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SOME EXAMPLES OF FINITE OSBORN LOOPS

A. O. ISERE, J. O. ADENIRAN1 AND A. R. T. SOLARIN

ABSTRACT. In this work we give a number of constructions
of finite Osborn loops of order 4n, with two generators. All the
loops are found to satisfy both Langrange’s theorem and Sylow’s
first theorem. They are found to be non-universal Osborn loops
except when k = 1 and n ≤ 3. Moreover, all the examples
are found not to be flexible and do not have the LAP or RAP
or LIP or RIP or AAIP, consequently not Moufang. The first
three cases are particular examples for demonstration purpose.
Therefore, finite Osborn loops of order 16, 24, 36, 48 and 72 has
been constructed.
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1. INTRODUCTION

A loop I(·) is called an Osborn loop if it obeys the identity:

(xλ\y) · zx = x(yz · x) (1)

for all x, y, z ∈ I. The term Osborn loops first appeared in a work
of Huthnance Jr [3] in 1968, on generalized Moufang loops. How-
ever, the definition (1) above is according to Basarab [1] in 1979.
For detail review of Osborn loops-see Isere et al submitted in an-
other Journal [4], and other authors as [8],[12],[14]. Moreover, the
most popularly known varieties of Osborn loops are CC-loops, Mo-
ufang loops, VD-loops and universal weak inverse property loops.
All these four varieties of Osborn loops are universal [6]. This is
what makes non-universal Osborn loops interesting to researchers
like Kinyon, Phillips and others [5], [11]. Therefore, it would be a
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worthwhile effort to be able to construct a finite Osborn loop that
is non-universal.
Following the pattern of example of finite Bol loops constructed

by Solarin and Sharma [13], and CC-loops by Chiboka and Solarin
[2], we develop new methods of constructing finite Osborn loops.
We established that all the constructions are non-universal Osborn
loops using the identity for universal Osborn loops derived by Jaiye-
ola and Adeniran in [5] as used in [6]. Strikingly, constructions 4 is
a ’k’ number of constructions where k is any integer. All of them
are non-universal except when k = 1, and n ≤ 3 where it gives a
group, and atmost a Moufang loop respectively. In section 3, we
prove that all the construtions to satisfy the Osborn identity, and
for conservation of space, we shall prove one of the Osborn iden-
tity. In section 4, some properties of the constructed examples are
presented.

2. PRELIMINARY

Definition 1. A loop is a set I with binary operation (denoted here
simply by juxtaposition) such that

• for each a in I, the left multiplication map La : I → I, x→
ax is bijective,
• for each a in I, the right multiplication map Ra : I → I, x→
xa is bijective; and
• I has a two-sided identity 1.

The order of I is its cardinality |I|.

Definition 2. A loop (G, ·) is called, for all x, y, z ∈ G: [10], [14]

(1) a left inverse property loop (LIPL) if it has the left inverse
property i.e. if there exists a bijection Jλ : x → xλ on G
such that xλ · xy = y

(2) a RIPL if it has the right inverse property(RIP)i.e. if there
exists a bijection: Jρ : x→ xρ on G such that yx · xρ = y

(3) an automorphic inverse property loop (AIPL) if and only if
it obeys the identity: (xy)λ = xλyλ or (xy)ρ = xρyρ

(4) a left alternative property loop (LAPL)if it obeys the left
alternative property (LAP): xx · y = x · xy

(5) a right alternative property loop (RAPL) if it obeys the right
alternative property (RAP): y · xx = yx · x.

(6) a conjugacy closed loop(CC-loop) if and only if it obeys x ·
yz = (xy)/(x · xz) and zy · x = zx · x\(yx).
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(7) a weak inverse property loop (WIPL) if it obeys the identity:
x(yx)ρ = yρ or (xy)λx = yλ

(8) a cross inverse property loop (CIPL) if and only if it obeys
the identity: xy · xρ = y or x · yxρ = y OR xλ · (yx) = y or
xλy · x = y.

