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EXISTENCE AND UNIQUENESS THEOREMS FOR

SOME COMMON FIXED POINTS IN HAUSDORFF

UNIFORM SPACES

A. O. BOSEDE

ABSTRACT. In this paper, we prove some existence and
uniqueness theorems for some common fixed point theorems in
Hausdorff uniform spaces for selfmappings using the concepts of
A−distance and E−distance. A class of ψ−contractive condi-
tion more general than those of Aamri and El Moutawakil [1],
Olatinwo [13] and Bosede [6] was employed to establish our re-
sults. Our generalizations can be viewed as an improvement to
some of the known results in literature.
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1. INTRODUCTION

Several authors such as Berinde [2], Jachymski [10], Kada et al [11],
Rhoades [14], Rus [16], Wang et al [18] and Zeidler [19] studied the
theory of fixed point or common fixed point for contractive self-
mappings in complete metric spaces or Banach spaces in general.
Within the last two decades, Kang [12], Rodŕiguez-Montes and
Charris [15] established some results on fixed and coincidence points
of maps by means of appropriate W -contractive or W -expansive as-
sumptions in uniform space.
In the sequel we shall define a uniform space as follows: Let X be a
nonempty set and let Φ be a nonempty family of subsets of X×X.
The pair (X,Φ) is called a uniform space if it satisfies the following
properties:
(i) if G is in Φ, then G contains the diagonal {(x, x)|x ∈ X};
(ii) if G is in Φ and H is a subset of X×X which contains G, then
H is in Φ;
(iii) if G and H are in Φ, then G

⋂
H is in Φ;

(iv) if G is in Φ, then there exists H in Φ, such that, whenever
(x, y) and (y, z)

Received by the editors March 21, 2012; Revised: May 26, 2012; Accepted: June
18, 2012

167



168 A. O. BOSEDE

are in H, then (x, z) is in H;
(v) if G is in Φ, then {(y, x)|(x, y) ∈ G} is also in Φ.
Φ is called the uniform structure of X and its elements are called
entourages or neighbourhoods or surroundings.
If property (v) is omitted, then (X,Φ) is called a quasiuniform
space. [For examples, see Bourbaki [9] and Zeidler [19]].
In 2004, Aamri and El Moutawakil [1] proved some common fixed
point theorems for some new contractive or expansive maps in uni-
form spaces by introducing the notions of an A-distance and an
E-distance.
Aamri and El Moutawakil [1] introduced and employed the follow-
ing contractive definition: Let f, g : X −→ X be selfmappings of
X. Then, we have

p(f(x), f(y)) ≤ ψ(p(g(x), g(y))), ∀x, y ∈ X (1)

where ψ : <+ −→ <+ is a nondecreasing function satisfying
(i) for each t ∈ (0,+∞), 0 < ψ(t),
(ii) limn−→∞ ψ

n(t) = 0, ∀ t ∈ (0,+∞).
ψ satisfies also the condition ψ(t) < t, for each t > 0.
In 2007, Olatinwo [13] established some common fixed point theo-
rems by employing the following contractive definition: Let f, g :
X −→ X be selfmappings of X. There exist L ≥ 0 and a compari-
son function ψ : <+ −→ <+ such that ∀ x, y ∈ X, we have

p(f(x), f(y)) ≤ Lp(x, g(x)) + ψ(p(g(x), g(y))), ∀x, y ∈ X (2)

Recently, the author [6] proved some common fixed point theorems
by employing the following contractive definition: Let f, g : X −→
X be selfmappings of X. There exist comparison functions ψ1 :
<+ −→ <+ and ψ2 : <+ −→ <+ with ψ1(0) = 0 such that ∀ x, y ∈
X, we have

p(f(x), f(y)) ≤ ψ1(p(x, g(x))) + ψ2(p(g(x), g(y))), ∀x, y ∈ X (3)

In this paper, we shall establish some common fixed point the-
orems by using a contractive condition more general than (1), (2)
and (3).
We shall also employ the concepts of an A-distance, an E-distance
as well as the notion of comparison function in this paper.

