STRONG CONVERGENCE OF A MODIFIED PICARD PROCESS TO A COMMOM FIXED POINT OF A FINITE FAMILY OF LIPSCHITZIAN HEMICONTRACTIVE MAPS

Chika MOORE AND A. C. NNUBIA¹

ABSTRACT. Let K be a closed convex nonempty subset of a Hilbert space H and let the set of the common fixed points of a finite family of Lipschitzian hemicontractive maps from K into itself be non empty. Sufficient conditions for the strong convergence of the sequence of successive approximations generated by a Picard-like process to a common fixed point of the family are proved.

Keywords and phrases: boundedly compact, completely continuous, Picard process, finite family, hemicontraction. 2010 Mathematical Subject Classification: 47H10, 47J25.

1. INTRODUCTION

Let H be a Hilbert space and let K be a nonempty subset of H. K is said to be (sequentially) compact if every closed bounded sequence in K has a subsequence that converges in K. K is said to be boundedly compact if every bounded subset of K is compact. In finite dimensional spaces, closed subsets are boundedly compact. Given a subset S of K, we shall denote by co(S) and ccl(S) the convex hull and the closed convex hull of S respectively. If K is boundedly compact convex and S is bounded, then co(S) and hence ccl(S) are compact convex subsets of K.

A map $T: K \to E$ is said to be semi-compact if for any bounded sequence $\{x_n\} \subset K$ such that $||x_n - Tx_n|| \to 0$ as $n \to \infty$ there exists a subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that x_{n_j} converges strongly to some $x^* \in K$ as $j \to \infty$. The map T is said to be demicompact at $z \in E$ if for any bounded sequence $\{x_n\} \subset K$ such that $||x_n - Tx_n|| \to z$ as $n \to \infty$ there exist a subsequence $\{x_{n_j}\} \subset \{x_n\}$ and a point $p \in K$ such that x_{n_j} converges strongly to p as $j \to \infty$. (Observe that if T is additionally continuous, then p - Tp = z).

Received by the editors August 25, 2010; Revised: October 11, 2011; Accepted: June 4, 2012

¹Corresponding author

A nonlinear map $T: K \to E$ is said to be completely continuous if it maps bounded sets into relatively compact sets.Let T be a self-mapping on K. T is said to be Lipschitzian if $\exists L \ge 0$ such that

$$||Tx - Ty|| \le L||x - y||, \qquad \forall x, y \in K.$$
(1)

If L = 1 then T is called *nonexpansive* and if L < 1 then the mapping T is called a contraction. The Mapping T with domain D(T) and the range R(T) in H is called pseudocontractive if $\forall x, y \in D(T)$,

$$||Tx - Ty||^{2} \le ||x - y||^{2} + ||(I - T)x - (I - T)y||^{2}.$$
 (2)

If (2) holds for all $x \in D(T)$ and $y \in F(T)$ (fixed point set of T), then T is said to be hemicontractive.

The class of pseudocontractive maps has been extensively studied (see e.g [1]-[6] and the references therein). It is clear that the important class of nonexpansive mappings is a subclass of the class of pseudocontractive maps.

In [4], Ishikawa introduced a new iteration method and proved that it converges strongly to a fixed point of a Lipschitz pseudocontractive map defined on a compact convex subset of a Hilbert space. In fact, he proved the following result.

Theorem 1 (Ishikawa [4])

Let K be a compact convex nonempty subset of a Hilbert space and let $T : K \to K$ be a Lipschitz Pseudocontractive map. Let $\{\alpha_n\}, \{\beta_n\}$ be real sequences satisfying the following conditions:

(1)
$$0 < \alpha_n \le \beta_n < 1.$$

(2) $\lim_{n \to \infty} \beta_n = 0.$
(3) $\Sigma \alpha_n \beta_n = \infty.$

Then starting with an arbitrary $x_0 \in K$ the sequence $\{x_n\}$ of successive approximations defined by

$$x_{n+1} = \alpha_n T[\beta_n T x_n + (1 - \beta_n) x_n] + (1 - \alpha_n) x_n; \ n \ge 0,$$
(3)

converges strongly to a fixed point of T.

This result has been generalised in several ways by many authors see e.g. Li Qihou [5]who proved Theorem 1 in the case where T is a Lipschitz hemicontraction. Chidume and Moore [1] who proved Theorem 1 in the case where T is a continuous hemicontraction and for iteration process with errors, Ghosh and Debnath[3] who proved the convergence of a Picard-like process to a fixed point of a quasi-nonexpansive map.

