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UNCOUNTABLY INFINITE SOLUTIONS TO A CLASS OF

NONLINEAR SINGULAR TWO-POINT EIGENVALUE

BOUNDARY VALUE PROBLEMS

S. A. SANNI

ABSTRACT. We proved the existence of unique weak solutions
in weighted Sobolev spaces, up to each of an arbitrarily se-
lectable parameter m ∈ (0, a], for the nonlinear singular second
order two-point boundary value problems

u′′(r) +
a

r
u′(r) + g(u(r)) = h(r), a ≥ 1, r ∈ (0, 1)

u(0) = u(1) = 0,

where h ∈ L2[(0, 1), rm], for 1 < m ≤ a, and g : R → R is
differentiable, with 0 6≡ |g′| ≤ γ = constant. Our solutions are
uncountably infinite, since the possible choices of the parameter
m ∈ (1, a] are uncountably infinite.
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1. INTRODUCTION

The following nonlinear second order two-point eigenvalue bound-
ary value problems are considered:

u′′(r) +
a

r
u′(r) + g(u(r)) = h(r), a ≥ 1, r ∈ (0, 1) (1)

u(0) = u(1) = 0. (2)

In applications, singular boundary value problems arise in the
fields of boundary layer theory, gas dynamics, nonlinear optics,
combustion, quantum mechanics, etc.; see for examples [1], [4], [15],
[19], [24] and the literature in them.

(1) with the boundary conditions u′(0) = 0, u(1) = A is solved
numerically in [3], [14] for the case a = 2. The presence of the
singular coefficient a

r
and the nonlinear term g(u) motivates the

numerical solutions. Similar or some other singular boundary value
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problems have been solved by various numerical methods. For a
few of such works, we refer the reader to [3], [9], [12], [14], [16], [17],
[23] and the literature cited in them.

Existence results for various classes of singular boundary value
problems abound in the literature. For example, see [5], [8], [10],
[21], and the literature cited in them. In none of these works, was
the existence of weak or generalized solution to the respective sin-
gular boundary problems proved. For the examples of relatively
few works on the existence of weak solutions for ordinary differ-
ential equation boundary value problems, the reader is referred to
[6], [13], [20], [22]. Furthermore, existence results for singular ordi-
nary differential equations in weighted Sobolev spaces appear to be
scarce. Recently, we gave existence results, in weighted Sobolev’s
spaces, for some other class of nonlinear singular two-point bound-
ary value problems in [18].

Inspired by previous works, we study, in the current work, the
existence and uniqueness of weak solutions to the problem (1)-(2)
in a weighted Sobolev space. We refer the reader to [2] and [11], for
information on weighted Sobolev spaces. We assume that g : R→
R is differentiable, with

0 6≡ |g′(v)| ≤ γ (3)

and h(r) ∈ L2[(0, 1), rm], for 1 < m ≤ a.
The following weighted Sobolev’s spaces are used in this paper:

L2[(0, 1), rm] := {w : (0, 1)→ R
∣∣ ‖w‖L2[(0,1),rm] <∞} (4)

where ‖w‖L2[(0,1),rm] =

√∫ 1

0

rmw2dr (5)

H1[(0, 1), rm] := {w : (0, 1)→ R
∣∣ ‖w‖H1[(0,1),rm] <∞} (6)

where ‖w‖H1[(0,1),rm] =

√∫ 1

0

rmw2dr +

∫ 1

0

rmw′2dr (7)

H1
0 [(0, 1), rm] is the closure of C∞c (0, 1) with respect to the norm

‖w‖H1[(0,1),rm], where ‖w‖H1
0 [(0,1),r

m] := ‖w′‖L2[(0,1),rm] (8)

L2[(0, 1),
(m− 1)(a−m)

2m
rm−2] :=

{w : (0, 1)→ R
∣∣ ‖w‖

L2[(0,1),
(m−1)(a−m)

2m
rm−2]

<∞}, where (9)

‖w‖
L2[(0,1),

(m−1)(a−m)
2m

rm−2]
=

√∫ 1

0

(m− 1)(a−m)

2m
rm−2w2dr (10)
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X := L2[(0, 1),
(m− 1)(a−m)

2m
rm−2] ∩H1

0 [(0, 1), rm], (11)

with the norm

‖w‖X =
√
‖w‖

L2[(0,1),
(m−1)(a−m)

2m
rm−2]

+ ‖w‖H1
0 [(0,1),r

m] (12)

We shall use the following equivalent divergence form of (1)-(2):

−(rmu′)′ − (a−m)rm−1u′ = rm[g(u(r))− h(r)], r ∈ (0, 1) (13)

u(0) = u(1) = 0 (14)

where 1 < m ≤ a.

