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ABSTRACT. In this work, the right, left and middle linear-
bivariate polynomials of a given linear-bivariate polynomials
P (x, y) are derived and the isotopy structure (isotopism, auto-
topism, isomorphism, automorphism) of quasigroups generated
by them are also studied. Some sufficient conditions for the
isomorphism, isotopism and equivalence of the generated quasi-
groups are also deduced.
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1. INTRODUCTION

Let G be a non-empty set. Define a binary operation (·) on G.
(G, ·) is called a groupoid if G is closed under the binary operation
(·). A groupoid (G, ·) is called a quasigroup if the equations a·x = b
and y · c = d have unique solutions for x and y for all a, b, c, d ∈ G.
A quasigroup (G, ·) is called a loop if there exists a unique element
e ∈ G called the identity element such that x · e = e · x = x for all
x ∈ G.

A function f : S × S → S on a finite set S of size n > 0 is
said to be a Latin square (of order n) if for any value a ∈ S both
functions f(a, ·) and f(·, a) are permutations of S. That is, a Latin
square is a square matrix with n2 entries of n different elements,
none of them occurring more than once within any row or column
of the matrix.
Definition 1: A pair of Latin squares f1(·, ·) and f2(·, ·) is said to
be orthogonal if the pairs

(
f1(x, y), f2(x, y)

)
are all distinct, as x

and y vary.
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Definition 2: Let (G, ·) be a groupoid or quasigroup. The triple
(A,B,C) where A,B,C : G −→ G are bijections is called an
autotopism of (G, ·) if

xA · yB = (x · y)C for all x, y ∈ G.

The group of all autotopisms of (G, ·) is denoted by AUT (G, ·).
Definition 3: Let (G, ·) be a groupoid or quasigroup. A triple
(A,A,A) ∈ AUT (G, ·) is called an automorphism of (G, ·) and is
written simply as A. The group of all automorphisms of (G, ·) is
denoted by AUM(G, ·).
Remark 1: Note that AUM(G, ·) ≤ AUT (G, ·).
Definition 4: Let (G, ·) and (H, ◦) be two groupoids. let α, β, γ :
G −→ H be bijections. The triple (α, β, γ) is called an isotopism
from (G, ·) onto (H, ◦) if

xα ◦ yβ = (x · y)γ for all x, y ∈ G.

This will be expressed in the form: (G, ·) (α,β,γ)−−−−−→
Isotopism

(H, ◦).
(G, ·) and (H, ◦) are said to be isotopic and are referred to as

isotopes of each other.

Definition 5: Let (G, ·) (α,β,I)−−−−−→
Isotopism

(G, ◦). Then, the triple (α, β, I)

is called a principal isotopism from (G, ·) onto (G, ◦). (G, ·) and
(G, ◦) are called principal isotopes of each other.

Definition 6: Let (G, ·) (α,α,α)−−−−−→
Isotopism

(H, ◦). Then, the triple (α, α, α)

is called an isomorphism from (G, ·) onto (G, ◦). (G, ·) and (G, ◦)
are called isomorphes of each other and are said to be isomorphic

under α which will be expressed as (G, ·)
α∼= (G, ◦).

Definition 7: Let (G, ·) be a quasigroup. The left, right and
middle inner mappings of (G, ·) are:

L(x,y) = LxLyL
−1
yx , R(x,y) = RxRyR

−1
xy and T(x) = RxL

−1
x for all x, y

∈ G respectively. Rx and Lx are respectively the right and left
translation maps of x ∈ G.
Remark 2: Actually, the mappings L(x,y), R(x,y) and T(x) are well
defined in a loop (G, ·) with identity element e because eL(x,y) =
eR(x,y) = eT(x) = e. But in this study, the requirement that the
inner mappings fix the identity element is not required since we are
considering a quasigroup.

The basic text books on quasigroups, loops are Pflugfelder [6],
Bruck [1], Chein, Pflugfelder and Smith [2], Dene and Keedwell [3],



ON THE RIGHT, LEFT AND MIDDLE LINEAR. . . 109

Goodaire, Jespers and Milies [4], Sabinin [8], Smith [9], Jáıyéo. lá [5]
and Vasantha Kandasamy [11].
Definition 8: (Bivariate Polynomial)

A bivariate polynomial is a polynomial in two variables, x and y
of the form P (x, y) = Σi,jaijx

iyj.
Definition 9: (Bivariate Polynomial Representing a Latin Square)

A bivariate polynomial P (x, y) over Zn is said to represent (or
generate) a Latin square if (Zn, ∗) is a quasigroup where ∗ : Zn ×
Zn → Zn is defined by x ∗ y = P (x, y) for all x, y ∈ Zn.