2. PRELIMINARY

The following definitions contained in Aamri and El Moutawakil
[1] shall be required in the sequel: Let (X,Φ) be a uniform space
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and (X, τ(Φ)) a topological space whenever topological concepts
are mentioned in the context of a uniform space (X,Φ).

Definition 1. If H ∈ Φ and (x, y) ∈ H, (y, x) ∈ H, x and y are
said to be H-close. A sequence {xn}∞n=0 ⊂ X is said to be a Cauchy
sequence for Φ if for any H ∈ Φ, there exists N ≥ 1 such that xn
and xm are H-close for n,m ≥ N .

Definition 2. A function p :X×X−→ <+ is said to be an A-
distance if for any H ∈ Φ, there exists δ > 0 such that if p(z, x) ≤ δ
and p(z, y) ≤ δ for some z ∈ X, then (x, y) ∈ H.

Definition 3. A function p :X×X−→ <+ is said to be an E-
distance if
(p1) p is an A-distance,
(p2) p(x, y) ≤ p(x, z) + p(z, y), ∀ x, y ∈ X.

Definition 4. A uniform space (X,Φ) is said to be Hausdorff if
and only if the intersection of all H ∈ Φ reduces to the diagonal
{(x, x)|x ∈ X}, i.e. if (x, y) ∈ H for all H ∈ Φ implies x = y. This
guarantees the uniqueness of limits of sequences. H ∈ Φ is said to
be symmetrical if H = H−1 = {(y, x)|(x, y) ∈ H}.

Definition 5. Let (X,Φ) be a uniform space and p be an A-
distance on X.
(i) Sequence {xn}∞n=0 is p-Cauchy if given ε > 0, there exists N such
that if m,n > N , then p(xm, xn) < ε.
(ii) X is said to be S-complete if for every p-Cauchy sequence
{xn}∞n=0, there exists x ∈ X with limn−→∞ p(xn, x) = 0.
(iii) X is said to be p-Cauchy complete if for every p-Cauchy se-
quence {xn}∞n=0, there exists x ∈ X with limn−→∞ xn = x with
respect to τ(Φ).
(iv) f : X −→ X is said to be p-continuous if limn−→∞ p(xn, x) = 0
implies that limn−→∞ p(f(xn), f(x)) = 0.
(v) f : X −→ X is τ(Φ)-continuous if limn−→∞ xn = x with respect
to τ(Φ) implies limn−→∞ f(xn) = f(x) with respect to τ(Φ).
(vi) X is said to be p-bounded if δp = sup{p(x, y)|x, y ∈ X} <∞.

Definition 6. Let (X,Φ) be a Hausdorff uniform space and p
an A-distance on X. Two selfmappings f and g on X are said
to be p-compatible if, for each sequence {xn}∞n=0 of X such that
limn−→∞ p(f(xn), u) = limn−→∞ p(g(xn), u) = 0 for some u ∈ X,
then we have limn−→∞ p(f(g(xn)), g(f(xn))) = 0.
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The following definition which is also required in the sequel to es-
tablish some common fixed point results is contained in Berinde [2],
Rus [16] and Rus et al [17].

Definition 7. A function ψ : <+ −→ <+ is called a comparison
function if
(i) ψ is monotone increasing;
(ii) limn−→∞ ψ

n(t) = 0, ∀ t ≥ 0.

Remark 1. Every comparison function satisfies the condition
ψ(0) = 0. Both conditions (i) and (ii) imply that ψ(t) < t, ∀ t > 0.
Our aim in this paper is to establish some common fixed point
theorems by using the following contractive condition more general
than (1), (2) and (3): Let f, g : X −→ X be selfmappings of X.
There exist M ≥ 0 and comparison functions ψ1 : <+ −→ <+ and
ψ2 : <+ −→ <+ with ψ1(0) = 0 such that ∀ x, y ∈ X, we have

p(f(x), f(y)) ≤
(
ψ1(p(x, g(x))) + ψ2(p(g(x), g(y)))

)
X(

1 +Mp(x, g(x))
)
, (4)

for all x, y ∈ X.