Our purpose in this paper is to construct a Picard-like iteration process which converges strongly to a common fixed point of a finite family of Lipschitz hemicontractive self maps of a closed convex nonempty subset of a Hilbert space.

2. MAIN RESULT

We need the following lemma in this work.

Lemma 1: For any x, y, z in a Hilbert space H and a real number $\lambda \in [0,1],$

$$\|\lambda x + (1-\lambda)y - z\|^{2} = \lambda \|x - z\|^{2} + (1-\lambda)\|y - z\|^{2} - \lambda(1-\lambda)\|x - y\|^{2}.$$
(4)

We define the following auxilliary maps: $\alpha, \beta \in (0, 1)$ constants;

$$S_{i\beta} = (1-\beta)I + \beta T_i; \ i \in \{1, 2, ..., N\}.$$
(5)

$$T_{i\alpha\beta} = (1-\alpha)I + \alpha T_i S_{i\beta}.$$
 (6)

Theorem 1: Let H be a real Hilbert space and K a nonempty closed convex subset of H and let $\{T_i\}_{i=1}^N$ be a finite family of Lipschitzian(with constant $L_i > 0$) hemicontractive maps from K into itself such that $F = \bigcap_{i=1}^N F(T_i)$ is not empty. Let $L := \max_{1 \le i \le N} \{L_i\}$, and choose $\alpha, \beta \in (0, 1)$ such that $0 < \alpha < \beta < 1$ $\frac{1}{1+\sqrt{1+L^2}}$. Starting with an arbitrary $x_0 \in K$, define the iterative sequence $\{x_n\}$ by

$$x_{n+1} = T_{i\alpha\beta}x_n; \qquad n \ge 0 \qquad n+1 \equiv i \mod N, \tag{7}$$

then

- (1) $\{x_n\}$ is bounded. (2) $\lim_{n \to \infty} ||x_n x^*||$ exists for $x^* \in F$. (3) $\forall i \in \{1, 2, ..., N\}$. $\lim_{n \to \infty} ||x_n T_i x_n|| = 0$.

Proof: Let $x^* \in \bigcap_{i=1}^N F(T_i)$. Now,

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &= \|T_{i\alpha\beta}x_n - x^*\|^2 \\ &= \|(1 - \alpha)x_n + \alpha T_i S_{i\beta}x_n - x^*\|^2 \\ &= (1 - \alpha)\|x_n - x^*\|^2 + \alpha \|T_i S_{i\beta}x_n - x^*\|^2 \\ &- \alpha (1 - \alpha)\|T_i S_{i\beta}x_n - x_n\|^2 \\ &\leq (1 - \alpha)\|x_n - x^*\|^2 + \alpha [\|S_{i\beta}x_n - x^*\|^2 \\ &+ \|S_{i\beta}x_n - T_i S_{i\beta}x_n\|^2] \\ &- \alpha (1 - \alpha)\|T_i S_{i\beta}x_n - x_n\|^2. \end{aligned}$$

$$||S_{i\beta}x_n - x^*||^2 = ||(1 - \beta)x_n + \beta T_i x_n - x^*||^2$$

= $(1 - \beta)||x_n - x^*||^2 + \beta ||T_i x_n - x^*||^2$
 $-\beta(1 - \beta)||T_i x_n - x_n||^2$
 $\leq (1 - \beta)||x_n - x^*||^2 + \beta(||x_n - x^*||^2)$
 $+ ||x_n - T_i x_n||^2) - \beta(1 - \beta)||T_i x_n - x_n||^2$
= $||x_n - x^*||^2 + \beta^2 ||x_n - T_i x_n||^2.$

Also,

$$||S_{i\beta}x_n - T_iS_{i\beta}x_n||^2 = ||(1 - \beta)x_n + \beta T_ix_n - T_iS_{i\beta}x_n||^2$$

= $(1 - \beta)||x_n - T_iS_{i\beta}x_n||^2$
 $+\beta||T_ix_n - T_iS_{i\beta}x_n||^2$
 $-\beta(1 - \beta)||T_ix_n - x_n||^2.$