In 2001, Rivest [7] studied permutation polynomials (PPs) over
the ring (Zn,+, ·) where n is a power of 2: n = 2w. This is based
on the fact that modern computers perform computations modulo
2w efficiently (where w = 2, 8, 16, 32 or 64 is the word size of the
machine), and so it was of interest to study PPs modulo a power
of 2. Below are some important results from his work.
Theorem 1: (Rivest [7])

A bivariate polynomial P (x, y) = Σi,jaijx
iyj represents a Latin

square modulo n = 2w, where w ≥ 2, if and only if the four uni-
variate polynomials P (x, 0), P (x, 1), P (0, y), and P (1, y) are all
permutation polynomial modulo n.
Theorem 2: (Rivest [7])

There are no two polynomials P1(x, y), P2(x, y) modulo 2w for
w ≥ 1 that form a pair of orthogonal Latin squares.

In 2009, Vadiraja and Shankar [10] motivated by the work of
Rivest continued the study of permutation polynomials over the
ring (Zn,+, ·) by studying Latin squares represented by linear and
quadratic bivariate polynomials over Zn when n 6= 2w with the
characterization of some PPs. Some of the main results they got
are stated below.
Theorem 3: (Vadiraja and Shankar [10])

A bivariate linear polynomial a+bx+cy represents a Latin square
over Zn, n 6= 2w if and only if one of the following equivalent con-
ditions is satisfied:

(i): both b and c are coprime with n;
(ii): a+ bx, a+ cy, (a+ c) + bx and (a+ b) + cy are all permutation

polynomials modulo n.

Theorem 4: (Vadiraja and Shankar [10])
If P (x, y) is a bivariate polynomial having no cross term, then

P (x, y) gives a Latin square if and only if P (x, 0) and P (0, y) are
permutation polynomials.
Theorem 5: (Vadiraja and Shankar [10])
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Let n be even and P (x, y) = f(x) + g(y) + xy be a bivariate
quadratic polynomial, where f(x) and g(y) are permutation poly-
nomials modulo n. Then P (x, y) does not give a Latin square.
Remark 3: In (Zn,+, ·), the right translation map of x ∈ Zn in
(Zn, ·) will be represented by R×x while the right translation map of
x ∈ Zn in (Zn,+) will be represented by R+

x . Note that if n ∈ N is
prime, then we shall write Zp for Zn.

The authors were able to establish the fact that Rivest’s result
for a bivariate polynomial over Zn when n = 2w is true for a linear-
bivariate polynomial over Zn when n 6= 2w. Although the result
of Rivest was found not to be true for quadratic-bivariate polyno-
mials over Zn when n 6= 2w with the help of counter examples,
nevertheless some of such squares can be forced to be Latin squares
by deleting some equal numbers of rows and columns.

Furthermore, Vadiraja and Shanhar [10] were able to find ex-
amples of pairs of orthogonal Latin squares generated by bivariate
polynomials over Zn when n 6= 2w which was found impossible by
Rivest for bivariate polynomials over Zn when n = 2w.

In this present study, the right, left and middle linear-bivariate
polynomials of a given linear-bivariate polynomials P (x, y) are de-
rived and the isotopy structure (isotopism, autotopism, isomor-
phism, automorphism) of quasigroups generated by them are also
studied. Some sufficient conditions based on a, b, c, for the isomor-
phism, isotopism and equivalence of the generated quasigroups are
also deduced.

2. MAIN RESULTS

2.1 DERIVATION OF THE LEFT, RIGHT AND
MIDDLE BIVARIATE POLYNOMIALS OF P (x, y)

Theorem 6: Let P (x, y) = a + bx + cy represent a groupoid over
Zp. Then

(a): zR(x,y) = b−1a(b− c) + bz + b−1c(1− c)y.
(b): zT(x) = bc−1z + x(1− bc−1).
(c): zL(x,y) = a(1− bc−1) + bc−1(1− b)y + cz.