Remark 2. The contractive condition (4) is more general than (1),
(2) and (3) in the sense that if M = 0 in (4), then we obtain

p(f(x), f(y)) ≤ ψ1(p(x, g(x))) + ψ2(p(g(x), g(y))), ∀x, y ∈ X
which is the contractive condition employed by Bosede [6] in (3).
Also, if M = 0 and ψ1(u) = Lu in (4), for L ≥ 0, u ∈ <+, then we
obtain

p(f(x), f(y)) ≤ Lp(x, g(x)) + ψ2(p(g(x), g(y))), ∀x, y ∈ X
which is the contractive condition employed by Olatinwo [13] in
(2).
Moreover, if L = 0 in the above inequality, then we obtain (1),
which was employed by Aamri and El Moutawakil [1].
Thus, our contractive condition (4) is a generalization of the con-
tractive definitions (1), (2) and (3) of Aamri and El Moutawakil
[1], Olatinwo [13] and Bosede [6] respectively.

In the sequel, we shall require the following Lemma which is con-
tained in Kang [12], Rodŕiguez-Montes and Charris [15] and Aamri
and El Moutawakil [1].

Lemma 1. Let (X,Φ) be a Hausdorff uniform space and p an A-
distance on X. Let {xn}∞n=0, {yn}∞n=0 be arbitrary sequences in X
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and {αn}∞n=0, {βn}∞n=0 be sequences in <+ converging to 0. Then,
for x, y, z ∈ X, the following hold:
(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn, ∀ n ∈ N , then y = z. In
particular, if p(x, y) = 0 and p(x, z) = 0, then y = z.
(b) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn, ∀ n ∈ N , then {yn}∞n=0

converges to z.
(c) If p(xn, xm) ≤ αn, ∀ m > n, then {xn}∞n=0 is a Cauchy sequence
in (X,Φ).

Remark 3. A sequence in X is p-Cauchy if it satisfies the usual
metric property. [For Example, See Aamri and El Moutawakil [1]].

3. THE MAIN RESULTS

The following is the existence result for the common fixed point of
f and g:

Theorem 1. Let (X,Φ) be a Hausdorff uniform space and p an
A-distance on X such that X is p-bounded and S-complete. For
arbitrary x0 ∈ X, define a sequence {xn}∞n=0 iteratively by
xn = f(xn−1), n = 1, 2, ...
Suppose that f and g are commuting p-continuous or τ(Φ) - con-
tinuous selfmappings of X such that
(i) f(X) ⊆ g(X),
(ii) p(f(xi), f(xi)) = 0, ∀ xi ∈ X, i = 0, 1, 2, ...,
(iii) f, g : X −→ X satisfy the contractive condition (4) with
M ≥ 0.
Suppose also that ψ1 : <+ −→ <+ and ψ2 : <+ −→ <+ are com-
parison functions with ψ1(0) = 0.
Then, f and g have a common fixed point.

Proof. For arbitrary x0 ∈ X, select x1 ∈ X such that f(x0) =
g(x1). Similarly, for x1 ∈ X, select x2 ∈ X such that f(x1) = g(x2).
Continuing this process, we select xn ∈ X such that f(xn−1) =
g(xn).
We shall show that the sequence {f(xn)}∞n=0 so generated is a p-
Cauchy sequence.
Indeed, since xn = f(xn−1), n = 1, 2, ..., then by using conditions
(ii) and (iii) of the Theorem, we get

p(f(xn), f(xn+m)) ≤
(
ψ1(p(xn, g(xn))) + ψ2(p(g(xn), g(xn+m)))

)(
1

+Mp(xn, g(xn))
)
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=
(
ψ1(p(f(xn−1), f(xn−1))) + ψ2(p(f(xn−1), f(xn+m−1)))

)(
1 +

Mp(f(xn−1), f(xn−1))
)

=
(
ψ1(0) + ψ2(p(f(xn−1), f(xn+m−1)))

)(
1 +M(0)

)
=
(

0 + ψ2(p(f(xn−1), f(xn+m−1)))
)(

1 + 0
)