(9) a flexible loop if and only if it obeys xy · x = x · yx.
(10) a power associative loop if and only if each element of G

generates an associative subloop.
(11) a diassociative loop if and only if each pair generates an

associative subloop.
(12) an anti-automorphic inverse property loop (AAIPL) if and

only if it obeys the identity: (xy)ρ = yρxρ or (xy)λ = yλxλ.
(13) a semi-automorphic inverse property loop (SAIPL) if and

only if it obeys the identity: (xy ·x)ρ = xρyρ ·xρ or (xy ·x)λ =
xλyλ · xλ.

(14) the left nuclus of G is denoted by:

Nλ(G, ·) = {a ∈ G : ax · y = a · xy ∀ x, y ∈ G}.
(15) the right nuclus of G is denoted:

Nρ(G, ·) = {a ∈ G : y · xa = yx · a ∀ x, y ∈ G}.
(16) the middle nuclus of G is denoted by:

Nµ(G, ·) = {a ∈ G : ya · x = y · ax ∀ x, y ∈ G}.
(17) the nuclus of G is denoted by:

N(G, ·) = Nλ(G, ·) ∩Nρ(G, ·) ∩Nµ(G, ·).
(18) the centrum of G denoted by:

C(G, ·) = {a ∈ G : ax = xa ∀ x ∈ G}.
(19) the center of G is denoted by:

Z(G, ·) = N(G, ·) ∩ C(G, ·).

Theorem 1. (Kinyon [7]) The smallest order for which proper
(non-Moufang and non-CC) Osborn loops with non-trivial nucleus
exists is 16. There are two of such loops.

• Each of the two is a G-loop.
• Each contains as a subgroup, the dihedral group (D4) of or-

der 8.
• For each loop, the center coincides with the nucleus and has

order 2. The quotient by the center is a non-associative
CC-loop of order 8.
• The second center is Z2 × Z, and the quotient is Z4.
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• One loop satisfies L4
x = R4

x = I, the other does not.

AIP Osborn loops include :

• commutative Moufang loops and
• AIP CC-loops.

Lemma 1. (Jaiyeola and Adeniran [5]) An Osborn loop that is
flexible or which has the LAP or RAP or LIP or RIP or AAIP is
a Moufang loop. But an Osborn loop that is commutative or which
has the CIP is a Commutative Moufang loop.

Lemma 2. (Jaiyeola and Adeniran [5]) Let (Q, ·, \, /) be a left uni-
versal Osborn loop. The following identities are satisfied:

v · vv = vλ\v · v and vv · vv = vλ\(vλ2v) · v

Theorem 2. (Huthnance [3] and Basarab) Let G be an Osborn
loop. Nρ(G) = Nλ(G) = Nµ(G) = N(G) EG

According to Huthnance [3], for a WIPL, the four nuclei Nρ, Nλ,
Nµ and N coincide, i.e.Nρ = Nλ = Nµ = N . The same statement is
true for a CIPL and an IPL since they are WIPLs. This fact was
observered also by Osborn-see [7],[6].

Example 1. (Huthnance [3]) Let H = Z×Z×Z. Define a binary
operation ? on H by :

[2i, k,m] ? [2j, p, q] = [2i+ 2j, k+ p− ij(2j− 1), q+m− ij(2j− 1)]

[2i+ 1, k,m] ? [2j, p, q] = [2i+ 2j + 1, k + p− ij(2j − 1)− j2 + j

, q +m− ij(2j − 1)− j2]
[2i, k,m]?[2j+1, p, q] = [2i+2j+1,m+p−ij(2j+1), q+k−ij(2j+1)]

[2i+ 1, k,m] ? [2j+ 1, p, q] = [2i+ 2j+ 2,m+ p− ij(2j+ 1)− j2 + j

, q + k − ij(2j + 1)− j2]
∀ i, j, k,m, p, q ∈ Z. (H, ?) is an Osborn loop.

Jaiyeola & Adeniran in 2009 [6] used this example to show that all
Osborn loops are not universal. They began by saying: assuming
that (H, ?) is a universal Osborn loop, then it should obey the
identity v · vv = vλ\v · v [4]. Let v = [2i + 1, k,m] then by direct
computation, we have v ·vv = [6i+3,m+2k−10i3−12i2−2i, 2m+
k− 10i3− 12i2− i− 1] and vλ\v · v = [6i+ 3,m+ 2k− 14i3− 18i2−
7i − 1, 2m + k − 14i3 − 16i − 6i − 1]. So, v · vv 6= vλ\v · v. Thus,
(H, ?) is not a universal Osborn loop-see [4].