But

$$\begin{aligned} \|T_{i}x_{n} - T_{i}S_{i\beta}x_{n}\|^{2} &\leq L_{i}^{2}\|x_{n} - S_{i\beta}x_{n}\|^{2} \\ &= L_{i}^{2}\|x_{n} - (1 - \beta)x_{n} - \beta T_{i}x_{n}\|^{2} \\ &= \beta^{2}L_{i}^{2}\|x_{n} - T_{i}x_{n}\|^{2} \\ &\leq \beta^{2}L^{2}\|x_{n} - T_{i}x_{n}\|^{2} \end{aligned}$$

So that

$$||S_{i\beta}x_n - T_iS_{i\beta}x_n||^2 \leq (1 - \beta)||x_n - T_iS_{i\beta}x_n||^2 + \beta^3 L^2 ||x_n - T_ix_n||^2 - \beta(1 - \beta)||T_ix_n - x_n||^2 = (\beta^3 L^2 + \beta^2 - \beta)||x_n - T_ix_n||^2 + (1 - \beta)||x_n - T_iS_{i\beta}x_n||^2.$$

180

Hence

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &\leq (1 - \alpha) \|x_n - x^*\|^2 + \alpha [\|x_n - x^*\|^2 \\ &+ \beta^2 \|x_n - T_i x_n\|^2 \\ &+ (\beta^3 L^2 + \beta^2 - \beta) \|x_n - T_i x_n\|^2 \\ &+ (1 - \beta) \|x_n - T_i S_{i\beta} x_n\|^2] \\ &- \alpha (1 - \alpha) \|x_n - T_i S_{i\beta} x_n\|^2 . \end{aligned}$$
$$= \|x_n - x^*\|^2 - \alpha \beta (1 - 2\beta - \beta^2 L^2) \|x_n - T_i x_n\|^2 \\ &- \alpha (\beta - \alpha) \|x_n - T_i S_{i\beta} x_n\|^2 \\ &\leq \|x_n - x^*\|^2 - \alpha \beta (1 - 2\beta - \beta^2 L^2) \|x_n - T_i x_n\|^2 . \end{aligned}$$

Thus,

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &\leq \|x_n - x^*\|^2 - c\alpha\beta \|x_n - T_i x_n\|^2 \\ &\leq \|x_n - x^*\|^2, \end{aligned}$$

where $c := 1 - 2\beta - \beta^2 L^2 > 0$. Thus, conditions (1)and (2) above hold.

Now $\forall i \in \{1, 2, ..., N\},\$

$$c\alpha\beta \|x_n - T_i x_n\|^2 \le \|x_n - x^*\|^2 - \|x_{n+1} - x^*\|^2.$$
(8)

Hence, summing above equation from n = 0 and observing that the right hand side telescopes, we have

$$c\alpha\beta\sum_{n\geq 0} \|x_n - T_i x_n\|^2 \le \|x_0 - x^*\|^2 < \infty; \forall i \in \{1, ..., N\}.$$

Thus,

$$\sum_{n\geq 0} \|x_n - T_i x_n\|^2 < \infty; \forall i \in \{1, ..., N\}.$$

Which implies that

$$\lim_{n \to \infty} \|x_n - T_i x_n\| = 0; \forall i \in \{1, ..., N\}.$$
(9)

This completes the proof.

Remark 1: Suppose that $\{x_n\}$ has a convergent subsequence $\{x_{n_j}\}$. Let $x_{n_j} \to p$ as $j \to \infty$. Since $x_n - T_i x_n \to 0$ as $n \to \infty \forall i \in \{1, 2, ..., N\}$. it implies that $x_{n_j} - T_i x_{n_j} \to 0$ as $j \to \infty \forall i \in I$ and that $T_i x_{n_j} \to T_i p$ as $j \to \infty \forall i$ by continuity of T_i . So, $\|p - T_i p\| = \lim_{n \to \infty} \|x_{n_j} - T_i x_{n_j}\| = 0, \forall i$ implying that $p \in F$. Thus, $\|x_{n+1} - p\| \le \|x_n - p\|$ and $\lim_{n \to \infty} \|x_n - p\|$ exists but $\lim_{n \to \infty} \|x_{n_j} - p\| = 0$, so $\lim_{n \to \infty} \|x_n - p\| = 0$. Hence $x_n \to x^* (= p)$ as $n \to \infty$. Conditions under which $\{x_n\}$ has a convergent subsequence include

(1) T_i is completely continuous $\forall i \in \{1, ..., N\}$.