Proof: Now, xRy = a + bx + cy, yLx = a + bx + cy, xR−1y =

b−1(x− a− cy), yL−1x = c−1(y − a− bx).



ON THE RIGHT, LEFT AND MIDDLE LINEAR. . . 111

(a): Consider R(x,y) = RxRyR
−1
xy . So, zR(x,y) = zRxRyR

−1
P (x,y)

= (a+ bz + cx)RyR
−1
P (x,y) = [a+ b(a+ bz + cx) + cy]R−1P (x,y)

= (a+ ab+ b2z + bcx+ cy)R−1a+bx+cy = b−1[a+ ab+ b2z + bcx

+cy − a− c(a+ bx+ cy)] = b−1a(b− c) + bz + b−1c(1− c)y
as required.

(b): Consider T(x) = RxL
−1
x . So, zRxL

−1
x = (a+ bz + cx)L−1x

= c−1[a+ bz + cx− a− bx] = bc−1z + x(1− bc−1)
as required.

(c): Consider L(x,y) = LxLyL
−1
yx . So, zL(x,y) = zLxLyL

−1
yx

= (a+ bx+ cz)LyL
−1
yx = [a+ by + c(a+ bx+ cz)]L−1yx =

(a+ by + ac+ bcx+ c2z)L−1a+by+cx = c−1[a+ by + ac+ bcx+ c2z

−a− b(a+ by + cx)] = a(1− bc−1) + bc−1(1− b)y + cz

as required.

Theorem 7: Let P (x, y) = a + bx + cy represent a groupoid over
Zp. Then

(a): zR(x,y) = b−1(b− c)P
[
zb(b− c)−1, y(1− c)(b− c)−1

]
;

(b): zT(x) = P
[
c−1z, c−1(1− bc−1)x

]
− a;

(c): zL(x,y) = c−1(c− b)P
[
(1− b)(c− b)−1y, c(c− b)−1z

]
.

Proof:

(a): Now, zR(x,y) = b−1a(b− c)+ bz+ b−1c(1− c)y. Also, P (x, y) =
a+ bx+ cy. Multiplying both sides of the last equation by
b−1(b− c) gives

b−1(b− c)P (x, y) = ab−1(b− c) + (b− c)x+ b−1(b− c)cy =

ab−1(b− c) + b[b−1(b− c)x] + b−1c(1− c)[(1− c)−1(b− c)y].

Let x′ = b−1(b− c)x and y′ = (1− c)−1(b− c)y. This implies

x = x′(1− b−1c)−1 = x′b(b− c)−1 and y = y′[(1− c)−1(b− c)]−1 =

y′(1− c)(b− c)−1 =⇒ b−1(b− c)P [x′b(b− c)−1, y′(1− c)(b− c)−1]
= ab−1(b− c) + bx+ b−1c(1− c)y =⇒

zR(x,y) = b−1(b− c)P
[
zb(b− c)−1, y(1− c)(b− c)−1

]
as required.

(b): Now, zT(x) = bc−1z+x(1−bc−1). So, zT(x) = b[c−1z]+c[c−1(1−
bc−1)x] and

a+zT(x) = a+b(c−1z)+c[c−1(1−bc−1)x] = P [c−1z, c−1(1−bc−1)x].
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Therefore, zT(x) = P
[
c−1z, c−1(1− bc−1)x

]
− a as required.

(c): Now, zL(x,y) = a(1− bc−1) + bc−1(1− b)y+ cz. Also, P (x, y) =
a+ bx+ cy. Multiplying both sides of the last equation by
(1− bc−1) gives

(1− bc−1)P (x, y) = a(1− bc−1) + b(1− bc−1)x+ c(1− bc−1)y =

a(1− bc−1) + bc−1(c− b)x+ c(1− bc−1)y ⇐⇒ (1− bc−1)P (x, y) =

a(1− bc−1) + bc−1(1− b)[(1− b)−1(c− b)x] + c[(1− bc−1)y].

Let x′ = [(1− b)−1(c− b)x] and y′ = [(1− bc−1)y] = [c−1(c−
b)y]. This implies x = x′(1−b)(c−b)−1 and y = y′c(c−b)−1.
By substituting these variables, we have

c−1(c− b)P [(1− b)(c− b)−1x′, c(c− b)−1y′] = a(1− bc−1) + bc−1x′

+cy′ =⇒ zL(x,y) = c−1(c− b)P
[
(1− b)(c− b)−1y, c(c− b)−1z

]
as required.

