Journal of the	Vol. 31, pp. 167-176, 2012
Nigerian Mathematical Society	©Nigerian Mathematical Society

EXISTENCE AND UNIQUENESS THEOREMS FOR SOME COMMON FIXED POINTS IN HAUSDORFF UNIFORM SPACES

A. O. BOSEDE

ABSTRACT. In this paper, we prove some existence and uniqueness theorems for some common fixed point theorems in Hausdorff uniform spaces for selfmappings using the concepts of A-distance and E-distance. A class of ψ -contractive condition more general than those of Aamri and El Moutawakil [1], Olatinwo [13] and Bosede [6] was employed to establish our results. Our generalizations can be viewed as an improvement to some of the known results in literature.

Keywords and phrases: Hausdorff uniform space, A-distance, E-distance, Comparison functions and ψ -contractions. 2010 Mathematical Subject Classification: 47J25, 46H05, 47H10.

1. INTRODUCTION

Several authors such as Berinde [2], Jachymski [10], Kada et al [11], Rhoades [14], Rus [16], Wang et al [18] and Zeidler [19] studied the theory of fixed point or common fixed point for contractive selfmappings in complete metric spaces or Banach spaces in general.

Within the last two decades, Kang [12], Rodriguez-Montes and Charris [15] established some results on fixed and coincidence points of maps by means of appropriate W-contractive or W-expansive assumptions in uniform space.

In the sequel we shall define a uniform space as follows: Let X be a nonempty set and let Φ be a nonempty family of subsets of $X \times X$. The pair (X, Φ) is called a uniform space if it satisfies the following properties:

(i) if G is in Φ , then G contains the diagonal $\{(x, x) | x \in X\}$;

(ii) if G is in Φ and H is a subset of $X \times X$ which contains G, then H is in Φ ;

(iii) if G and H are in Φ , then $G \cap H$ is in Φ ;

(iv) if G is in Φ , then there exists H in Φ , such that, whenever (x, y) and (y, z)

Received by the editors March 21, 2012; Revised: May 26, 2012; Accepted: June 18, 2012

are in H, then (x, z) is in H;

(v) if G is in Φ , then $\{(y, x) | (x, y) \in G\}$ is also in Φ .

 Φ is called the uniform structure of X and its elements are called entourages or neighbourhoods or surroundings.

If property (v) is omitted, then (X, Φ) is called a quasiuniform space. [For examples, see Bourbaki [9] and Zeidler [19]].

In 2004, Aamri and El Moutawakil [1] proved some common fixed point theorems for some new contractive or expansive maps in uniform spaces by introducing the notions of an A-distance and an E-distance.

Aamri and El Moutawakil [1] introduced and employed the following contractive definition: Let $f, g : X \longrightarrow X$ be selfmappings of X. Then, we have

$$p(f(x), f(y)) \le \psi(p(g(x), g(y))), \ \forall x, y \in X$$
(1)

where $\psi : \Re^+ \longrightarrow \Re^+$ is a nondecreasing function satisfying (i) for each $t \in (0, +\infty), \ 0 < \psi(t)$,

(ii) $\lim_{n \to \infty} \psi^n(t) = 0, \forall t \in (0, +\infty).$

 ψ satisfies also the condition $\psi(t) < t$, for each t > 0.

In 2007, Olatinwo [13] established some common fixed point theorems by employing the following contractive definition: Let $f, g : X \longrightarrow X$ be selfmappings of X. There exist $L \ge 0$ and a comparison function $\psi : \Re^+ \longrightarrow \Re^+$ such that $\forall x, y \in X$, we have

$$p(f(x), f(y)) \le Lp(x, g(x)) + \psi(p(g(x), g(y))), \ \forall x, y \in X$$
(2)

Recently, the author [6] proved some common fixed point theorems by employing the following contractive definition: Let $f, g: X \longrightarrow X$ be selfmappings of X. There exist comparison functions $\psi_1 :$ $\Re^+ \longrightarrow \Re^+$ and $\psi_2 : \Re^+ \longrightarrow \Re^+$ with $\psi_1(0) = 0$ such that $\forall x, y \in X$, we have

$$p(f(x), f(y)) \le \psi_1(p(x, g(x))) + \psi_2(p(g(x), g(y))), \ \forall x, y \in X$$
(3)

In this paper, we shall establish some common fixed point theorems by using a contractive condition more general than (1), (2)and (3).

