 \alpha+\gamma}\right) a=\text { even } \\
\left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{4 a+b+c}, p^{2 \alpha+\gamma}\right) a=\text { odd } \\
x(y z \cdot x)=\left(x^{4 a+b+c}, p^{2 \alpha+\gamma}\right) a=\text { odd }
\end{gathered}
$$

(g): Let $x=\left(x^{a}, p^{\alpha}\right) ; y=\left(x^{b}, p^{\beta}\right) ; z=\left(x^{c}, e\right)$

$$
\begin{aligned}
& \left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+b+c}, p^{2 \alpha+\beta}\right) a=\text { even }, b=\text { even } \\
& x(y z \cdot x)=\left(x^{2 a+b+c}, p^{2 \alpha+\beta}\right) a=\text { even, } b=\text { even } \\
& \left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{4 a+b+c}, p^{2 \alpha+\beta}\right) a=\text { odd, } b=\text { even } \\
& x(y z \cdot x)=\left(x^{4 a+b+c}, p^{2 \alpha+\beta}\right) a=\text { odd, } b=\text { even } \\
& \left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+3 b+c}, p^{2 \alpha+\beta}\right) a=\text { even }, b=\text { odd } \\
& x(y z \cdot x)=\left(x^{2 a+3 b+c}, p^{2 \alpha+\beta}\right) a=\text { even }, b=\text { odd } \\
& \left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{4 a+3 b+c}, p^{2 \alpha+3 \beta}\right) a=\text { odd }, b=\text { odd } \\
& x(y z \cdot x)=\left(x^{4 a+3 b+c}, p^{2 \alpha+3 \beta}\right) a=\text { odd, } b=\text { odd }
\end{aligned}
$$

(h): Let $x=\left(x^{a}, p^{\alpha}\right) ; y=\left(x^{b}, p^{\beta}\right) ; z=\left(x^{c}, p^{\gamma}\right)$

$$
\begin{aligned}
& \left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+b+c}, p^{2 \alpha+\beta+\gamma}\right) a=\text { even, } b=\text { even } \\
& x(y z \cdot x)=\left(x^{2 a+b+c}, p^{2 \alpha+\beta+\gamma}\right) a=\text { even, } b=\text { even } \\
& \left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{4 a+b+c}, p^{2 \alpha+\beta+\gamma}\right) a=o d d, b=\text { even } \\
& x(y z \cdot x)=\left(x^{4 a+b+c}, p^{2 \alpha+\beta+\gamma}\right) a=o d d, b=\text { even } \\
& \left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{2 a+3 b+c}, p^{2 \alpha+\beta+\gamma}\right) a=\text { even }, b=\text { odd } \\
& x(y z \cdot x)=\left(x^{2 a+3 b+c}, p^{2 \alpha+\beta+\gamma}\right) a=\text { even }, b=\text { odd } \\
& \left(x^{\lambda} \backslash y\right) \cdot z x=\left(x^{4 a+3 b+c}, p^{2 \alpha+3 \beta+\gamma}\right) a=\text { odd }, b=o d d \\
& x(y z \cdot x)=\left(x^{4 a+3 b+c}, p^{2 \alpha+3 \beta+\gamma}\right) a=o d d, b=\text { odd }
\end{aligned}
$$

Since $\left(x^{\lambda} \backslash y\right) \cdot z x=x(y z \cdot x)$ is equal in all the 36 cases considered i.e. whenever $37 \equiv 1(\bmod 2 n)$, that is $n=2,3,4,6,9,12,18$. Also (e, e) is the two sided identity. Moreover, if: $x=\left(x^{a}, e\right)$, then $x^{-1}=$ $\left(x^{-a}, e\right)$. If $x=\left(x^{a}, p^{\alpha}\right)$, then $x^{-1}=\left(x^{-a}, p^{-a}\right)$ if a is even, and $x^{-1}=\left(x^{-3 a}, p^{-a}\right)$ if a is odd. Therefore, the inverses are defined.
Also for non-associativity:
Let $x=\left(x^{a}, p^{\alpha}\right) ; y=\left(x^{b}, p^{\beta}\right) ; z=\left(x^{c}, p^{\gamma}\right)$ where b is an odd integer, then