SOME EXAMPLES OF FINITE OSBORN LOOPS 95

MAIN RESULTS

Example 2. Construction 1
Let I(·) = C2n×C2 that is I = {(xα, pβ), 0 ≤ α ≤ 2n−1, 0 ≤ β ≤ 1}
and the binary operation is defined as follows:

(xa, e) · (xb, pβ) = (xa+b, pβ)

(xa, pα) · (xb, e) = (xa+b, pα)

(xa, pα) · (xb, pβ) = (xa+b, pα+β) if b ≡ 0(mod 2)

= (xa+3b, pα+β) if b ≡ 1(mod 2)

(xa, pα) · (xb, pβ) = (xa+3b, pα+3β) if a ≡ 1(mod 2), b ≡ 1(mod 2)

(xb+c, pδ) · (xa, pα) = (xa+b+c, pα+δ) if b ≡ 0(mod 2)

(xb+c, pδ) · (xa, pα) = (xa+3b+c, pα+δ) if b ≡ 1(mod 2)

(xb+c, pβ+γ) · (xa, pα) = (x3a+3b+c, pα+3β+γ) if a ≡ 1(mod 2)

, b ≡ 1(mod 2)

Then I(·) is an Osborn loop of order 4n, where n = 2, 3, 4, 6, 9,
12 and 18

Proof
We first show that I(·) satisfies Osborn identity (1):

(xλ\y) · zx = x(yz · x) ∀ x, y, z ∈ I
(a): Let x = (xa, e); y = (xb, e); z = (xc, e), then by direct compu-

tation we have

(xλ\y) · zx = (x2a+b+c, e)

x(yz · x) = (x2a+b+c, e)

(b): Let x = (xa, e); y = (xb, e); z = (xc, pγ)

(xλ\y) · zx = (x2a+b+c, pγ)

x(yz · x) = (x2a+b+c, pγ)

(c): Let x = (xa, e); y = (xb, pβ); z = (xc, e)

(xλ\y) · zx = (x2a+b+c, pβ) b = even

x(yz · x) = (x2a+b+c, pβ) b = even

(xλ\y) · zx = (x2a+3b+c, pβ) b = odd

x(yz · x) = (x2a+3b+c, pβ) b = odd
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(d): Let x = (xa, pα); y = (xb, e); z = (xc, e)

(xλ\y) · zx = (x2a+b+c, p2α) a = even

x(yz · x) = (x2a+b+c, p2α) a = even

(xλ\y) · zx = (x4a+b+c, p2α) a = odd

x(yz · x) = (x4a+b+c, p2α) a = odd

(e): Let x = (xa, e); y = (xb, pβ); z = (xc, pγ)

(xλ\y) · zx = (x2a+b+c, pβ+γ) b = even

x(yz · x) = (x2a+b+c, pβ+γ) b = even

(xλ\y) · zx = (x2a+3b+c, pβ+γ) b = odd

x(yz · x) = (x2a+3b+c, pβ+γ) b = odd

(f): Let x = (xa, pα); y = (xb, e); z = (xc, pγ)

(xλ\y) · zx = (x2a+b+c, p2α+γ) a = even

x(yz · x) = (x2a+b+c, p2α+γ) a = even

(xλ\y) · zx = (x4a+b+c, p2α+γ) a = odd

x(yz · x) = (x4a+b+c, p2α+γ) a = odd

(g): Let x = (xa, pα); y = (xb, pβ); z = (xc, e)

(xλ\y) · zx = (x2a+b+c, p2α+β) a = even, b = even

x(yz · x) = (x2a+b+c, p2α+β) a = even, b = even

(xλ\y) · zx = (x4a+b+c, p2α+β) a = odd, b = even

x(yz · x) = (x4a+b+c, p2α+β) a = odd, b = even

(xλ\y) · zx = (x2a+3b+c, p2α+β) a = even, b = odd

x(yz · x) = (x2a+3b+c, p2α+β) a = even, b = odd

(xλ\y) · zx = (x4a+3b+c, p2α+3β) a = odd, b = odd

x(yz · x) = (x4a+3b+c, p2α+3β) a = odd, b = odd
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(h): Let x = (xa, pα); y = (xb, pβ); z = (xc, pγ)

