# SUBORDINATION PROPERTIES ASSOCIATED WITH <br> A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY SALAGEAN DERIVATIVE 

E. A OYEKAN ${ }^{1}$ AND T. O. OPOOLA

ABSTRACT. In this paper, we discuss the subordination properties for functions of class $T_{n}^{\alpha^{*}}(\beta)$. A number of applications of the subordination properties are also considered.

Keywords and phrases: Subordination, Analytic functions, Salagean Differential Operator, Subordinating factor sequence, Hadamard product (or Convolution)
2010 Mathematical Subject Classification: 26A, 30C

## 1. INTRODUCTION

Let $A$ be the class of functions $g(z)$ analytic in the unit disk $U=$ $\{z:|z|<1\}$ and normalized by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} . \tag{1}
\end{equation*}
$$

Note that,

$$
g(z)^{\alpha}=z^{\alpha}+\sum_{k=2}^{\infty} a_{k}(\alpha) z^{\alpha+k-1}
$$

by Binomial expansion.
The class $T_{n}^{\alpha}(\beta)$ was introduced and studied by Opoola [1] in 1994 as the class of functions $g(z)$ satisfying the condition

$$
\operatorname{Re}\left\{\frac{D^{n} g(z)^{\alpha}}{z^{\alpha}}\right\}>\beta
$$

Babalola and Opoola[2] in 2006, redefined the class $T_{n}^{\alpha}(\beta)$ as the class of analytic functions $g(z) \in A$ which satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n} g(z)^{\alpha}}{\alpha^{n} z^{\alpha}}\right\}>\beta \tag{2}
\end{equation*}
$$

Received by the editors June 6, 2012; Revised: July 12, 2012; Accepted: July 18, 2012
${ }^{1}$ Corresponding author
where $\alpha>0$ is real, $0 \leq \beta<1$ and $D^{n}(n \in N)$ is the Salagean derivative operator defined as:

$$
D^{n} g(z)=D\left(D^{n-1} g(z)\right)=z\left(D^{n-1} g(z)\right)^{\prime}
$$

with $D^{0} g(z)=g(z)$ and the power in (2) meaning principal determination only.
We denote by $k(\alpha)$ the class of convex functions of order $\alpha$ i.e.

$$
k(\alpha)=\left\{f \in A: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in U\right\}
$$

## 2. PRELIMINARY

We define some basic results which are relevant to our main result and also give certain fundamental definitions.

Definition 1: (Hadamard product or convolution)
Given two functions $f(z)$ and $g(z)$ where $g(z)$ is as defined in (1) and $f(z)$ is given by

$$
f(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}
$$

the Hadamard product (or convolution) $g * f$ of $g(z)$ and $f(z)$ is defined by

$$
\begin{equation*}
(g * f)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(f * g)(z) \tag{3}
\end{equation*}
$$

Definition 2: (Subordination Principle.)
Let $f(z)$ and $g(z)$ be analytic in the unit disk $U$. Then $g(z)$ is said to be subordinate to $f(z)$ in $U$ denoted by

$$
g(z) \prec f(z), z \in U,
$$

if there exists a Schwarz function $w(z)$, analytic in $U$ with $w(0)=0$, $|w(z)|<1$ such that

$$
\begin{equation*}
g(z)=f(w(z)), z \in U \tag{4}
\end{equation*}
$$

In particular, if the function $f(z)$ is univalent in $U$, then $g(z)$ is subordinate to $f(z)$ if

$$
\begin{equation*}
g(0)=f(0), g(u) \subset f(u) . \tag{5}
\end{equation*}
$$

Definition 3: (Subordinating factor sequence)
A sequence $\left\{c_{k}\right\}_{k=1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if whenever $g(z)$ of the form (1) is analytic, univalent and convex in $U$, the subordination is given by

$$
\sum_{k=1}^{\infty} a_{k} c_{k} z^{k} \prec g(z), z \in U, a_{1}=1
$$

Theorem 1: [3]
The sequence $\left\{c_{k}\right\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} c_{k} z^{k}\right\}>0, z \in U \tag{6}
\end{equation*}
$$

Theorem 2: [4]
If $g(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{k=2}^{\infty} \alpha_{0}^{n}\left|a_{k}(\alpha)\right| \leq 1-\beta \tag{7}
\end{equation*}
$$

where $\alpha_{0}=\frac{\alpha+k-1}{\alpha}, k=2,3, \ldots ; 0 \leq \beta<1$, and $n \in \mathbb{N}_{0}$ ), then $g(z) \in T_{n}^{\alpha}(\beta)$
It is natural to consider the class $T_{n}^{\alpha^{*}}(\beta) \subset T_{n}^{\alpha}(\beta)$ such that

$$
\begin{align*}
& T_{n}^{\alpha^{*}}(\beta)=\left\{g \in A: \sum_{k=2}^{\infty} \alpha_{0}^{n}\left|a_{k}\right|\right.  \tag{8}\\
& \leq 1-\beta\} .
\end{align*}
$$

## 3. MAIN RESULT

Our main result in this paper is the the subordination result associated with the class $T_{n}^{\alpha^{*}}(\beta)$. Some applications of the main result which give important results of analytic functions are also investigated.