= ψ2

(
p(f(xn−1), f(xn+m−1))

)
≤ ψ2

(
ψ1(p(xn−1, g(xn−1))) + ψ2(p(g(xn−1), g(xn+m−1)))

)(
1 +

Mp(xn−1, g(xn−1))
)

= ψ2

(
ψ1(p(f(xn−2), f(xn−2))) + ψ2(p(f(xn−2), f(xn+m−2)))

)(
1 +

Mp(f(xn−2, f(xn−2)))
)

= ψ2

(
ψ1(0) + ψ2(p(f(xn−2), f(xn+m−2)))

)(
1 +M(0)

)
= ψ2

(
0 + ψ2(p(f(xn−2), f(xn+m−2)))

)(
1 + 0

)
= ψ2

2

(
p(f(xn−2), f(xn+m−2))

)
≤ ... ≤ ψn

2 (p(f(x0), f(xm))) ≤ ψn
2 (δp(X)),

which implies that

p(f(xn), f(xn+m)) ≤ ψn
2 (δp(X), (5)

where p(f(x0), f(xm))) ≤ δp(X) and
δp(X) = sup{p(x, y)|x, y ∈ X} <∞.
Using the definition of comparison function in (5) gives

lim
n−→∞

ψn
2 (δp(X)) = 0

and hence,
p(f(xn), f(xn+m)) −→ 0 as n −→∞.
Therefore, by using Lemma 1(c), we have that {f(xn)}∞n=0 is a p-
Cauchy sequence.
But X is S-complete. Hence, limn−→∞ p(f(xn), u)) = 0, for some
u ∈ X.
Since xn ∈ X implies that f(xn−1) = g(xn), therefore, we have
limn−→∞ p(g(xn), u)) = 0.
Also, since f and g are p-continuous, then

lim
n−→∞

p(f(g(xn)), f(u)) = lim
n−→∞

p(g(f(xn)), g(u)) = 0.

But f and g are commuting, therefore fg = gf . Hence,

lim
n−→∞

p(f(g(xn)), f(u)) = lim
n−→∞

p(f(g(xn)), g(u)) = 0.



EXISTENCE AND UNIQUENESS THEOREMS. . . 173

By applying Lemma 1(a), we have that f(u) = g(u).
Since f(u) = g(u) and fg = gf , then we have f(f(u)) = f(g(u)) =
g(f(u)) = g(g(u)).

We need to show that p(f(u), f(f(u))) = 0. Suppose on the con-
trary that p(f(u), f(f(u))) 6= 0. By using the contractive definition
(4) and the condition that ψ(t) < t, ∀ t > 0 in the Remark 1, we
obtain
p(f(u), f(f(u))) ≤

(
ψ1(p(u, g(u))) + ψ2(p(g(u), g(f(u))))

)(
1

+Mp(u, g(u))
)

=
(
ψ1(p(f(u), f(u)))+ψ2(p(f(u), f(f(u))))

)(
1+Mp(f(u), f(u))

)
=
(
ψ1(0) + ψ2(p(f(u), f(f(u))))

)(
1 +M(0)

)
=
(

0 + ψ2(p(f(u), f(f(u))))
)(

1 + 0
)

= ψ2(p(f(u), f(f(u))))
< p(f(u), f(f(u))),
which is a contradiction. Hence, p(f(u), f(f(u))) = 0.

By using condition (ii) of the Theorem, we have p(f(u), f(u)) = 0.
Therefore, since p(f(u), f(f(u))) = 0 and p(f(u), f(u)) = 0, by
using Lemma 1(a), we get f(f(u)) = f(u), which implies that f(u)
is a fixed point of f .
But, f(u) = f(f(u)) = f(g(u)) = g(f(u)), which shows that f(u)
is also a fixed point of g. Thus, f(u) is a common fixed point of f
and g.
The proof of when f and g are τ(Φ)-continuous is similar since S-
completeness implies p-Cauchy completeness.
This completes the proof.