(xλ\y) · zx = (x2a+b+c, p2α+β+γ) a = even, b = even

x(yz · x) = (x2a+b+c, p2α+β+γ) a = even, b = even

(xλ\y) · zx = (x4a+b+c, p2α+β+γ) a = odd, b = even

x(yz · x) = (x4a+b+c, p2α+β+γ) a = odd, b = even

(xλ\y) · zx = (x2a+3b+c, p2α+β+γ) a = even, b = odd

x(yz · x) = (x2a+3b+c, p2α+β+γ) a = even, b = odd

(xλ\y) · zx = (x4a+3b+c, p2α+3β+γ) a = odd, b = odd

x(yz · x) = (x4a+3b+c, p2α+3β+γ) a = odd, b = odd

Since (xλ\y)·zx = x(yz ·x) is equal in all the 36 cases considered i.e.
whenever 37 ≡ 1(mod 2n), that is n = 2, 3, 4, 6, 9, 12, 18. Also (e, e)
is the two sided identity. Moreover, if: x = (xa, e), then x−1 =
(x−a, e). If x = (xa, pα), then x−1 = (x−a, p−a) if a is even, and
x−1 = (x−3a, p−a) if a is odd. Therefore, the inverses are defined.
Also for non-associativity:

Let x = (xa, pα); y = (xb, pβ); z = (xc, pγ) where b is an odd integer,
then

xy · z = (xa+3b+c, pα+β+γ)

and
x · yz = (xa+b+c, pα+β+γ)

therefore,xy · z 6= x · yz. Thus the construction is non-associative
except when n = 2 which gives the group C4×C2. The construction
exists as Moufang loop when n = 3 (compare Theorem 2.1). Hence,
it is an Osborn loop of order 4n, n = 4,6,9,12 and 18.
Next, we examine the universality of the constructed Osborn loop

using [5] as done in [6].
An Osborn loop I(·) = C2n × C2 is universal if I(·) obeys:

y · yy = yλ\y · y
Let y = (xb, pβ), where b is an odd integer.

y · yy = (x13b, p3β) b = odd

yλ\y · y = (x7b, p3β) b = odd

Thus,

y · yy 6= yλ\y · y
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Hence, I(·) = C2n×C2 as defined in construction 1 is not a universal
Osborn loop.

Example 3. Construction 2
Let I(·) = C2n×C2 that is I = {(xα, pβ), 0 ≤ α ≤ 2n−1, 0 ≤ β ≤ 1}
and the binary operation is defined as follows:

(xa, e) · (xb, pβ) = (xa+b, pβ)

(xa, pα) · (xb, e) = (xa+b, pα)

(xa, pα) · (xb, pβ) = (xa+b, pα+β) if b ≡ 0(mod 2)

= (xa−b, pα+β) if b ≡ 1(mod 2)

(xa, pα) · (xb, pβ) = (xa−b, pα−β) if a ≡ 1(mod 2), b ≡ 1(mod 2)

(xb+c, pδ) · (xa, pα) = (xa+b+c, pα+δ) if b ≡ 0(mod 2)

(xb+c, pδ) · (xa, pα) = (xa−b+c, pα+δ) if b ≡ 1(mod 2)

(xb+c, pβ+γ) · (xa, pα) = (xc−a−b, pα−β+γ) if a ≡ 1(mod 2)

, b ≡ 1(mod 2)

(xb+c, pβ+γ) · (xa, pα) = (xb+c−a, pβ+γ−α) if a ≡ 1(mod 2)

Then I(·) is an Osborn loop of order 4n, where n = 2, 3, 4, 6, 9,
12 and 18.

Proof
We first show that I(·) satisfies Osborn identity (1):
Then we follow up as in construction 1, and establish that construc-
tion 2 is non-associative and non-universal Osborn loop.