$$
x y \cdot z=\left(x^{a+3 b+c}, p^{\alpha+\beta+\gamma}\right)
$$

and

$$
x \cdot y z=\left(x^{a+b+c}, p^{\alpha+\beta+\gamma}\right)
$$

therefore, $x y \cdot z \neq x \cdot y z$. Thus the construction is non-associative except when $n=2$ which gives the group $C_{4} \times C_{2}$. The construction exists as Moufang loop when $n=3$ (compare Theorem 2.1). Hence, it is an Osborn loop of order $4 n, n=4,6,9,12$ and 18.
Next, we examine the universality of the constructed Osborn loop using [5] as done in [6].
An Osborn loop $I(\cdot)=C_{2 n} \times C_{2}$ is universal if $I(\cdot)$ obeys:

$$
y \cdot y y=y^{\lambda} \backslash y \cdot y
$$

Let $y=\left(x^{b}, p^{\beta}\right)$, where b is an odd integer.

$$
\begin{gathered}
y \cdot y y=\left(x^{13 b}, p^{3 \beta}\right) b=\text { odd } \\
y^{\lambda} \backslash y \cdot y=\left(x^{7 b}, p^{3 \beta}\right) b=\text { odd }
\end{gathered}
$$

Thus,

$$
y \cdot y y \neq y^{\lambda} \backslash y \cdot y
$$

Hence, $I(\cdot)=C_{2 n} \times C_{2}$ as defined in construction 1 is not a universal Osborn loop.

Example 3. Construction 2
Let $I(\cdot)=C_{2 n} \times C_{2}$ that is $I=\left\{\left(x^{\alpha}, p^{\beta}\right), 0 \leq \alpha \leq 2 n-1,0 \leq \beta \leq 1\right\}$ and the binary operation is defined as follows:

$$
\begin{gathered}
\left(x^{a}, e\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+b}, p^{\beta}\right) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, e\right)=\left(x^{a+b}, p^{\alpha}\right) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+b}, p^{\alpha+\beta}\right) \text { if } b \equiv 0(\bmod 2) \\
=\left(x^{a-b}, p^{\alpha+\beta}\right) \text { if } b \equiv 1(\bmod 2) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a-b}, p^{\alpha-\beta}\right) \text { if } a \equiv 1(\bmod 2), b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\delta}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{a+b+c}, p^{\alpha+\delta}\right) \text { if } b \equiv 0(\bmod 2) \\
\left(x^{b+c}, p^{\delta}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{a-b+c}, p^{\alpha+\delta}\right) \text { if } b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\beta+\gamma}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{c-a-b}, p^{\alpha-\beta+\gamma}\right) \text { if } a \equiv 1(\bmod 2) \\
, b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\beta+\gamma}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{b+c-a}, p^{\beta+\gamma-\alpha}\right) \text { if } a \equiv 1(\bmod 2)
\end{gathered}
$$

Then $I(\cdot)$ is an Osborn loop of order $4 n$, where $n=2,3,4,6,9$, 12 and 18.

Proof

We first show that $I(\cdot)$ satisfies Osborn identity (1):
Then we follow up as in construction 1, and establish that construction 2 is non-associative and non-universal Osborn loop.

Example 4. Construction 3
Let $I(\cdot)=C_{2 n} \times C_{2}$ that is $I=\left\{\left(x^{\alpha}, p^{\beta}\right), 0 \leq \alpha \leq 2 n-1,0 \leq \beta \leq 1\right\}$ and the binary operation is defined as follows:

$$
\begin{gathered}
\left(x^{a}, e\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+b}, p^{\beta}\right) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, e\right)=\left(x^{a+b}, p^{\alpha}\right) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+b}, p^{\alpha+\beta}\right) \text { if } b \equiv 0(\bmod 2) \\
=\left(x^{a}, p^{\alpha+\beta}\right) \text { if } b \equiv 1(\bmod 2) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a}, p^{\alpha}\right) \text { if } a \equiv 1(\bmod 2), b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\delta}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{a+b+c}, p^{\alpha+\delta}\right) \text { if } b \equiv 0(\bmod 2) \\
\left(x^{b+c}, p^{\delta}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{a+c}, p^{\alpha+\delta}\right) \text { if } b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\beta+\gamma}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{c}, p^{\alpha+\gamma}\right) \text { if } a \equiv 1(\bmod 2), b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\beta+\gamma}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{b+c}, p^{\beta+\gamma}\right) \text { if } a \equiv 1(\bmod 2)
\end{gathered}
$$

Then $I(\cdot)$ is an Osborn loop of order $4 n$, where $n=2,3,4,6,9$, 12 and 18

Proof

We first show that $I(\cdot)$ satisfies Osborn identity (1):
Then we follow up as in construction 1, and establish that construction 3 is non-associative and non-universal Osborn loop.

Example 5. Construction 4
Let $I(\cdot)=C_{2 n} \times C_{2}$ that is $I=\left\{\left(x^{\alpha}, p^{\beta}\right), 0 \leq \alpha \leq 2 n-1,0 \leq \beta \leq 1\right\}$ and the binary operation is defined as follows:

$$
\begin{gathered}
\left(x^{a}, e\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+b}, p^{\beta}\right) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, e\right)=\left(x^{a+b}, p^{\alpha}\right) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+b}, p^{\alpha+\beta}\right) \text { if } b \equiv 0(\bmod 2) \\
=\left(x^{a+k b}, p^{\alpha+\beta}\right) \text { if } a \equiv 0(\bmod 2), b \equiv 1(\bmod 2) \\
\left(x^{a}, p^{\alpha}\right) \cdot\left(x^{b}, p^{\beta}\right)=\left(x^{a+k b}, p^{\alpha+k \beta}\right) \text { if } a \equiv 1(\bmod 2), b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\delta}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{a+b+c}, p^{\alpha+\delta}\right) \text { if } a \equiv 0(\bmod 2), b \equiv 0(\bmod 2) \\
\left(x^{b+c}, p^{\delta}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{a+k b+c}, p^{\alpha+\delta}\right) \text { if } a \equiv 0(\bmod 2), b \equiv 1(\bmod 2) \\
\left(x^{b+c}, p^{\beta+\gamma}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{b+c+k a}, p^{\beta+\gamma+k \alpha}\right) \text { if } a \equiv 1(\bmod 2) \\
, b \equiv 0(\bmod 2) \\
\left(x^{b+c}, p^{\beta+\gamma}\right) \cdot\left(x^{a}, p^{\alpha}\right)=\left(x^{c+k a+k b}, p^{\alpha+k \beta+\gamma}\right) \text { if } a \equiv 1(\bmod 2) \\
, b \equiv 1(\bmod 2)
\end{gathered}
$$

Then $I(\cdot)$ is an Osborn loop of order $4 n$, where $n=2,3,4,6,9$, 12 and 18

Proof

We first show that $I(\cdot)$ satisfies Osborn identity (1):
Then we follow up as in construction $1-3$ above, and establish that construction 4 is non-associative and non-universal Osborn loop except when $k=1$.

4. SOME PROPERTIES OF NON-UNIVERSAL OSBORN LOOPS

Theorem 3. A non-universal Osborn loop is not a CIP loop

Proof

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right) \mathrm{b}=$ odd. By direct computation we have

$$
x y \cdot x^{\rho}=\left(x^{k b}, p^{\beta}\right) \neq y
$$

Again if $k=1$, we have $x y \cdot x^{\rho}=\left(x^{b}, p^{\beta}\right)=y$
Also, let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right) \mathrm{a}=$ odd
Then $x y \cdot x^{\rho}=\left(x^{a(1-k)+b}, p^{\beta}\right) \neq y$ except when $k=1$. Thus a non-universal Osborn loop is not a CIP loop.

Theorem 4. A non-unversal Osborn loop is not a WIPL.