Theorem 8: Let P (x, y) = a+bx+cy represent a groupoid over Zp.
The corresponding left, right and middle inner bivariate polynomial
of P are respectively given by:

(a): Pλ(x, y) = a(1− bc−1) + cx+ bc−1(1− b)y,
(b): Pρ(x, y) = b−1a(b− c) + bx+ b−1c(1− c)y and
(c): Pµ(x, y) = (1− bc−1)x+ bc−1y.

Proof: These are proved by using Theorem 6 with the following
argument.

(a): By writing (c) of Theorem 6 in our polynomial form, with the
substitution of z with x, we obtain (a) of Theorem 8.

(b): Similarly, by writing (a) of Theorem 6 in our polynomial form,
with the substitution of z with x, we obtain (b) of Theorem
8.

(c): And, by writing (b) of Theorem 6 in our polynomial form,
with the substitution of z with y, we obtain (c) of Theorem
8.

2.2 ISOTOPY OF Pλ(x, y), Pρ(x, y) AND Pµ(x, y)

Theorem 9: Let P (x, y) = a + bx + cy represent a groupoid over Zp.
Then

(a): (Zp, P )

((
R×

[b(b−c)−1]

)−1
,
(
R×

[(1−c)(b−c)−1]

)−1
,R×

[b−1(b−c)]

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pρ).

(b): (Zp, P )

((
R×

[(1−b)(c−b)−1]

)−1
,
(
R×

[c(c−b)−1]

)−1
,R×

[c−1(c−b)]

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pλ).
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(c): (Zp, P )

((
R×

c−1

)−1
,
(
R×

[c−1(1−bc−1)]

)−1
,R+

(−a)

)
−−−−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pµ

)
.

Proof: These are proved by using Theorem 7 and Theorem 8 as follow.

(a): From (a) of Theorem 7 and (b) of Theorem 8,

Pρ(z, y) = b−1(b− c)P
[
zb(b− c)−1, y(1− c)(b− c)−1

]
which we can write as

Pρ(z, y) = P
[
zR×

[b(b−c)−1]
, yR×

[(1−c)(b−c)−1]

]
R×

[b−1(b−c)] =⇒

P (z, y)R×
[b−1(b−c)] = Pρ

(
z
[
R×

[b(b−c)−1]

]−1
, y
[
R×

[(1−c)(b−c)−1]

]−1)
=⇒

(Zp, P )

((
R×

[b(b−c)−1]

)−1
,
(
R×

[(1−c)(b−c)−1]

)−1
,R×

[b−1(b−c)]

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pρ)

as required.
(b): From (c) of Theorem 7 and (a) of Theorem 8,

Pλ(y, z) = c−1(c− b)P
[
(1− b)(c− b)−1y, c(c− b)−1z

]
which we can write as

Pλ(y, z) = P
[
yR×

(1−b)(c−b)−1 , zR
×
c(c−b)−1

]
R×
c−1(c−b) =⇒

P (y, z)R×
c−1(c−b) = Pλ

(
y
[
R×

(1−b)(c−b)−1

]−1
, z
[
R×
c(c−b)−1

]−1)
=⇒

(Zp, P )

((
R×

[(1−b)(c−b)−1]

)−1
,
(
R×

[c(c−b)−1]

)−1
,R×

[c−1(c−b)]

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pλ)

as required.
(c): From (b) of Theorem 7 and (c) of Theorem 8,

Pµ(z, x) = P
[
c−1z, c−1(1− bc−1)x

]
− a

which we can write as

Pµ(z, x) = P
[
zR×

c−1 , xR
×
c−1(1−bc−1)

]
R+

(−a) =⇒

P (z, x)R+
(−a) = Pµ

(
z
[
R×
c−1

]−1
, x
[
R×
c−1(1−bc−1)

]−1)
=⇒

(Zp, P )

((
R×

c−1

)−1
,
(
R×

[c−1(1−bc−1)]

)−1
,R+

(−a)

)
−−−−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pµ

)
as required.