Remark 4. The existence result in Theorem 1 is a generalization
of Theorem 3.1 of Aamri and El Moutawakil [1], Theorem 3.1 of
Olatinwo [13] as well as Theorem 3.1 of Bosede [6].
The next two Theorems establish the uniqueness of the common
fixed point of f and g.

Theorem 2. Let (X,Φ), f, g, ψ1, ψ2, {xn}∞n=0 be as defined in The-
orem 1 above and p an E-distance on X. Then, f and g have a
unique common fixed point.

Proof. Since an E-distance function p is also an A-distance, then
by Theorem 1 above, we know that f and g have a common fixed
point. Suppose that there exist u, v ∈ X such that f(u) = g(u) = u
and f(v) = g(v) = v.
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We need to show that u = v. Suppose on the contrary that u 6= v,
i.e. let p(u, v) 6= 0.
Then, by using the contractive definition (4) and the condition that
ψ(t) < t, ∀ t > 0 in the Remark 1, we obtain
p(u, v) = p(f(u), f(v))

≤
(
ψ1(p(u, g(u))) + ψ2(p(g(u), g(v)))

)(
1 +Mp(u, g(u))

)
=
(
ψ1(p(u, u)) + ψ2(p(u, v))

)(
1 +Mp(u, u)

)
=
(
ψ1(0) + ψ2(p(u, v))

)(
1 +M(0)

)
=
(

0 + ψ2(p(u, v))
)(

1 + 0
)

= ψ2(p(u, v))
< p(u, v),
which is a contradiction. Hence, we have p(u, v) = 0.
Similarly, we have p(v, u) = 0. By applying condition (p2) of Defini-
tion 3, we obtain p(u, u) ≤ p(u, v) + p(v, u), and hence p(u, u) = 0.
Since p(u, u) = 0 and p(u, v) = 0, then by using Lemma 1(a), we
get u = v.
This completes the proof.

Remark 5. The uniqueness result in Theorem 2 is a generalization
of Theorem 3.2 as well as Corollaries 3.1 and 3.2 of Aamri and El
Moutawakil [1].
Also, the uniqueness result in Theorem 2 is a generalization of The-
orem 3.3 of Olatinwo [13] as well as Theorem 3.3 of Bosede [6].

Theorem 3. Let (X,Φ), p, ψ1, ψ2 and {xn}∞n=0 be as defined in The-
orem 1 above. Suppose that f and g are p-compatible, p-continuous
or τ(Φ)-continuous selfmappings of X satisfying conditions (i), (ii)
and (iii) of Theorem 1 above. Then, f and g have a unique common
fixed point.

Proof. By Theorem 1 above, we know that f and g have a common
fixed point. Hence, for some u ∈ X, we have limn−→∞ p(f(xn, u)) =
limn−→∞ p(g(xn, u)) = 0.
Since f and g are p-continuous, then

lim
n−→∞

p(f(g(xn)), f(u)) = lim
n−→∞

p(g(f(xn)), g(u)) = 0.

Also, since f and g are p-compatible, then

lim
n−→∞

p(f(g(xn)), g(f(xn))) = 0.
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By applying condition (p2) of Definition 3, we obtain

p(f(g(xn)), g(u)) ≤ p(f(g(xn)), g(f(xn))) + p(g(f(xn)), g(u)).

Letting n −→∞ and using Lemma 1(a) yields

lim
n−→∞

p(f(g(xn)), g(u)) = 0.

Since limn−→∞ p(f(g(xn)), f(u)) = 0 and limn−→∞ p(f(g(xn)), g(u))
= 0, then by Lemma 1(a), we obtain f(u) = g(u).

The rest of the proof follows the same standard argument as in
Theorem 1 and therefore it is omitted.
This completes the proof.

Remark 6. The uniqueness result in Theorem 3 is a generaliza-
tion of Theorem 3.3 of Aamri and El Moutawakil [1]. Also, the
uniqueness result in Theorem 3 is a generalization of Theorem 3.5
of Olatinwo [13] as well as Theorem 3.5 of Bosede [6].
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[15] B. E. Rhoades, A comparison of various definitions of contractive mappings,
Trans. Amer. Math. Soc., 226, 257-290, 1977.
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