Proof

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right) \mathrm{a}=$ odd
then

$$
x(y x)^{\rho}=\left(x^{a(1-k)-b}, p^{-\beta}\right)
$$

If $k=1$, we have $x(y x)^{\rho}=\left(x^{-b}, p^{-\beta}\right)$. i.e. the constructions are not a WIPL except at $k=1$.

Theorem 5. A non-universal Osborn loop is not an AIPL.

Proof

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right) \mathrm{b}=$ odd
then

$$
(x y)^{\rho}=\left(x^{-(a+k b)}, p^{(-\alpha+\beta)}\right)
$$

and

$$
\begin{gathered}
x^{\rho} y^{\rho}=\left(x^{-\left(a+k^{2} b\right)}, p^{-(\alpha+\beta)}\right) \\
(x y)^{\rho}=\left(x^{-(a+k b)}, p^{(-\alpha+\beta)}\right) \neq\left(x^{-\left(a+k^{2} b\right)}, p^{-(\alpha+\beta)}\right)
\end{gathered}
$$

Hence $(x y)^{\rho} \neq x^{\rho} y^{\rho}$ except when $k=1$.
Theorem 6. A non-universal Osborn loop is not an AAIP loop

Proof

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right) \mathrm{a}=$ odd, $\mathrm{b}=$ odd
then

$$
(x y)^{\rho}=\left(x^{-(a+k b)}, p^{-(\alpha+k \beta)}\right)
$$

and

$$
y^{\rho} x^{\rho}=\left(x^{-\left(k b+k^{2} a\right)}, p^{-(k \alpha+\beta)}\right)
$$

Hence $(x y)^{\rho} \neq y^{\rho} x^{\rho}$ except when $k=1$
Or

$$
\begin{gathered}
(x y)^{\lambda}=\left(x^{-(a+k b)}, p^{-(\alpha+k \beta)}\right) a=o d d, b=o d d \\
y^{\lambda} x^{\lambda}=\left(x^{-\left(k b+k^{2} a\right)}, p^{-(k \alpha+\beta)}\right) a=o d d, b=o d d
\end{gathered}
$$

Hence $(x y)^{\lambda} \neq y^{\lambda} x^{\lambda}$ except when $k=1$
Theorem 7. A non-universal Osborn loop is not a LIP or RIP loop

Proof Let $y=\left(x^{b}, p^{\beta}\right), x=\left(x^{a}, p^{\alpha}\right), x^{\lambda}=\left(x^{-a}, p^{-\alpha}\right) \mathrm{a}=$ even, b=odd

$$
x^{\lambda} \cdot x y \neq y
$$

except when $k=1$
Next,
Let $y=\left(x^{b}, p^{\beta}\right), x=\left(x^{a}, p^{\alpha}\right), x^{\rho}=\left(x^{-k a}, p^{-\alpha}\right) \mathrm{a}=$ odd, $\mathrm{b}=$ even

$$
y x \cdot x^{\rho}=\left(x^{k(a-k a)+b}, p^{\beta}\right)
$$

Thus $y x \cdot x^{\rho} \neq y$ except when $k=1$. The proof is complete.
Theorem 8. A non-universal Osborn loop is not a LAP Or RAP loop

Proof

Let $y=\left(x^{b}, p^{\beta}\right), x=\left(x^{a}, p^{\alpha}\right)$

$$
x x \cdot y=\left(x^{a+b+k a}, p^{2 \alpha+\beta}\right) a=o d d
$$

Now,

$$
x \cdot x y=\left(x^{2 a+b}, p^{2 \alpha+\beta}\right) a=\text { odd }
$$

Thus $x x \cdot y \neq x \cdot x y$ except when $k=1$

Next, consider:

$$
y \cdot x x=y x \cdot x(R A P)
$$

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right) \mathrm{a}=$ odd

$$
y \cdot x x=\left(x^{a+b+k a}, p^{2 \alpha+\beta}\right)
$$

and,

$$
y x \cdot x=\left(x^{2 k a+b}, p^{2 \alpha+\beta}\right)
$$

Thus $y \cdot x x \neq y x \cdot x$ except when $k=1$.
Theorem 9. A non-universal Osborn is not flexible, power associative and diassociative loop.