Example 4. Construction 3
Let I(·) = C2n×C2 that is I = {(xα, pβ), 0 ≤ α ≤ 2n−1, 0 ≤ β ≤ 1}
and the binary operation is defined as follows:

(xa, e) · (xb, pβ) = (xa+b, pβ)

(xa, pα) · (xb, e) = (xa+b, pα)

(xa, pα) · (xb, pβ) = (xa+b, pα+β) if b ≡ 0(mod 2)

= (xa, pα+β) if b ≡ 1(mod 2)

(xa, pα) · (xb, pβ) = (xa, pα) if a ≡ 1(mod 2), b ≡ 1(mod 2)

(xb+c, pδ) · (xa, pα) = (xa+b+c, pα+δ) if b ≡ 0(mod 2)

(xb+c, pδ) · (xa, pα) = (xa+c, pα+δ) if b ≡ 1(mod 2)

(xb+c, pβ+γ) · (xa, pα) = (xc, pα+γ) if a ≡ 1(mod 2), b ≡ 1(mod 2)

(xb+c, pβ+γ) · (xa, pα) = (xb+c, pβ+γ) if a ≡ 1(mod 2)

Then I(·) is an Osborn loop of order 4n, where n = 2, 3, 4, 6, 9,
12 and 18
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Proof
We first show that I(·) satisfies Osborn identity (1):
Then we follow up as in construction 1, and establish that construc-
tion 3 is non-associative and non-universal Osborn loop.

Example 5. Construction 4
Let I(·) = C2n×C2 that is I = {(xα, pβ), 0 ≤ α ≤ 2n−1, 0 ≤ β ≤ 1}
and the binary operation is defined as follows:

(xa, e) · (xb, pβ) = (xa+b, pβ)

(xa, pα) · (xb, e) = (xa+b, pα)

(xa, pα) · (xb, pβ) = (xa+b, pα+β) if b ≡ 0(mod 2)

= (xa+kb, pα+β) if a ≡ 0(mod 2), b ≡ 1(mod 2)

(xa, pα) · (xb, pβ) = (xa+kb, pα+kβ) if a ≡ 1(mod 2), b ≡ 1(mod 2)

(xb+c, pδ) · (xa, pα) = (xa+b+c, pα+δ) if a ≡ 0(mod 2), b ≡ 0(mod 2)

(xb+c, pδ) · (xa, pα) = (xa+kb+c, pα+δ) if a ≡ 0(mod 2), b ≡ 1(mod 2)

(xb+c, pβ+γ) · (xa, pα) = (xb+c+ka, pβ+γ+kα) if a ≡ 1(mod 2)

, b ≡ 0(mod 2)

(xb+c, pβ+γ) · (xa, pα) = (xc+ka+kb, pα+kβ+γ) if a ≡ 1(mod 2)

, b ≡ 1(mod 2)

Then I(·) is an Osborn loop of order 4n, where n = 2, 3, 4, 6, 9,
12 and 18

Proof
We first show that I(·) satisfies Osborn identity (1):
Then we follow up as in construction 1 − 3 above, and establish
that construction 4 is non-associative and non-universal Osborn
loop except when k = 1.

4. SOME PROPERTIES OF NON-UNIVERSAL OSBORN LOOPS

Theorem 3. A non-universal Osborn loop is not a CIP loop

Proof
Let x = (xa, pα), y = (xb, pβ) b=odd. By direct computation we
have

xy · xρ = (xkb, pβ) 6= y

Again if k = 1, we have xy · xρ = (xb, pβ) = y
Also, let x = (xa, pα), y = (xb, pβ) a=odd
Then xy · xρ = (xa(1−k)+b, pβ) 6= y except when k = 1. Thus a
non-universal Osborn loop is not a CIP loop.
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Theorem 4. A non-unversal Osborn loop is not a WIPL.

Proof
Let x = (xa, pα), y = (xb, pβ) a=odd
then

x(yx)ρ = (xa(1−k)−b, p−β)

If k = 1, we have x(yx)ρ = (x−b, p−β). i.e. the constructions are
not a WIPL except at k = 1.