Theorem 10: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
Then

(a): (Zp, P )
R

×
b−c∼= (Zp, Pρ) ⇐⇒ (R×b , R

×
1−c, R

×
b ) ∈ AUT (Zp, Pρ) ⇐⇒

[a(b− c)](b−1 − 1) + [c(1− c)y](b−1(1− c)− 1) = 0.
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(b): (Zp, P )
R

×
b−c∼= (Zp, Pρ)⇐⇒ (R×

b−1 , R
×
(1−c)−1 , R

×
b−1) ∈ AUT (Zp, Pρ)

⇐⇒ [b−1a(b− c)](1− b−1) + [b−1cy(1− b−1(1− c))] = 0.
(c): R×b−c ∈ AUM(Zp, P )⇐⇒ b = 1 + c⇐⇒

(Zp, Pρ)
(R×

b ,R
×
1−c,R

×
b )

−−−−−−−−−→
Isotopism

(Zp, P ).

Proof: These follow from (a) of Theorem 9.
Corollary 1: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.

(a): If a = 0 and b+ c = 1, then (Zp, P )
R

×
2b−1∼= (Zp, Pρ);

(b): if b = 1 + c, then (Zp, Pρ)
(R×

1+c,R
×
1−c,R

×
1+c)−−−−−−−−−−−→

Isotopism
(Zp, P ).

Proof: These follow from Theorem 10.
Theorem 11: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
Then

(a): (Zp, P )
R

×
c−b∼= (Zp, Pλ) ⇐⇒ (R×1−b, R

×
c , R

×
c ) ∈ AUT (Zp, Pλ) ⇐⇒

[a(1− bc−1)(1− c)] + cx[(1− b)− c] = 0.

(b): (Zp, P )
R

×
c−b∼= (Zp, Pλ)⇐⇒ (R×

(1−b)−1 , R
×
c−1 , R

×
c−1) ∈ AUT

(Zp, Pλ)⇐⇒ [a(1− bc−1)(1− c−1)] + x[c(1− b)−1 − 1] = 0.
(c): R×c−b ∈ AUM(Zp, P )⇐⇒ c = 1 + b⇐⇒

(Zp, Pλ)
(R×

1−b,R
×
c ,R

×
c )

−−−−−−−−−→
Isotopism

(Zp, P ).

Proof: These follow from (b) of Theorem 9.
Corollary 2: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.

(a): If a = 0 and c+ b = 1, then (Zp, P )
R

×
2c−1∼= (Zp, Pλ);

(b): if c = 1 + b, then (Zp, Pλ)
(R×

1−b,R
×
1+b,R

×
1+b)−−−−−−−−−−−→

Isotopism
(Zp, P ).

Proof: These follow from Theorem 11.
Theorem 12: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
Then

(a): (Zp, P )
R

×
c∼= (Zp, Pµ)⇐⇒ (R×1 , R

×
(1−bc−1)−1 , R

×
c−1R

+
−a) ∈ AUT

(Zp, Pµ) ⇐⇒ [(1 − bc−1)(1 − c−1)]x + [bc−1][(1 − bc−1)−1 −
c−1]y + a = 0.

(b): (Zp, P )
R

×
c∼= (Zp, Pµ)⇐⇒ (R×1 , R

×
1−bc−1 , R

+
a R
×
c ) ∈ AUT (Zp, Pµ)

⇐⇒ [(1− bc−1)(1− c)]x+ b[c−1(1− bc−1)− 1]y − ac = 0.
(c): R×c ∈ AUM(Zp, P )⇐⇒ c = 1⇐⇒
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(Zp, Pµ)
(R×

1 ,R
×
(1−bc−1)

,R+
a R

×
c )

−−−−−−−−−−−−−−→
Isotopism

(Zp, P ).

Proof: These follow from (c) of Theorem 9.
Corollary 3: Let P (x, y) = a + bx + cy represent a groupoid over Zp.

If c = 1, then (Zp, Pµ)
(R×

1 ,R
×
1−b,R

+
a )

−−−−−−−−−→
Isotopism

(Zp, P ).

Proof: Theses follow from Theorem 12.
Theorem 13: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
Then

(a): (Zp, Pρ)
R

×
−1∼= (Zp, P )⇐⇒

(Zp, P )

(
R×

b R
×
(1−b)−1 ,R

×
c−1R

×
1−c,R

×
b R

×
c−1

)
−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pλ).