We shall also employ the concepts of an A-distance, an E-distance as well as the notion of comparison function in this paper.

2. PRELIMINARY

The following definitions contained in Aamri and El Moutawakil [1] shall be required in the sequel: Let (X, Φ) be a uniform space

and $(X, \tau(\Phi))$ a topological space whenever topological concepts are mentioned in the context of a uniform space (X, Φ) .

Definition 1. If $H \in \Phi$ and $(x, y) \in H, (y, x) \in H$, x and y are said to be *H*-close. A sequence $\{x_n\}_{n=0}^{\infty} \subset X$ is said to be a Cauchy sequence for Φ if for any $H \in \Phi$, there exists $N \ge 1$ such that x_n and x_m are *H*-close for $n, m \ge N$.

Definition 2. A function $p : X \times X \longrightarrow \Re^+$ is said to be an *A*distance if for any $H \in \Phi$, there exists $\delta > 0$ such that if $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ for some $z \in X$, then $(x, y) \in H$.

Definition 3. A function $p : X \times X \longrightarrow \Re^+$ is said to be an *E*distance if

 $(p_1) p$ is an A-distance,

 $(p_2) \ p(x,y) \le p(x,z) + p(z,y), \ \forall \ x,y \in X.$

Definition 4. A uniform space (X, Φ) is said to be *Hausdorff* if and only if the intersection of all $H \in \Phi$ reduces to the diagonal $\{(x, x) | x \in X\}$, i.e. if $(x, y) \in H$ for all $H \in \Phi$ implies x = y. This guarantees the uniqueness of limits of sequences. $H \in \Phi$ is said to be symmetrical if $H = H^{-1} = \{(y, x) | (x, y) \in H\}$.

Definition 5. Let (X, Φ) be a uniform space and p be an A-distance on X.

(i) Sequence $\{x_n\}_{n=0}^{\infty}$ is *p*-Cauchy if given $\epsilon > 0$, there exists N such that if m, n > N, then $p(x_m, x_n) < \epsilon$.

(ii) X is said to be S-complete if for every p-Cauchy sequence $\{x_n\}_{n=0}^{\infty}$, there exists $x \in X$ with $\lim_{n \to \infty} p(x_n, x) = 0$.

(iii) X is said to be *p*-Cauchy complete if for every *p*-Cauchy sequence $\{x_n\}_{n=0}^{\infty}$, there exists $x \in X$ with $\lim_{n \to \infty} x_n = x$ with respect to $\tau(\Phi)$.

(iv) $f: X \longrightarrow X$ is said to be *p*-continuous if $\lim_{n \to \infty} p(x_n, x) = 0$ implies that $\lim_{n \to \infty} p(f(x_n), f(x)) = 0$.

(v) $f: X \longrightarrow X$ is $\tau(\Phi)$ -continuous if $\lim_{n \longrightarrow \infty} x_n = x$ with respect to $\tau(\Phi)$ implies $\lim_{n \longrightarrow \infty} f(x_n) = f(x)$ with respect to $\tau(\Phi)$.

(vi) X is said to be *p*-bounded if $\delta_p = \sup\{p(x, y) | x, y \in X\} < \infty$.

Definition 6. Let (X, Φ) be a Hausdorff uniform space and p an A-distance on X. Two selfmappings f and g on X are said to be *p*-compatible if, for each sequence $\{x_n\}_{n=0}^{\infty}$ of X such that $\lim_{n \to \infty} p(f(x_n), u) = \lim_{n \to \infty} p(g(x_n), u) = 0$ for some $u \in X$, then we have $\lim_{n \to \infty} p(f(g(x_n)), g(f(x_n))) = 0$.

The following definition which is also required in the sequel to establish some common fixed point results is contained in Berinde [2], Rus [16] and Rus et al [17].