Theorem 3: (A subordination result associated with the class $\left.T_{n}^{\alpha^{*}}(\beta)\right)$ Let $g(z) \in T_{n}^{\alpha^{*}}(\beta)$, then

$$
\begin{equation*}
\frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}(g * f)(z) \prec f(z) \tag{9}
\end{equation*}
$$

where $\alpha>0, \beta(0 \leq \beta<1)$ and $f(z) \in k(\alpha), z \in U$. And

$$
\begin{equation*}
\operatorname{Re}(g(z))>-\frac{\alpha^{n}(1-\beta)+(\alpha+1)^{n}}{(\alpha+1)^{n}} \tag{10}
\end{equation*}
$$

The constant factor

$$
\begin{equation*}
\frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} \tag{11}
\end{equation*}
$$

cannot be replaced by a larger one. Next we proof the main theorem:

## Proof of Main Result:

Let $g(z) \in T_{n}^{\alpha^{*}}(\beta)$, and suppose that

$$
f(z)=z+\sum_{k=2}^{\infty} b_{n} z^{k} \in k(\alpha) .
$$

Then

$$
\begin{align*}
& \frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}(g * f)(z)= \\
& \frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}\left(z+\sum_{n=2}^{\infty} a_{k} b_{k} z^{k}\right) \tag{12}
\end{align*}
$$

Hence, by Definition 3 the subordination (9) Will hold true if,

$$
\begin{equation*}
\left\{\frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} a_{k}\right\}_{k=1}^{\infty} \tag{13}
\end{equation*}
$$

is a subordinating factor sequence with $a_{1}=1$.
Therefore by theorem 1 it is sufficient to show that

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} \frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} a_{k} z^{k}\right\}>0 ;(z \in U) \tag{14}
\end{equation*}
$$

Now,

$$
\begin{align*}
& \operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} \frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} a_{k} z^{k}\right\} \\
& =\operatorname{Re}\left\{1+\frac{(\alpha+1)^{n}}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}} a_{1} z+\frac{1}{\left.\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right\}}\right. \\
& \left.\times \sum_{k=2}^{\infty}(\alpha+1)^{n}\left|a_{k}\right| z^{k}\right\} \tag{15}
\end{align*}
$$

But $\alpha_{0}=\frac{\alpha+k-1}{\alpha} ; k=2,3, \ldots$ such that $\alpha_{0}^{n}=\left(\frac{\alpha+1}{\alpha}\right)^{n}$ for $k=2$ and $(\alpha+1)^{n}=\alpha^{n} \alpha_{0}^{n}$
Thus,

$$
\begin{align*}
& \operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} \frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} a_{k} z^{k}\right\} \\
& \geq\left\{1-\frac{(\alpha+1)^{n}}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}} r\right\}  \tag{16}\\
& -\frac{1}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}} \sum_{k=2}^{\infty} \alpha^{n} \alpha_{0}^{n}\left|a_{k}\right| z^{k}
\end{align*}
$$

Since $\alpha_{0}^{n}>0$, we have that

$$
\begin{align*}
& \operatorname{Re}\left\{1+\sum_{k=1}^{\infty} \frac{(\alpha+1)^{n}}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}} a_{k} z^{k}\right\} \\
& \geq 1-\frac{(\alpha+1)^{n}}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}} r-\frac{\alpha^{n}}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}}  \tag{17}\\
& \times \sum_{k=2}^{\infty} \alpha_{0}^{n}\left|a_{k}\right| z^{k}, \quad 0<r<1
\end{align*}
$$