Definition: 1. A solution u ∈ X is called a weak solution of the
boundary value problem (1)-(2) provided

−
∫ 1

0

rmu′v′dr+(a−m)

∫ 1

0

rm−1u′vdr =

∫ 1

0

rm[h−g(u)]vdr, (15)

for each v ∈ X.

We arrange the rest of the paper as follows: In Section 2, we
proved existence and uniqueness of solutions to an auxiliary linear
problem, utilized in establishing existence and uniqueness of solu-
tions to the nonlinear problem in Section 3. The existence and
uniqueness of solution was proved by applying the Banach’s fixed
point theorem. Our solutions are uncountably infinite, since the
possible choices of the parameter m ∈ (0, a] are uncountably infi-
nite.

2. AUXILIARY LINEAR PROBLEM

Consider the following linear singular eigenvalue boundary prob-
lem:

−(rmu′)′ − (a−m)rm−1u′ = rm[g(s(r))− h(r)], r ∈ (0, 1)(16)

u(0) = u(1) = 0, (17)

with 1 < m ≤ a, where s, h,∈ L2[(0, 1), rm] and g(s) are known
functions of r.

We first prove the following lemma.

Lemma: 1. (A Sobolev’s embedding). Let u ∈ H1
0 [(0, 1), rm]. Then

we have the estimate

‖u‖L2[(0,1),rm] ≤
2

m+ 1
‖u‖H1

0 [(0,1),r
m]. (18)
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Proof: Using integration by parts, we have 8∫ 1

0

rmu2dr =
rm+1

m+ 1
u2
∣∣∣∣1
0

−
∫ 1

0

rm+1

m+ 1
(u2)′dr

= − 2

m+ 1

∫ 1

0

rrmuu′dr ≤ 2

m+ 1

∫ 1

0

rm|u||u′|dr, (since r ≤ 1)

≤ 2

m+ 1

(∫ 1

0

rmu2dr
) 1

2
(∫ 1

0

rmu′2dr
) 1

2
(by Hölder’s inequality)

≤ 1

2

∫ 1

0

rmu2dx+
4

2(m+ 1)2

∫ 1

0

rmu′2dx, (19)

by Cauchy’s inequality. Simplifying (19), we easily deduce (18).

Theorem: 1. (A priori estimates). Let u be a solution of (16)-
(17). Then, u ∈ X and we have the estimate

‖u‖X ≤
√

2

m
α
(
‖s‖L2[(0,1),rm] + ‖h‖L2[(0,1),rm] + 1

)
, (20)

where

α := max{1, γ, |g(0)|}. (21)

Proof: We split the proof in three steps.
Step 1. Multiply (16) by u, integrate by parts and use (17) to get∫ 1

0

rmu′2dr −
∫ 1

0

(a−m)rm−1u′udr =

∫ 1

0

rmu(g(s)− h)dr (22)

We next obtain an equivalent of the second term on the left side
of (22) by integration by parts and applying (17):

−(a−m)

∫ 1

0

rm−1u′udr = −a−m
2

∫ 1

0

rm−1(u2)′dr

=
(a−m)(m− 1)

2

∫ 1

0

rm−2u2dr. (23)

Using (23) in (22) gives∫ 1

0

rmu′2dr +
(m− 1)(a−m)

2

∫ 1

0

rm−2u2dr =

∫ 1

0

rmu(g(s)− h)dr

(24)
Step 2. Using (24), Hölder inequality, and Lemma 1 we estimate:
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∫ 1

0

rmu′2dr +
(m− 1)(a−m)

2

∫ 1

0

rm−2u2dr

≤
(∫ 1

0

rmu2dr
) 1

2
[( ∫ 1

0

rmh2dr
) 1

2
+
(∫ 1

0

rmg(s)2dr
) 1

2
]

≤ 2

m+ 1

(∫ 1

0

rmu′2dr
) 1

2
[( ∫ 1

0

rmh2dr
) 1

2
+
(∫ 1

0

rmg(s)2dr
) 1

2
]