Definition 7. A function $\psi : \Re^+ \longrightarrow \Re^+$ is called a *comparison* function if

(i) ψ is monotone increasing;

(ii) $\lim_{n \to \infty} \psi^n(t) = 0, \ \forall \ t \ge 0.$

Remark 1. Every comparison function satisfies the condition $\psi(0) = 0$. Both conditions (i) and (ii) imply that $\psi(t) < t$, $\forall t > 0$. Our aim in this paper is to establish some common fixed point theorems by using the following contractive condition more general than (1), (2) and (3): Let $f, g: X \longrightarrow X$ be selfmappings of X. There exist $M \ge 0$ and comparison functions $\psi_1: \Re^+ \longrightarrow \Re^+$ and $\psi_2: \Re^+ \longrightarrow \Re^+$ with $\psi_1(0) = 0$ such that $\forall x, y \in X$, we have

$$p(f(x), f(y)) \le \left(\psi_1(p(x, g(x))) + \psi_2(p(g(x), g(y)))\right) X$$

$$\left(1 + Mp(x, g(x))\right), \tag{4}$$

for all $x, y \in X$.

Remark 2. The contractive condition (4) is more general than (1), (2) and (3) in the sense that if M = 0 in (4), then we obtain

$$p(f(x), f(y)) \le \psi_1(p(x, g(x))) + \psi_2(p(g(x), g(y))), \ \forall x, y \in X$$

which is the contractive condition employed by Bosede [6] in (3). Also, if M = 0 and $\psi_1(u) = Lu$ in (4), for $L \ge 0$, $u \in \Re^+$, then we obtain

$$p(f(x), f(y)) \le Lp(x, g(x)) + \psi_2(p(g(x), g(y))), \ \forall x, y \in X$$

which is the contractive condition employed by Olatinwo [13] in (2).

Moreover, if L = 0 in the above inequality, then we obtain (1), which was employed by Aamri and El Moutawakil [1].

Thus, our contractive condition (4) is a generalization of the contractive definitions (1), (2) and (3) of Aamri and El Moutawakil [1], Olatinwo [13] and Bosede [6] respectively.

In the sequel, we shall require the following Lemma which is contained in Kang [12], Rodríguez-Montes and Charris [15] and Aamri and El Moutawakil [1].

Lemma 1. Let (X, Φ) be a Hausdorff uniform space and p an Adistance on X. Let $\{x_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty}$ be arbitrary sequences in X

and $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$ be sequences in \Re^+ converging to 0. Then, for $x, y, z \in X$, the following hold:

(a) If $p(x_n, y) \leq \alpha_n$ and $p(x_n, z) \leq \beta_n$, $\forall n \in N$, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0, then y = z.

(b) If $p(x_n, y_n) \leq \alpha_n$ and $p(x_n, z) \leq \beta_n$, $\forall n \in N$, then $\{y_n\}_{n=0}^{\infty}$ converges to z.

(c) If $p(x_n, x_m) \leq \alpha_n$, $\forall m > n$, then $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence in (X, Φ) .

Remark 3. A sequence in X is p-Cauchy if it satisfies the usual metric property. [For Example, See Aamri and El Moutawakil [1]].

3. THE MAIN RESULTS

The following is the existence result for the common fixed point of f and g:

Theorem 1. Let (X, Φ) be a Hausdorff uniform space and p an A-distance on X such that X is p-bounded and S-complete. For arbitrary $x_0 \in X$, define a sequence $\{x_n\}_{n=0}^{\infty}$ iteratively by $x_n = f(x_{n-1}), n = 1, 2, ...$

Suppose that f and g are commuting p-continuous or $\tau(\Phi)$ - continuous selfmappings of X such that

(i) $f(X) \subseteq g(X)$,

(ii) $p(f(x_i), f(x_i)) = 0, \ \forall \ x_i \in X, \ i = 0, 1, 2, ...,$

(iii) $f, g : X \longrightarrow X$ satisfy the contractive condition (4) with $M \ge 0$.

Suppose also that $\psi_1 : \Re^+ \longrightarrow \Re^+$ and $\psi_2 : \Re^+ \longrightarrow \Re^+$ are comparison functions with $\psi_1(0) = 0$.

Then, f and g have a common fixed point.

Proof. For arbitrary $x_0 \in X$, select $x_1 \in X$ such that $f(x_0) = g(x_1)$. Similarly, for $x_1 \in X$, select $x_2 \in X$ such that $f(x_1) = g(x_2)$. Continuing this process, we select $x_n \in X$ such that $f(x_{n-1}) = g(x_n)$.

We shall show that the sequence $\{f(x_n)\}_{n=0}^{\infty}$ so generated is a *p*-Cauchy sequence.