Proof

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right)$

$$
\begin{gathered}
x y \cdot x=\left(x^{2 a+k b}, p^{2 \alpha+\beta}\right) \\
x \cdot y x=\left(x^{2 a+b}, p^{2 \alpha+\beta}\right)
\end{gathered}
$$

Thus $x x \cdot x \neq x \cdot x x$ except when $k=1$ Next, we look at power associativity: Let $x=\left(x^{a}, p^{\alpha}\right)$ a=odd

$$
\begin{gathered}
x x \cdot x=\left(x^{a+2 k a}, p^{3 \alpha}\right) \\
x \cdot x x=\left(x^{a+\left(k^{2}+k\right) a}, p^{3 \alpha}\right)
\end{gathered}
$$

Thus $x x \cdot x \neq x \cdot x x$ except when $k=1$. Finally, we consider diassociativity:

$$
\begin{gathered}
x \cdot y y=\left(x^{a+\left(k+k^{2}\right) b}, p^{\alpha+(1+k) \beta}\right) a=\text { odd } \\
x y \cdot y=\left(x^{a+2 k b}, p^{\alpha+2 \beta}\right) a=\text { odd }
\end{gathered}
$$

Thus $x \cdot y y \neq x y \cdot y$ except when $k=1$.
Theorem 10. A non-universal Osborn loop is not a SAIP loop.

Proof:

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right)$

$$
(x y \cdot x)^{\rho}=\left(x^{-(2 a+k b)}, p^{-(2 \alpha+\beta)}\right) b=o d d
$$

and

$$
x^{\rho} y^{\rho} \cdot x^{\rho}=\left(x^{-\left(2 a+k^{2} b\right)}, p^{-(2 \alpha+\beta)}\right) b=\text { odd }
$$

Thus $(x y \cdot x)^{\rho} \neq x^{\rho} y^{\rho} \cdot x^{\rho}$ except when $k=1$
Theorem 11. A non-universal Osborn loop is not a CC-loop.

Proof:

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right), z=\left(x^{c}, p^{\gamma}\right)$

$$
\begin{gathered}
x \cdot y z=\left(x^{a+b+c}, p^{\alpha+\beta+\gamma}\right) b=o d d \\
(x y) / x \cdot x z=\left(x^{a+k b+c}, p^{\alpha+\beta+\gamma}\right) b=\text { odd }
\end{gathered}
$$

Thus $x \cdot y z \neq(x y) / x \cdot x z$ except when $k=1$.
Next, consider:

$$
\begin{gathered}
z y \cdot x=\left(x^{k a+b+c}, p^{\alpha+\beta+\gamma}\right) a=o d d \\
z x \cdot x \backslash(y x)=\left(x^{2 k a+b+c-a}, p^{\alpha+\beta+\gamma}\right) a=o d d
\end{gathered}
$$

Thus $z y \cdot x \neq z x \cdot x \backslash(y x)$. This completes the proof.
Corollary 1. A non-universal Osborn loop is not a G-loop

Proof:

The necessary and sufficient condition for a loop to be a G-loop is that it is a CC-loop [2]. Then from theorem 4.9, the proof follows.

Theorem 12. For a finite non-universal Osborn loop the nuclei do not coincide.

Proof:

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right), z=\left(x^{c}, p^{\gamma}\right)$

$$
z x \cdot y=\left(x^{a+k b+c}, p^{\alpha+\beta+\gamma}\right)
$$

Therefore, $N_{\lambda}(I, \cdot)=\left(x^{a+k b+c}, p^{\alpha+\beta+\gamma}\right) \mathrm{b}=$ odd
Next, consider:

$$
y \cdot x z=\left(x^{a+b+c}, p^{\alpha+\beta+\gamma}\right) b=o d d
$$

Therefore,

$$
N_{\rho}(I, \cdot)=\left(x^{a+b+c}, p^{\alpha+\beta+\gamma}\right) b=o d d
$$

Also,

$$
\begin{aligned}
& y z \cdot x=\left(x^{k a+b+c}, p^{\alpha+\beta+\gamma}\right) a=o d d \\
& y \cdot z x=\left(x^{k a+b+c}, p^{\alpha+\beta+\gamma}\right) a=o d d
\end{aligned}
$$