By (7)

$$
\sum_{k=2}^{\infty} \alpha_{0}^{n}\left|a_{k}\right| \leq 1-\beta
$$

Hence,

$$
\begin{align*}
& \operatorname{Re}\left\{1+\sum_{k=1}^{\infty} \frac{(\alpha+1)^{n}}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}} a_{k} z^{k}\right\} \\
& >1-\frac{(\alpha+1)^{n}}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}} r-\frac{\alpha^{n}(1-\beta)}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}} r  \tag{18}\\
& =1-\left\{\frac{(\alpha+1)^{n}}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}}+\frac{\alpha^{n}(1-\beta)}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}}\right\} r \\
& =1-\frac{(\alpha+1)^{n}+\alpha^{n}(1-\beta)}{\alpha^{n}(1-\beta)+(\alpha+1)^{n}} r=1-r>0 ;(|z|=r<1) .
\end{align*}
$$

Therefore we obtain that,

$$
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} \frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} a_{k} z^{k}\right\}>0
$$

which is (14) that is required to be established.
We now show that

$$
\operatorname{Re}(g(z))>-\frac{\alpha^{n}(1-\beta)+(\alpha+1)^{n}}{(\alpha+1)^{n}}
$$

Now taking

$$
f(z)=\frac{z}{1-z} \in K(\alpha)
$$

(9) becomes

$$
\frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} g(z) \prec \frac{z}{1-z}
$$

Therefore,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}\right\} g(z)>-\frac{1}{2} \tag{19}
\end{equation*}
$$

Since

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z}{1-z}\right)>-\frac{1}{2}, \quad|z|<r \tag{20}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} \operatorname{Re}(g(z))>-\frac{1}{2} \tag{21}
\end{equation*}
$$

Hence, we have

$$
\operatorname{Re}(g(z))>-\frac{\alpha^{n}(1-\beta)+(\alpha+1)^{n}}{(\alpha+1)^{n}}
$$

which is (10).
To show the sharpness of the constant factor

$$
\frac{(\alpha+1)^{n}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]},
$$

we consider the function:

$$
\begin{equation*}
f_{1}(z)=z-\frac{\alpha^{n}(1-\beta)}{(\alpha+1)^{n}} z^{2}=\frac{z(\alpha+1)^{n}-\alpha^{n}(1-\beta) z^{2}}{(\alpha+1)^{n}} . \tag{22}
\end{equation*}
$$

Then applying Theorem 3 when $f(z)=\frac{z}{1-z}$ and $g(z)=g_{1}(z)$ we have

$$
\begin{equation*}
\frac{z(\alpha+1)^{n}-\alpha^{n}(1-\beta) z^{2}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} \prec \frac{z}{1-z} \tag{23}
\end{equation*}
$$

Using the fact that

$$
\begin{equation*}
|R e z| \leq|z| \tag{24}
\end{equation*}
$$

we now show that

$$
\begin{equation*}
\operatorname{Min}\left\{\operatorname{Re} \frac{z(\alpha+1)^{n}-\alpha^{n}(1-\beta) z^{2}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}\right\}=-\frac{1}{2}, \quad(z \in U) \tag{25}
\end{equation*}
$$

Now,

$$
\begin{align*}
& \left|\operatorname{Re} \frac{z(\alpha+1)^{n}-\alpha^{n}(1-\beta) z^{2}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}\right| \leq\left|\frac{z(\alpha+1)^{n}-\alpha^{n}(1-\beta) z^{2}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}\right| \\
& =\frac{\left|z\left[(\alpha+1)^{n}-\alpha^{n}(1-\beta) z\right]\right|}{\left|2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]\right|} \leq \frac{|z|\left|(\alpha+1)^{n}-\alpha^{n}(1-\beta) z\right|}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}  \tag{26}\\
& \leq \frac{\left|(\alpha+1)^{n}-\alpha^{n}(1-\beta) z\right|}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} \leq \frac{\left|(\alpha+1)^{n}+\alpha^{n}(1-\beta) z\right|}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} \\
& \leq \frac{(\alpha+1)^{n}+\alpha^{n}(1-\beta)}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}=\frac{1}{2}, \quad(|z|=1) .
\end{align*}
$$

This implies that,

$$
\begin{align*}
& \left|\left\{\operatorname{Re} \frac{z(\alpha+1)^{n}-\alpha^{n}(1-\beta) z^{2}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}\right\}\right| \leq \frac{1}{2} \\
& \text { i.e, } \\
& -\frac{1}{2} \leq \operatorname{Re} \frac{z(\alpha+1)^{n}-\alpha^{n}(1-\beta) z^{2}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]} \leq \frac{1}{2} . \tag{27}
\end{align*}
$$