Indeed, since $x_n = f(x_{n-1})$, n = 1, 2, ..., then by using conditions (ii) and (iii) of the Theorem, we get

$$p(f(x_n), f(x_{n+m})) \le \left(\psi_1(p(x_n, g(x_n))) + \psi_2(p(g(x_n), g(x_{n+m})))\right) \left(1 + Mp(x_n, g(x_n))\right)$$

$$= \left(\psi_1(p(f(x_{n-1}), f(x_{n-1}))) + \psi_2(p(f(x_{n-1}), f(x_{n+m-1})))\right) \left(1 + Mp(f(x_{n-1}), f(x_{n-1}))\right) \\ = \left(\psi_1(0) + \psi_2(p(f(x_{n-1}), f(x_{n+m-1})))\right) \left(1 + M(0)\right) \\ = \left(0 + \psi_2(p(f(x_{n-1}), f(x_{n+m-1})))\right) \left(1 + 0\right) \\ = \psi_2\left(p(f(x_{n-1}), f(x_{n+m-1}))\right) \\ \le \psi_2\left(\psi_1(p(x_{n-1}, g(x_{n-1}))) + \psi_2(p(g(x_{n-1}), g(x_{n+m-1}))))\right) \left(1 + Mp(x_{n-1}, g(x_{n-1}))\right) \\ = \psi_2\left(\psi_1(p(f(x_{n-2}), f(x_{n-2}))) + \psi_2(p(f(x_{n-2}), f(x_{n+m-2}))))\right) \left(1 + Mp(f(x_{n-2}, f(x_{n-2})))\right) \\ = \psi_2\left(\psi_1(0) + \psi_2(p(f(x_{n-2}), f(x_{n+m-2})))\right) \left(1 + M(0)\right) \\ = \psi_2\left(0 + \psi_2(p(f(x_{n-2}), f(x_{n+m-2})))\right) \left(1 + 0\right) \\ = \psi_2^2\left(p(f(x_{n-2}), f(x_{n+m-2})))\right) \\ \le \dots \le \psi_2^n(p(f(x_0), f(x_m))) \le \psi_2^n(\delta_p(X)),$$
which implies that

$$p(f(x_n), f(x_{n+m})) \le \psi_2^n(\delta_p(X), \tag{5}$$

where $p(f(x_0), f(x_m)) \leq \delta_p(X)$ and $\delta_p(X) = \sup\{p(x, y) | x, y \in X\} < \infty.$ Using the definition of comparison function in (5) gives

$$\lim_{n \to \infty} \psi_2^n(\delta_p(X)) = 0$$

and hence,

 $p(f(x_n), f(x_{n+m})) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$

Therefore, by using Lemma 1(c), we have that $\{f(x_n)\}_{n=0}^{\infty}$ is a *p*-Cauchy sequence.

But X is S-complete. Hence, $\lim_{n \to \infty} p(f(x_n), u) = 0$, for some $u \in X$.

Since $x_n \in X$ implies that $f(x_{n-1}) = g(x_n)$, therefore, we have $\lim_{n \to \infty} p(g(x_n), u) = 0$.

Also, since f and g are p-continuous, then

$$\lim_{n \to \infty} p(f(g(x_n)), f(u)) = \lim_{n \to \infty} p(g(f(x_n)), g(u)) = 0.$$

But f and g are commuting, therefore fg = gf. Hence,

$$\lim_{n \to \infty} p(f(g(x_n)), f(u)) = \lim_{n \to \infty} p(f(g(x_n)), g(u)) = 0.$$

By applying Lemma 1(a), we have that f(u) = g(u). Since f(u) = g(u) and fg = gf, then we have f(f(u)) = f(g(u)) = g(f(u)) = g(g(u)).