≤ 2

(m+ 1)

[
2ε

∫ 1

0

rmu′2dr +
1

4ε

(∫ 1

0

rmh2dr +

∫ 1

0

rmg2dr
)]
,(25)

by Cauchy’s inequality with ε. Choosing ε = 1
4

and simplifying we
deduce ∫ 1

0

rmu′2dr +
(m− 1)(a−m)

2m

∫ 1

0

rm−2u2dr

≤ 2

m

(∫ 1

0

rmh2dr +

∫ 1

0

rmg2dr
)
. (26)

Step 3. Using (3), we estimate∫ 1

0

rm|g(s)|2dr =

∫ 1

0

rm|
∫ s

0

g′(ξ)dξ + g(0)|2dr

≤
∫ 1

0

rm(γ|s|+ |g(0)|)2dr

≤ β2(‖s‖L2[(0,1),rm] + 1)2, where β := max{γ, |g(0)|}. (27)

The conclusion of the theorem follows by substituting (27) into (26)
and simplifying.

Definition: 2. (i) The Bilinear form B[., .] associated with the
elliptic operator L defined by (16) is

B[u, v] :=

∫ 1

0

rmu′v′dr − (a−m)

∫ 1

0

rm−1u′vdr, (28)

for u, v ∈ X. (ii) u ∈ X is said to be a weak solution of the boundary
value problem (16)-(17) provided

B[u, v] = (g(s)− h, v)rm (29)

for all v ∈ X, where (., .)rm is the inner product in L2[(0, 1), rm]

defined by (u, v)rm :=
∫ 1

0
rmuvdx.

Theorem: 2. B[., .] satisfies precisely the hypotheses of the Lax-
Milgram Theorem. That is, there exists constants λ, σ > 0 such
that
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(i) |B[u, v]| ≤ λ‖u‖X‖v‖X
and (ii) σ‖u‖2X ≤ B[u, u]
for all u, v ∈ X.

Proof: The proof is split in two steps.
Step 1. We have

|B[u, v]| = |
∫ 1

0

rmu′v′dr − (a−m)

∫ 1

0

rm−1u′vdr|

= |
∫ 1

0

rmu′v′dr −√
2m(a−m)

m− 1

∫ 1

0

(r
m
2 u′)

(√
(m− 1)(a−m)

2m
r

m−2
2 v

)
dr|

≤
(∫ 1

0

rmu′2dr
) 1

2
(∫ 1

0

rmv′2dr
) 1

2
+√

2m(a−m)

m− 1

(∫ 1

0

rmu′2dr
) 1

2
(∫ 1

0

(m− 1)(a−m)

2m
rm−2v2dr

) 1
2

≤ λ‖u‖X‖v‖X (30)

for some appropriate constant λ > 0.
Step 2. Furthermore, we readily check

σ‖u‖2X ≤B[u, u] =

∫ 1

0

rmu′2dr − (a−m)

∫ 1

0

rm−1
(u2

2

)′
dr

=

∫ 1

0

rmu′2dr +
(m− 1)(a−m)

2

∫ 1

0

rm−2u2dr (31)

for appropriate constant σ > 0.

Theorem: 3. There exist unique weak solutions u ∈ X of the
linear boundary value problem (16)-(17).

Proof: Notice that (27) and the hypothesis on h imply that

g(s)− h ∈ L2[(0, 1), rm].

Now fix g(s) − h ∈ L2[(0, 1), rm] and set 〈g(s)− h, v〉 := (g(s) −
h, v)rm (where 〈 , 〉 is the pairing of L2[(0, 1), rm] with its dual).
This is a bounded linear functional on L2[(0, 1), rm] and hence on
X.

We apply the Lax-Milgram Theorem (see [7]) to find a unique
function u ∈ X satisfying

B[u, v] = 〈g(s)− h, v〉
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for all v ∈ X. Consequently, u is the unique weak solution of (16)-
(17).

3. MAIN RESULT

Theorem: 4. Let
√

2/mγ < 1, then there exists unique weak so-
lutions u ∈ X to (1)-(2).

Proof: We split the proof in six steps.
Step 1. The fixed point argument to (1)-(2) is

−(rmw′)′ − (a−m)rm−1w′ = rm(g(u(r))− h(r)) (32)

w(0) = w(1) = 0. (33)

Define a mapping

A : X → X, (34)

by setting A[u] = w whenever w is derived from u via (32)-(33).