Theorem 5. A non-universal Osborn loop is not an AIPL.

Proof
Let x = (xa, pα), y = (xb, pβ) b=odd
then

(xy)ρ = (x−(a+kb), p(−α+β))

and

xρyρ = (x−(a+k2b), p−(α+β))

(xy)ρ = (x−(a+kb), p(−α+β)) 6= (x−(a+k2b), p−(α+β))

Hence (xy)ρ 6= xρyρ except when k = 1.

Theorem 6. A non-universal Osborn loop is not an AAIP loop

Proof
Let x = (xa, pα), y = (xb, pβ) a=odd, b=odd
then

(xy)ρ = (x−(a+kb), p−(α+kβ))

and

yρxρ = (x−(kb+k2a), p−(kα+β))

Hence (xy)ρ 6= yρxρ except when k = 1
Or

(xy)λ = (x−(a+kb), p−(α+kβ)) a = odd, b = odd

yλxλ = (x−(kb+k2a), p−(kα+β)) a = odd, b = odd

Hence (xy)λ 6= yλxλ except when k = 1

Theorem 7. A non-universal Osborn loop is not a LIP or RIP
loop

Proof Let y = (xb, pβ), x = (xa, pα), xλ = (x−a, p−α) a=even,
b=odd

xλ · xy 6= y
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except when k = 1
Next,
Let y = (xb, pβ), x = (xa, pα), xρ = (x−ka, p−α) a=odd, b=even

yx · xρ = (xk(a−ka)+b, pβ)

Thus yx · xρ 6= y except when k = 1. The proof is complete.

Theorem 8. A non-universal Osborn loop is not a LAP Or RAP
loop

Proof
Let y = (xb, pβ), x = (xa, pα)

xx · y = (xa+b+ka, p2α+β) a = odd

Now,

x · xy = (x2a+b, p2α+β) a = odd

Thus xx · y 6= x · xy except when k = 1

Next, consider:

y · xx = yx · x (RAP )

Let x = (xa, pα), y = (xb, pβ) a=odd

y · xx = (xa+b+ka, p2α+β)

and,

yx · x = (x2ka+b, p2α+β)

Thus y · xx 6= yx · x except when k = 1.

Theorem 9. A non-universal Osborn is not flexible, power asso-
ciative and diassociative loop.

Proof
Let x = (xa, pα), y = (xb, pβ)

xy · x = (x2a+kb, p2α+β)

x · yx = (x2a+b, p2α+β)

Thus xx · x 6= x · xx except when k = 1 Next, we look at power
associativity: Let x = (xa, pα) a=odd

xx · x = (xa+2ka, p3α)

x · xx = (xa+(k2+k)a, p3α)
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Thus xx · x 6= x · xx except when k = 1. Finally, we consider
diassociativity:

x · yy = (xa+(k+k2)b, pα+(1+k)β) a = odd

xy · y = (xa+2kb, pα+2β) a = odd

Thus x · yy 6= xy · y except when k = 1.

Theorem 10. A non-universal Osborn loop is not a SAIP loop.

Proof:
Let x = (xa, pα), y = (xb, pβ)

(xy · x)ρ = (x−(2a+kb), p−(2α+β)) b = odd

and

xρyρ · xρ = (x−(2a+k2b), p−(2α+β)) b = odd

Thus (xy · x)ρ 6= xρyρ · xρ except when k = 1

Theorem 11. A non-universal Osborn loop is not a CC-loop.

Proof:
Let x = (xa, pα), y = (xb, pβ), z = (xc, pγ)

x · yz = (xa+b+c, pα+β+γ) b = odd

(xy)/x · xz = (xa+kb+c, pα+β+γ) b = odd

Thus x · yz 6= (xy)/x · xz except when k = 1.
Next, consider:

zy · x = (xka+b+c, pα+β+γ) a = odd

zx · x\(yx) = (x2ka+b+c−a, pα+β+γ) a = odd

Thus zy · x 6= zx · x\(yx). This completes the proof.

Corollary 1. A non-universal Osborn loop is not a G-loop

Proof:
The necessary and sufficient condition for a loop to be a G-loop is
that it is a CC-loop [2]. Then from theorem 4.9, the proof follows.