We need to show that p(f(u), f(f(u))) = 0. Suppose on the contrary that $p(f(u), f(f(u))) \neq 0$. By using the contractive definition (4) and the condition that $\psi(t) < t$, $\forall t > 0$ in the Remark 1, we obtain

$$\begin{split} p(f(u), f(f(u))) &\leq \left(\psi_1(p(u, g(u))) + \psi_2(p(g(u), g(f(u))))\right) \left(1 \\ &+ Mp(u, g(u))\right) \\ &= \left(\psi_1(p(f(u), f(u))) + \psi_2(p(f(u), f(f(u))))\right) \left(1 + Mp(f(u), f(u))\right) \\ &= \left(\psi_1(0) + \psi_2(p(f(u), f(f(u))))\right) \left(1 + M(0)\right) \\ &= \left(0 + \psi_2(p(f(u), f(f(u))))\right) \left(1 + 0\right) \\ &= \psi_2(p(f(u), f(f(u)))) \\ &< p(f(u), f(f(u)))) \\ &< p(f(u), f(f(u))), \\ \text{which is a contradiction. Hence, } p(f(u), f(f(u))) = 0. \end{split}$$

By using condition (ii) of the Theorem, we have p(f(u), f(u)) = 0. Therefore, since p(f(u), f(f(u))) = 0 and p(f(u), f(u)) = 0, by using Lemma 1(a), we get f(f(u)) = f(u), which implies that f(u) is a fixed point of f.

But, f(u) = f(f(u)) = f(g(u)) = g(f(u)), which shows that f(u) is also a fixed point of g. Thus, f(u) is a common fixed point of f and g.

The proof of when f and g are $\tau(\Phi)$ -continuous is similar since S-completeness implies p-Cauchy completeness. This completes the proof.

Remark 4. The existence result in Theorem 1 is a generalization of Theorem 3.1 of Aamri and El Moutawakil [1], Theorem 3.1 of Olatinwo [13] as well as Theorem 3.1 of Bosede [6].

The next two Theorems establish the uniqueness of the common fixed point of f and g.

Theorem 2. Let $(X, \Phi), f, g, \psi_1, \psi_2, \{x_n\}_{n=0}^{\infty}$ be as defined in Theorem 1 above and p an E-distance on X. Then, f and g have a unique common fixed point.

Proof. Since an *E*-distance function p is also an *A*-distance, then by Theorem 1 above, we know that f and g have a common fixed point. Suppose that there exist $u, v \in X$ such that f(u) = g(u) = uand f(v) = g(v) = v.

We need to show that u = v. Suppose on the contrary that $u \neq v$, i.e. let $p(u, v) \neq 0$.

Then, by using the contractive definition (4) and the condition that $\psi(t) < t, \ \forall \ t > 0$ in the Remark 1, we obtain p(u, v) = p(f(u), f(v))

$$p(u, v) = p(f(u), f(v))$$

$$\leq \left(\psi_1(p(u, g(u))) + \psi_2(p(g(u), g(v)))\right) \left(1 + Mp(u, g(u))\right)$$

$$= \left(\psi_1(p(u, u)) + \psi_2(p(u, v))\right) \left(1 + Mp(u, u)\right)$$

$$= \left(\psi_1(0) + \psi_2(p(u, v))\right) \left(1 + M(0)\right)$$

$$= \left(0 + \psi_2(p(u, v))\right) \left(1 + 0\right)$$

$$= \psi_2(p(u, v))$$

$$< p(u, v),$$

which is a contradiction. Hence, we have p(u, v) = 0. Similarly, we have p(v, u) = 0. By applying condition (p_2) of Definition 3, we obtain $p(u, u) \leq p(u, v) + p(v, u)$, and hence p(u, u) = 0. Since p(u, u) = 0 and p(u, v) = 0, then by using Lemma 1(a), we get u = v.

This completes the proof.

Remark 5. The uniqueness result in Theorem 2 is a generalization of Theorem 3.2 as well as Corollaries 3.1 and 3.2 of Aamri and El Moutawakil [1].

Also, the uniqueness result in Theorem 2 is a generalization of Theorem 3.3 of Olatinwo [13] as well as Theorem 3.3 of Bosede [6].

Theorem 3. Let $(X, \Phi), p, \psi_1, \psi_2$ and $\{x_n\}_{n=0}^{\infty}$ be as defined in Theorem 1 above. Suppose that f and g are p-compatible, p-continuous or $\tau(\Phi)$ -continuous selfmappings of X satisfying conditions (i), (ii) and (iii) of Theorem 1 above. Then, f and g have a unique common fixed point.

Proof. By Theorem 1 above, we know that f and g have a common fixed point. Hence, for some $u \in X$, we have $\lim_{n \to \infty} p(f(x_n, u)) = \lim_{n \to \infty} p(g(x_n, u)) = 0$.