Thus,

$$
N_{\mu}(I, \cdot)=\left(x^{k a+b+c}, p^{\alpha+\beta+\gamma}\right) a=o d d
$$

Hence,

$$
N(I, \cdot)=N_{\lambda}(I, \cdot) \cap N_{\rho}(I, \cdot) \cap N_{\mu}(I, \cdot)
$$

Therefore,

$$
N(I, \cdot)=\left(x^{a+b+c}, p^{\alpha+\beta+\gamma}\right) a=o d d, b=o d d
$$

Thus,

$$
N(I, \cdot)=N_{\rho}(I, \cdot) \neq N_{\lambda}(I, \cdot) \neq N_{\mu}(I, \cdot)
$$

Remark 1. For a WIPL, the four nuclei $N, N_{\lambda}, N_{\rho}, N_{\mu}$. coincide, i.e. $N=N_{\lambda}=N_{\rho}=N_{\mu}$. The same is true for a CIPL and an IPL since they are WIPLs as observed by Osborn himself [9]. Since, the constructions above are not WIPL, CIPL nor IPL, the nuclei are not equal.

Lemma 3. For a finite non-universal Osborn loop, elements in the centrium and in the center whenever they exist are equal

Proof:

Let $x=\left(x^{a}, p^{\alpha}\right), y=\left(x^{b}, p^{\beta}\right), z=\left(x^{c}, p^{\gamma}\right)$

$$
C(I, \cdot)=\left(x^{a+c}, p^{\alpha+\gamma}\right) a=\text { even }
$$

Or

$$
C(I, \cdot)=\left(x^{b+c}, p^{\beta+\gamma}\right) b=\text { even }
$$

Next,

$$
Z(I, \cdot)=\left(x^{b+c}, p^{\beta+\gamma}\right) b=\text { even }
$$

Proposition 1. An Osborn loop (G, \cdot) is universal if and only if it is a 3-power associative property loop (3-PAPL)

Proof:

A left universal Osborn loop G obeys the identity: $v \cdot v v=v^{\lambda} \backslash v \cdot v \forall v \in G$. See detail in [6]. Then $v \cdot v v=v^{\lambda} \backslash v \cdot v=v v \cdot v$
Thus, $v \cdot v v=v v \cdot v$
Conversely,

$$
v v \cdot v=v L_{v} \cdot v=v^{\lambda} \backslash v \cdot v
$$

Thus,

$$
v^{\lambda} \backslash v \cdot v=v \cdot v v
$$

Remark 2. This is the necessary and sufficient condition for an Osborn loop to be universal.

Corollary 2. A moufang loop that is a 3-power associative property loop is universal

Proof:

Since a moufang loop satisfies the autotopism

$$
T=\left(L_{x}, R_{x}, R_{x} L_{x}\right)
$$

Then it is a variety of an Osborn loop. It follows from prop.4.1 above.

Theorem 13. A non-universal Osborn loop is not a generalized Moufang loop.

Proof:

A loop $I(\cdot)$ is a generalized Moufang loop, if one of the identifies:

$$
x(y z \cdot x)=\left(y^{\lambda} x^{\lambda}\right)^{\rho} \cdot z x
$$

or

$$
(x \cdot z y) x=x z \cdot\left(x^{\rho} y^{\rho}\right)^{\lambda}
$$

holds in $I(\cdot)$.

$$
\begin{gathered}
x(y z \cdot x)=\left(x^{2 a+b+c}, p^{2 \alpha+\beta+\gamma}\right) a=\text { even } \\
\left(y^{\lambda} x^{\lambda}\right)^{\rho} \cdot z x=\left(x^{2 a+b+c}, p^{2 \alpha+\beta+\gamma}\right) a=\text { even } \\
(x \cdot z y) x=\left(x^{a+k a+b+c}, p^{2 \alpha+\beta+\gamma}\right) a=\text { odd } \\
x z \cdot\left(x^{\rho} y^{\rho}\right)^{\lambda}=\left(x^{a+k(a+b)+c}, p^{2 \alpha+\beta+\gamma}\right) a=\text { odd }
\end{gathered}
$$