Hence,
$\left.\operatorname{Min}\left\{\operatorname{Re} \frac{z(\alpha+1)^{n}-\alpha^{n}(1-\beta) z^{2}}{2\left[\alpha^{n}(1-\beta)+(\alpha+1)^{n}\right]}\right\} f_{1}(z)\right\}=-\frac{1}{2}(z \in U)$.
Which complete the proof of Theorem (3)

## 4. SOME APPLICATIONS

Taking $n=0$,in Theorem 1.3, we obtain the following:
Corollary 1. If the function $g(z)$ defined by (1.1) is in $T_{n}^{\alpha^{*}}(\beta)$, then

$$
\begin{gather*}
\frac{1}{2(2-\beta)}(g * f)(z) \prec f(z)  \tag{28}\\
(z \in U ; 0 \leq \beta<1, f \in K(\alpha)) .
\end{gather*}
$$

In particular,

$$
\begin{equation*}
\operatorname{Re}(g(z))>-(2-\beta)(z \in U) \tag{29}
\end{equation*}
$$

The constant factor

$$
\frac{1}{2(2-\beta)}
$$

cannot be replaced by any larger one.

Remark 1. If $\beta=\frac{5}{6}$ in the corollary 1, we obtain the results of Aouf etal [4].

Taking $n=1$ and $\beta=0$ in Theorem 1.3; we obtain the following:
Corollary 2. If the function $g(z)$ defined by (1.1) is in $T_{n}^{\alpha^{*}}(\beta)$, then

$$
\begin{align*}
& \frac{\alpha+1}{2(2 \alpha+1)}(g * f)(z) \prec f(z)  \tag{30}\\
& (z \in U ; \alpha>0, f \in K(\alpha)) .
\end{align*}
$$

In particular,

$$
\begin{equation*}
\operatorname{Re}(g(z))>-\frac{2 \alpha+1}{\alpha+1} \tag{31}
\end{equation*}
$$

The constant factor

$$
\frac{\alpha+1}{2(2 \alpha+1)}
$$

cannot be replaced by any larger one.
Remark 2. By putting $\alpha=1$ and $\alpha=\frac{1}{3}$ in corollary 2 , we obtain the results of Selvaraj and Karthikeyan [5].
Taking $n=0$, and $\beta=0$, in Theorem 1.3 we obtain the following:
Corollary 3. If the function $g(z)$ defined by (1.1) is in $T_{n}^{\alpha^{*}}(\beta)$, then

$$
\begin{align*}
& \frac{1}{4}(g * f)(z) \prec f(z)  \tag{32}\\
& (z \in U, g \in K(\alpha)) .
\end{align*}
$$

In particular,

$$
\begin{equation*}
\operatorname{Re}(g(z))>-2(z \in U) \tag{33}
\end{equation*}
$$

The constant factor $\frac{1}{4}$ cannot be replaced by any larger one.
Remark 3. Our result in corollary 3, is equivalent to the result of Rosihan, Ali, etal[6].

## REFERENCES

(1) Opoola, T. O., On a new subclass of univalent functions; Mathematika Tome (36) 59 N $\underline{0} 2$ (1994),195-200
(2) Babalola, K. O. and Opoola, T. O., Iterated integral transforms of Caratheodory functions and their applications to analytic and univalent functions, Tamkang J. Math., 37(4)(2006), 355-366.
(3) H.S. Wilf, "Subordinating factor sequences for some convex maps of unit circle", Proceedings of the American Mathematical society, Vol.12, pp 689-693, (1961).
(4) Oladipo, A. T., Some properties of A subclass of Univalent functions. A Ph.D Thesis submitted to the Department of Mathematics, Faculty of Science, University of Ilorin.
(5) M.K. Aouf, A. Shamandy, A.O. Mostafa and F. El-Emam, Subordination Results Associated With $\beta$-Uniformly Convex And Starlike Functions, Proc. Pakistan Acad. Sci. 46(2):97-101, 2009.
(6) C. Selvaraj and K.R. Karthikeyan, Certain Subordination Results For A Class Of Analytic Functions Defined By The Generalized Integral Operator, International Journal of Computational and Mathematical Sciences 2,4 @ www.waset.org Fall 2008.
(7) Rosihan M. Ali, V. Ravichandran, and N. Senivasagan, Subordination By Convex Functions. International Journal of Mathematics and Mathematical Sci., Vol. 2006. Article ID 62548, pp 1-6.

Department of Mathematics and Statistics, Bowen University, Iwo, Osun State, Nigeria
E-mail address: shalomfa@yahoo.com
Department of Mathematics, University of Ilorin, Ilorin, Nigeria
E-mail address: opoolato@unilorin.edu.ng