(b): R×−1 ∈ AUM(Zp, Pρ)⇐⇒

(Zp, Pρ)

(
R×

b R
×
(1−b)−1 ,R

×
c−1R

×
1−c,R

×
b R

×
c−1

)
−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pλ).

(c): (Zp, Pρ)
R

×
−1∼= (Zp, Pλ)⇐⇒

(Zp, Pλ)

(
R×

b R
×
(1−b)−1 ,R

×
c−1R

×
1−c,R

×
b R

×
c−1

)
−−−−−−−−−−−−−−−−−−−−−−−→

autotopism
(Zp, Pλ).

Proof: These follow from (a) and (b) of Theorem 9.
Theorem 14: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
Then

(a): (Zp, Pρ)
R

×
−1∼= (Zp, P )⇐⇒ P (−x,−y) = −Pρ(x, y)(b− c)⇐⇒ a(2b−

c) + c[(1− c)− b]y = 0.
(b): R×−1 ∈ AUM(Zp, Pρ) ⇐⇒ Pρ(−x,−y) = −Pρ(x, y) ⇐⇒ 2ab(b −

c) = 0.

(c): (Zp, Pρ)
R

×
−1∼= (Zp, Pλ) ⇐⇒ −Pρ(x, y) = Pλ(−x,−y) ⇐⇒ acb(b −

c)2 + bc(c− b)x+ [b2(1− b)− c2(1− c)]y = 0.

Proof: These follow from Theorem 13.
Corollary 4: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
(a): If a = 0 or 2b = c and b+ c = 1, then P (−x,−y) = −Pρ(x, y) and

(Zp, Pρ) ∼= (Zp, P );
(b): if a = 0 or b = c, then Pρ(−x,−y) = −Pρ(x, y) and R×−1 ∈

AUM(Zp, Pρ);
(c): if b = c, then −P (x, y) = Pλ(−x,−y) and (Zp, Pρ) ∼= (Zp, Pλ);
(d): if a = 0, b = c and b+ c = 1, then (Zp, P ) ≡ (Zp, Pρ) ≡ (Zp, Pλ).
Proof: These follow from Theorem 13.
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Theorem 15: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
Then

(a): (Zp, Pρ)
R

×
(b−c)−1

∼= (Zp, P )⇐⇒

(Zp, P )

(
R×

b R
×
c ,R

×
1−cR

×
c R

×
(1−bc−1)−1 ,R

×
b R

+
−a

)
−−−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pµ).

(b): R×
(b−c)−1 ∈ AUM(Zp, Pρ)⇐⇒

(Zp, Pρ)

(
R×

b R
×
c ,R

×
1−cR

×
c R

×
(1−bc−1)−1 ,R

×
b R

+
−a

)
−−−−−−−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pµ).

(c): (Zp, Pρ)
R

×
(b−c)−1

∼= (Zp, Pµ)⇐⇒

(Zp, Pµ)

(
R×

b R
×
c ,R

×
1−cR

×
c R

×
(1−bc−1)−1 ,R

×
b R

+
−a

)
−−−−−−−−−−−−−−−−−−−−−−−−−→

autotopism
(Zp, Pµ).

Proof: These follow from (a) and (c) of Theorem 9.
Theorem 16: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
Then

(a): (Zp, Pρ)
R

×
(b−c)−1

∼= (Zp, P ) ⇐⇒ Pρ[(b − c)x, (b − c)y] = P (x, y)(b −
c)⇐⇒ [a(b− c)(1− b)] + [c(b− c)(1− c)− b]y = 0.

(b): R×
(b−c)−1 ∈ AUM(Zp, Pρ)⇐⇒ Pρ[(b− c)x, (b− c)y] = Pρ(x, y)(b−
c)⇐⇒ [a(b− c)(1− b+ c)] = 0.

(c): (Zp, Pρ)
R

×
(b−c)−1

∼= (Zp, P ) ⇐⇒ Pρ[(b − c)x, (b − c)y] = [Pµ(x, y)](b −
c)⇐⇒ ac(b−c)+b(b−c)[bc−c+b]x+(b−c)[c2(1−c)−b2]y = 0.

Proof: These follow from Theorem 15.
Corollary 5: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.