(2) T_i is demicompact $\forall i \in \{1, ..., N\}$.

- (3) T_i is semicompact for some $i \in \{1, ..., N\}$.
- (4) K is compact.
- (5) K is boundedly compact.

A map $A: H \to H$ is said to be accretive or monotone if $\forall x, y \in H$ and $\forall \alpha > 0$

$$||x - y + \alpha (Ax - Ay)|| \ge ||x - y||.$$
(10)

If the above holds $\forall x \in H$ and $\forall y \in Z(A) := \{w \in H | Aw = 0\}$ (the zero set of A), then A is said to be quasi-accretive. It is easy to see that T is hemicontractive if and only if A = I - T is quasi-accretive. Now, let

$$G_{i\beta} = I - \beta A_i; \ i \in \{1, ..., N\}.$$
 (11)

$$A_{i\alpha\beta} = I - \alpha\beta A_i - \alpha A_i G_{i\beta}. \tag{12}$$

We have the following theorem as an easy corollary to Theorem 2.1.

Theorem 2: Let H be a real Hilbert space and let $A_i : H \to H; i \in \{1, 2, ..., N\}$ be a finite family of L_i -Lipschitzian quasi-accretive maps such that the simultaneous nonlinear equations $A_i x = 0; i \in \{1, 2, ..., N\}$ have a solution $x^* \in H$. Let $L := \max_{1 \le i \le N} \{L_i\}$, and choose $\alpha, \beta \in (0, 1)$ such that $0 < \alpha < \beta < \frac{1}{1 + \sqrt{1 + L^2}}$. Starting with an arbitrary $x_o \in H$ define the iterative sequence $\{x_n\}$ by

$$x_{n+1} = A_{i\alpha\beta}x_n; \quad n \ge 0; \quad n+1 \equiv i \mod N.$$
(13)

then

(1) $\{x_n\}$ is bounded.

item
$$\lim_{n \to \infty} \|x_n - x^*\| \text{ exists } \forall x^* \in \bigcap_{i=1}^N Z(A_i)$$
(2)
$$\lim_{n \to \infty} \|A_i x_n\| = 0; \quad \forall i \in \{1, 2, ..., N\}.$$

Proof:

Let $T_i = I - A_i$. Then T_i is a Lipschitzian hemicontraction. Further,

$$S_{i\beta} = (1-\beta)I + \beta T_i = I - \beta (I - T_i) = I - \beta A_i = G_{i\beta}.$$

$$T_{i\alpha\beta} = (1-\alpha)I + \alpha T_i S_{i\beta} = I - \alpha (I - G_{i\beta}) - \alpha A_i G_{i\beta}$$

$$= I - \alpha \beta A_i - \alpha A_i G_{i\beta} = A_{i\alpha\beta}.$$

182

Thus, Theorem 2.1 applies and we have the stated results.

ACKNOWLEDGEMENTS

The author would like to thank the anonymous referee whose comments improved the original version of this manuscript.

REFERENCES

- C.E. Chidume and Chika Moore Fixed point iteration for pseudocontractive maps, Proc. Amer. Math. Soc.4 1163-1170, 1999.
- [2] C.E. Chidume and S.A. Mutangadura An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc.129(8) 2359-2363, 2001.
- [3] M.K. Ghosh and L. Debnath Convergence of Ishikawa iterates of quasi nonexpansive mappings, J.Math.Anal.Appl.207 (1) 96-103, 1997.
- [4] S. Ishikawa; Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 147 - 150, 1974.
- [5] Li Qihou The Convergence theorems of the sequence of Ishikawa iteration for hemicontractive mappings, J.Math.Anal.Appl.148 55-62, 1990.
- [6] J. Schu; Approximating Fixed points of Lipschtzian psedocontractive mappings, Houston J.Math. 19 107-115, 1993.

DEPARTMENT OF MATHEMATICS, NNAMDI AZIKWE UNIVERSITY, AWKA, NIGERIA

 ${\it E-mail\ addresses:\ drchikamoore@yahoo.com,\ chikamoore@unizik.edu.ng}$

DEPARTMENT OF MATHEMATICS, NNAMDI AZIKWE UNIVERSITY, AWKA, NIGERIA

E-mail address: obijiakuagatha@ymail.com