Since f and g are p-continuous, then

$$\lim_{n \to \infty} p(f(g(x_n)), f(u)) = \lim_{n \to \infty} p(g(f(x_n)), g(u)) = 0.$$

Also, since f and g are p-compatible, then

$$\lim_{n \to \infty} p(f(g(x_n)), g(f(x_n))) = 0.$$

By applying condition (p_2) of Definition 3, we obtain

$$p(f(g(x_n)), g(u)) \le p(f(g(x_n)), g(f(x_n))) + p(g(f(x_n)), g(u)).$$

Letting $n \longrightarrow \infty$ and using Lemma 1(a) yields

$$\lim_{n \to \infty} p(f(g(x_n)), g(u)) = 0.$$

Since $\lim_{n \to \infty} p(f(g(x_n)), f(u)) = 0$ and $\lim_{n \to \infty} p(f(g(x_n)), g(u)) = 0$, then by Lemma 1(a), we obtain f(u) = g(u).

The rest of the proof follows the same standard argument as in Theorem 1 and therefore it is omitted.

This completes the proof.

Remark 6. The uniqueness result in Theorem 3 is a generalization of Theorem 3.3 of Aamri and El Moutawakil [1]. Also, the uniqueness result in Theorem 3 is a generalization of Theorem 3.5 of Olatinwo [13] as well as Theorem 3.5 of Bosede [6].

REFERENCES

- M. Aamri and D. El Moutawakil, Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20 (1), 83-91, 2004.
- [2] V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, 2002.
- [3] A. O. Bosede, Some common fixed point theorems in normed linear spaces, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 49 (1), 19-26, 2010.
- [4] A. O. Bosede, Strong convergence results for the Jungck-Ishikawa and Jungck-Mann iteration processes, Bulletin of Mathematical Analysis and Applications, 2 (3), 65-73, 2010.
- [5] A. O. Bosede, On some common fixed point theorems in uniform spaces, General Mathematics, 19 (2), 41-48, 2011.
- [6] A. O. Bosede, On generalizations of some common fixed point theorems in uniform spaces, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 27 (2), 289-297, 2011.
- [7] A. O. Bosede, Strong convergence of Noor iteration for a general class of functions, Bulletin of Mathematical Analysis and Applications, 3 (4), 140-145, 2011.
- [8] A. O. Bosede and B. E. Rhoades, Stability of Picard and Mann iterations for a general class of functions, Journal of Advanced Mathematical Studies, 3 (2), 23-25, 2010.
- [9] N. Bourbaki, Éléments de mathématique. Fasc. II. Livre III: Topologie générale. Chapitre 1: Structures topologiques. Chapitre 2: Structures uniformes. Quatriéme édition. Actualités Scientifiques et Industrielles, No. 1142. Hermann, Paris, 1965.
- [10] J. Jachymski, Fixed point theorems for expansive mappings. Math. Japon., 42 (1), 131-136, 1995.
- [11] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44 (2), 381-391, 1996.
- [13] S. M. Kang, Fixed points for expansion mappings, Math. Japon., 38 (4), 713-717, 1993.

- [14] M. O. Olatinwo, Some common fixed point theorems for selfmappings in uniform spaces, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 23, 47-54, 2007.
- [15] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226, 257-290, 1977.
- [16] J. Rodríguez-Montes and J. A. Charris, Fixed points for W-contractive or Wexpansive maps in uniform spaces: toward a unified approach, Southwest J. Pure Appl. Math., 1, 93-101, 2001.
- [17] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
- [18] I. A. Rus, A. Petrusel and G. Petrusel, Fixed point theory: 1950-2000, Romanian contributions, House of the Book of Science, Cluj-Napoca, 2002.
- [19] S. Z. Wang, B. Y. Li, Z. M. Gao and K. Iséki, Some fixed point theorems on expansion mappings Math. Japon., 29 (4), 631-637, 1984.
- [20] E. Zeidler, Nonlinear functional analysis and its applications I: Fixed Point Theorems, Springer-Verlag, New York, 1986.

DEPARTMENT OF MATHEMATICS, LAGOS STATE UNIVERSITY, OJO, NIGERIA *E-mail address*: aolubosede@yahoo.co.uk