The proof is complete.
Remark 3. Whenever $k=1$ and $n=3$ (atmost) where the example exists as a group and as a moufang loop respectively, then it is a generalized Moufang

Remark 4. This section 4 is simply a characterization of nonuniversal Osborn loops.

5. CONCLUDING REMARKS

The Examples above are examples of finite non-universal Osborn loops. The constructions are new methods of constructing Osborn loops that are not universal. This becomes pertinent because most popular varieties of Osborn loops, like VD loops, CC-loops, Moufang loops and universal WIPLs are universal. It becomes interesting to researchers as to whether there are other varieties of Osborn loops that are not universal. This work would be giving Osborn loops a new dimension. This new branch, the non-universal Osborn loops is yet to gain a popular status comparatively.

REFERENCES

[1] A. S. Basarab And A. I., Belioglo (1979), UAI Osborn loops, Quasigroups and loops, Mat. Issled 51, 8-16.
[2] V. O. Chiboka, The study of properties and construction of certain finite order G-loops Ph.D. Thesis, Obafemi Awolowo University, Ile-Ife 1990.
[3] E. D. Huthnance Jr. A theory of Generalised Moufang loops, Ph.D. Thesis Georgia Institute of technology, 1968
[4] A. O. Isere, J. O. Adeniran and A. R. T Solarin: Non-Universal Osborn Loops. Submitted for publication.
[5] T. G. Jaiyeola And J. O.Adeniran (2009), New identities in universal Osborn loops, Quasigroups and Related Systems, Moldova 17(1)
[6] T. G.Jaiyeola and J. O. Adeniran (2009), Not Every Osborn loop is Universal, Acta Math. Acad. Paed. Nviregvhaziensis (Hungary)-25, 189-190.
[7] M. K. Kinyon, J. D. Philips and P.Vojtechovsky(2005), Loops of Bol-Moufang type with a subgroup of index two, Bul.Acad. Stiinte Repub. Mold. Mat., 3(49), 71-87.
[8] M. K. Kinyon, A survey of Osborn loops), Milehigh conference on loops, Quasigroups and Non-Associative Systems, University of Denver, Colorado, 2005
[9] J. M Osborn(1961), Loops with the weak inverse property, Pac. J. Math. 10, 295-304.
[10] H. O. Pflugfelder(1990), Quasigroups and loops: Introduction, Sigma Series in Pure Math. 7, Heldermann Verlag, Berlin 147
[11] J. D.Philips and P. Vojtechovsky(2005), the varieties of Quasigroups of BolMoufang Type: An equational approach, J. Alg.293,17-33
[12] J. D. Philips and P. Vojtechovsky (2005), The varieties of quasigroups of BolMoufang Type, Alg. Univer. 3(54), 259-283
[13] A. R. T Solarin and B. L Sharma (1983), Some Examples of Bol-loops, ACTA Universitatis Carolinae: Mathematical et Physica 25(1), 59-67
[14] P. Vojtechovsky (2001), Finite Moufang loops, Ph.D thesis, Iowa state University, Ames, Iowa.
DEPARTMENT OF MATHEMATICS, AMBROSE ALLI UNIVERSITY, EKPOMA, NIGERIA
E-mail address: abednis@yahoo.co.uk

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AGRICULTURE, ABEOKUTA, NIGERIA
E-mail address: adeniranoj@unaab.edu.ng
DIRECTOR GENERAL'S OFFICE, NATIONAL MATHEMATICAL CENTER, ABUJA, NIGERIA
E-mail address: asolarin2002@yahoo.com

[^0]: Received by the editors March 27, 2012; Revised: June 20, 2012; Accepted: June 20, 2012
 ${ }^{1}$ Corresponding Author