We claim that the mapping A is a strict contraction if
√

2/mγ < 1.
Step 2.Choose u, ũ ∈ X, and define A[u] = w, A[ũ] = w̃. Hence for
two solutions w, w̃ of (32)-(33) we have that

−(rm(w−w̃)′)′−(a−m)rm−1(w−w̃)′ = rm(g(u(r))−g(ũ(r))) (35)

(w − w̃)(0) = (w − w̃)(1) = 0. (36)

Using (35)-(36), we have an analogous estimate to (26) in the proof
of Theorem 1, viz:

‖w − w̃‖X ≤
√

2

m
‖g(u)− g(ũ)‖L2[(0,1),rm]

≤
√

2

m
‖
∫ u

ũ

g′(ξ)dξ‖L2[(0,1),rm]

≤
√

2

m
γ‖u− ũ‖L2[(0,1),rm] (using (3)) (37)

We now use (37) and our definition of the mapping A to deduce

‖A[u]− A[ũ]‖X = ‖w − w̃‖X ≤
√

2

m
γ‖u− ũ‖X . (38)

Therefore the mapping A is a strict contraction for
√

2
m
γ < 1.

Thus, by Banach’s fixed point theorem (see [7]), A has a unique
fixed point in X.
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Step 3. Write u0 = u(0), and for k = 0, 1, 2..., inductively define
w = uk+1 ∈ X to be the unique weak solution of the linear boundary
value problem

−(rmu′k+1)
′ − (a−m)rm−1u′k+1 = rm(g(uk)− h(r)) a ≥ 2 (39)

uk+1(0) = uk+1(1) = 0 (40)

Notice that our definition of uk+1 as the unique weak solution of
(39)-(40) is justified by Theorem 3. By the definition of the map-
pings A, we have (for k = 0, 1, 2, ...), using (39)-(40), that

uk+1 = A[uk] (41)

Since A has a fixed point in X, there exists u ∈ X such that

lim
k→∞

uk+1 = lim
k→∞

A[uk] = A[u] = u (42)

Step 4.We use (27) and Lemma 1 to deduce

‖g(uk)‖L2[(0,1),rm] ≤
√

2

m
β
(
‖u′k‖L2[(0,1),rm] + 1

)
(43)

Using (42), we can take the limit on the right side of (43) to deduce

sup
k
‖g(uk)‖L2[(0,1),rm] <∞. (44)

(44) implies the existence of a subsequence {g(ukj)}∞j=1 which con-

verges weakly in L2[(0, 1), rm] to g(u) in L2[(0, 1), rm].
Step 5. We next verify that u is a weak solution of (1)-(2). Fix
v ∈ X. Using (39)-(40), we have

−
∫ 1

0

rmu′k+1v
′dr+ (a−m)

∫ 1

0

rm−1u′k+1vdr =∫ 1

0

rm[h(t)− g(uk)]vdr. (45)

Passage to limit is not immediately apparent in the second term
of the left side of (45). Notice that

(a−m)

∫ 1

0

rm−1u′k+1vdr =√
2m(a−m)

m− 1

∫ 1

0

(
r

m
2 uk+1

)(√(m− 1)(a−m)

2m
r

m−2
2 v

)
dr(46)

Hence, letting k → ∞ in (45) yields (15) as desired. Step 6.

Suppose that
√

2/mγ < 1, but that there exist two solutions u, ū ∈
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X. Then A[u] = u and A[ū] = ū. Hence

‖u− ū‖X = ‖A[u]−A[ū]‖X ≤
√

2

m
γ‖u− ū‖X (using (38)), (47)

so that u = ū.

4. ILLUSTRATIVE EXAMPLE

Consider the boundary value problem

u′′ +
a

r
u′ =

1√
r
− tan−1

u

2
, a ≥ 1, r ∈ (0, 1) (48)

u(0) = u(1) = 0 (49)

Here, we have h = 1√
r
∈ L2[(0, 1), rm] (for 1 < m ≤ a) and 0 6≡

|g′(u)| = | 2
4+u2 | ≤ γ = 1

2
. Notice that for this problem,√

2

m
γ =

1

2

√
2

m
≤ 1√

2
< 1

Hence, by Theorem 4, there exist unique weak solutions u ∈ X to
the singular boundary value problems (48)-(49).
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