(a): If a = 0, and c(b − c)(1 − c) = b, then Pρ[(b − c)x, (b − c)y] =
P (x, y)(b− c) and (Zp, Pρ) ∼= (Zp, P );

(b): if a = 0, b = 1, and c(1 − c)2 = 1, then Pρ[(1 − c)x, (1 − c)y] =
P (x, y)(1− c) and (Zp, Pρ) ∼= (Zp, P );

(c): if a = 0 or b = c or b = 1 + c, then R×
(b−c)−1 ∈ AUM(Zp, Pρ) and

Pρ[(b− c)x, (b− c)y] = Pρ(x, y)(b− c);
(d): if a = 0, bc = c− b and c2(1− c) = b2, then Pρ[(b− c)x, (b− c)y] =

[Pµ(x, y)](b− c), and (Zp, Pρ) ∼= (Zp, Pµ);
(e): if a = 0 and c(b − c)(1 − c) = b, then and c2(1 − c) = b2, then

(Zp, P ) ≡ (Zp, Pρ) ≡ (Zp, Pµ).

Proof: These follow from Theorem 16.
Theorem 17: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
Then
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(a): (Zp, Pλ)
R

×
c(c−b)−1

∼= (Zp, P )⇐⇒

(Zp, P )

(
R×

1−b,R
×
c R

×
(1−bc−1)−1 ,R

+
−a

)
−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pµ).

(b): R×
c(c−b)−1 ∈ AUM(Zp, Pλ)⇐⇒

(Zp, Pλ)

(
R×

1−b,R
×
c R

×
(1−bc−1)−1 ,R

+
−a

)
−−−−−−−−−−−−−−−−−−−→

Isotopism
(Zp, Pµ).

(c): (Zp, Pλ)
R

×
c(c−b)−1

∼= (Zp, Pµ)⇐⇒

(Zp, Pµ)

(
R×

1−b,R
×
c R

×
(1−bc−1)−1 ,R

+
−a

)
−−−−−−−−−−−−−−−−−−−→

autotopism
(Zp, Pµ).

Proof: These follow from (b) and (c) of Theorem 9.
Theorem 18: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
Then

(a): (Zp, Pλ)
R

×
c(c−b)−1

∼= (Zp, P )⇐⇒ [P (x, y)]c−1(c− b) = Pλ[c
−1

(c−b)x, c−1(c−b)y]⇐⇒ c(c−b)(b−c)x+(c−b)[c2−b(1−b)]y =
0.

(b): R×
c(c−b)−1 ∈ AUM(Zp, Pλ) ⇐⇒ [Pλ(x, y)]c

−1(c − b) = Pλ[c
−1(c −

b)x, c−1(c−b)y]⇐⇒ a(c−b)[(c−b)−c]+b(1−b)(c−b)(1−c2)y = 0.

(c): (Zp, Pλ)
R

×
c(c−b)−1

∼= (Zp, Pµ)⇐⇒ [Pµ(x, y)]c
−1(c− b) = Pλ[c

−1

(c − b)x, c−1(c − b)y] ⇐⇒ ac(c − b) + (c − b)[c2 − (c − b)]x +
b(c− b)[(1− b)− 1]y = 0.

Proof: These follow from Theorem 17.
Corollary 6: Let P (x, y) = a+ bx+ cy represent a groupoid over Zp.
(a): If b = c, then [P (x, y)]c−1(c− b) = Pλ[c

−1(c− b)x, c−1(c− b)y] and
(Zn, Pλ) ∼= (Zn, P );

(b): if b = c, then [Pλ(x, y)]c
−1(c− b) = Pλ[c

−1(c− b)x, c−1(c− b)y] and
R×
c(c−b)−1 ∈ AUM(Zn, Pλ);

(c): if a = 0 and b = 1, then R×
c(c−1)−1 ∈ AUM(Zp, Pλ);

(d): if a = 0 and c2 = 1, then R×
c(c−b)−1 ∈ AUM(Zp, Pλ);

(e): if a = 0 and b = c, then [Pµ(x, y)]c
−1(c−b) = Pλ[c

−1(c−b)x, c−1(c−
b)y] and (Zn, Pλ) ∼= (Zn, Pµ);

(f): if a = 0 and b = c, then (Zp, P ) ≡ (Zp, Pλ) ≡ (Zp, Pµ).
Proof: These follow from Theorem 18.
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