Theorem 12. For a finite non-universal Osborn loop the nuclei do
not coincide.

Proof:
Let x = (xa, pα), y = (xb, pβ), z = (xc, pγ)

zx · y = (xa+kb+c, pα+β+γ)
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Therefore, Nλ(I, ·) = (xa+kb+c, pα+β+γ) b=odd
Next, consider:

y · xz = (xa+b+c, pα+β+γ) b = odd

Therefore,

Nρ(I, ·) = (xa+b+c, pα+β+γ) b = odd

Also,

yz · x = (xka+b+c, pα+β+γ) a = odd

y · zx = (xka+b+c, pα+β+γ) a = odd

Thus,

Nµ(I, ·) = (xka+b+c, pα+β+γ) a = odd

Hence,

N(I, ·) = Nλ(I, ·) ∩Nρ(I, ·) ∩Nµ(I, ·)
Therefore,

N(I, ·) = (xa+b+c, pα+β+γ) a = odd, b = odd

Thus,

N(I, ·) = Nρ(I, ·) 6= Nλ(I, ·) 6= Nµ(I, ·)

Remark 1. For a WIPL, the four nuclei N,Nλ, Nρ, Nµ. coincide,
i.e. N = Nλ = Nρ = Nµ. The same is true for a CIPL and an IPL
since they are WIPLs as observed by Osborn himself [9]. Since, the
constructions above are not WIPL, CIPL nor IPL, the nuclei are
not equal.

Lemma 3. For a finite non-universal Osborn loop, elements in the
centrium and in the center whenever they exist are equal

Proof:
Let x = (xa, pα), y = (xb, pβ), z = (xc, pγ)

C(I, ·) = (xa+c, pα+γ) a = even

Or

C(I, ·) = (xb+c, pβ+γ) b = even

Next,

Z(I, ·) = (xb+c, pβ+γ) b = even

Proposition 1. An Osborn loop (G, ·) is universal if and only if it
is a 3-power associative property loop (3-PAPL)
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Proof:
A left universal Osborn loop G obeys the identity:
v · vv = vλ\v · v ∀ v ∈ G. See detail in [6]. Then
v · vv = vλ\v · v = vv · v
Thus, v · vv = vv · v
Conversely,

vv · v = vLv.v = vλ\v · v
Thus,

vλ\v · v = v · vv

Remark 2. This is the necessary and sufficient condition for an
Osborn loop to be universal.

Corollary 2. A moufang loop that is a 3-power associative property
loop is universal

Proof:
Since a moufang loop satisfies the autotopism

T = (Lx, Rx, RxLx)

Then it is a variety of an Osborn loop. It follows from prop.4.1
above.

Theorem 13. A non-universal Osborn loop is not a generalized
Moufang loop.

Proof:
A loop I(·) is a generalized Moufang loop, if one of the identifies:

x(yz · x) = (yλxλ)ρ · zx
or

(x · zy)x = xz · (xρyρ)λ

holds in I(·).
x(yz · x) = (x2a+b+c, p2α+β+γ) a = even

(yλxλ)ρ · zx = (x2a+b+c, p2α+β+γ) a = even

(x · zy)x = (xa+ka+b+c, p2α+β+γ) a = odd

xz · (xρyρ)λ = (xa+k(a+b)+c, p2α+β+γ) a = odd

The proof is complete.

Remark 3. Whenever k = 1 and n = 3 (atmost) where the example
exists as a group and as a moufang loop respectively, then it is a
generalized Moufang
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Remark 4. This section 4 is simply a characterization of non-
universal Osborn loops.

5. CONCLUDING REMARKS

The Examples above are examples of finite non-universal Osborn
loops. The constructions are new methods of constructing Osborn
loops that are not universal. This becomes pertinent because most
popular varieties of Osborn loops, like VD loops, CC-loops, Mo-
ufang loops and universal WIPLs are universal. It becomes in-
teresting to researchers as to whether there are other varieties of
Osborn loops that are not universal. This work would be giving Os-
born loops a new dimension. This new branch, the non-universal
Osborn loops is yet to gain a popular status comparatively.
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