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MATHEMATICAL ANALYSIS OF THE GLOBAL

DYNAMICS MODEL FOR HIV INFECTION OF CD4+ T

CELLS WITH TREATMENT USING ADOMIAN

DECOMPOSITION APPROACH

B. GBADAMOSI1 AND F. O. AKINPELU

ABSTRACT. A compartmental epidemic model proposed by
Liancheng and Micheal [1] was investigated. A nonlinear inci-
dence rate and treatment were taken into consideration. The
bifurcation method introduced in [2] was being used to perform
a bifurcation study, which is predicated on the use of the cen-
ter manifold theory. The forward bifurcation was discovered.
The Adomian Decomposition Method (ADM) was also used to
approximate the solution of the problem’s nonlinear system of
differential equations. The computations were carried out using
Maple, and the graphical results are given.
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1. INTRODUCTION

Human immunodeficiency virus (HIV) transmission is most com-
monly transmitted through sexual contact in society. It can also be
spread through transfusions of HIV-infected blood or by injecting
drugs into the bloodstream with a contaminated needle or syringe;
however, this does not necessarily indicate that an individual has
AIDS. HIV enters the bloodstream via immune system cells, espe-
cially T cells, which are white blood cells. These cells control a
variety of disease-fighting mechanisms, with CD4+ T cells, a type
of specialized helper T cell, being extremely prone to HIV perme-
ability.
While HIV infects CD4+ T cells, it seizes the cell’s genetic tools and
uses them to create new HIV virus. After that, the newly formed
HIV virus leaves the cell, destroying the CD4+ T cells. The loss of
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CD4+ T cells jeopardizes wellbeing as these are the cells aid in the
response of several invading species with different types of immune
cells.
When the number of reproductions is less than or equal to one, the
HIV infection is clear from the individual; if the reproduction size is
great than one, the HIV infection lingers.[19]. In addition, several
reliable algorithms had been evolving, as well as an approximation
solution of the differential system modeling of HIV infection CD4+
T cells was achieved using an extension of the standard variation
iteration method (VIM), also known as the multi-state variational
iteration method (MSVIM), this was compared to the fourth-order
Runge-Kutta Method (RKV, Method), as well as a series solution.
We do not plan to provide a fresh viewpoint or a thorough overview
of these subjects, as this has already been done in a number of
recent publications [1, 6, 19, 18, 20]. Instead, our goal is to use the
existing numerical technique: Adomian decomposition approach to
describe some relevant problems and explore in HIV care that is a
major focus of this research, with the aim that this will help as an
entry point for those interested in participating in the study.
In the worst-affected countries, HIV has decimated the men and
women in their twenties and thirties, who are the labor force’s
strength. The majority of them die during the prime over their
fertile years. Furthermore, the disease has overstretched medi-
cal systems, doubled the population of orphans, and lowered or
dramatically lowered life expectancy rates, and no current medical
procedure can fully eliminate the disease once it has contaminated
human cells..
However, using a numerical approach, this study presents a HIV
infection of CD4+ T cells mathematical model with treatment that
minimizes the virus to a low or insignificant level of the virus for
an individual infected with the virus to live a healthy life.

2. MATHEMATICAL MODEL

Based on compartmental deterministic model proposed in [1], we
developed a model by assuming logistic growth of a cell population
and treatment rate of the cells given by:

dT

dt
= s− αT + rT

(
1− T + T ∗

Tmax

)
− kV T

1 + α1V
+ ρT ∗, (2.1)

dT ∗

dt
=

kV T

1 + α1V
− βT ∗ − ρT ∗, (2.2)
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dV

dt
= NβT ∗ − γV, (2.3)

where T, T ∗ and V reflect the extent of the uninfected compart-
mental intensity CD+

4 TCells, infected CD+
4 T and Viruses that are

free. s denotes the supply rate of CD4+T cells from the thymus
and bone marrow precursors, α which is the uninfected mortality
rate CD4+T cells, whereas k is the percentage rate of CD4+T cells
becomes infected with a virus that is available for free. Tmax is the
highest possible CD4+T population of cells. ρis the cells treatment
rate. N represents the Viruses generated for free by lysing a CD4+T
cells, and β is the death proportion of infected CD4+T cells. α1is
saturated term. γ is the death rate of free viruses. The rate of
change is increasing of the CD4+T cell population is denoted by r.
Qualitative analysis of the system described by Equations (2.1) -
(2.3) reveals that long-term behavior can classify as either endemic
or extinct. Whenever the illness is no longer present ordinarily, the
response reaches a disease-free equilibrium of the structure asymp-
totically. The rate of change is increasing
ε0 of the form,

ε0 =

(
(r − α)Tmax +

√
Tmax [(r − α)2Tmax + 4rs]

2r
, 0, 0

)
.

The threshold which always helps determine the stability of this
equilibrium is the R0, i.e. whether or not the infected cells will
spread through the population

R0 =
kT0Nβ

(β + ρ) γ
.

An endemic equilibrium of the form given exists if the disease-free
equilibrium is unstable;

ε1 =

(
(β + ρ)(γ + α1NβT̂

∗)

kNβ
,
−b±

√
b2 − 4ac

2a
,
NβT̂ ∗

γ

)
. (2.4)

where

a =

(
rβ2α2

1

k2Tmax

+
2rβρα2

1

k2Tmax

+
rρ2α2

1

k2Tmax

+
rβα1

Tmaxk
+

rρα2
1

Tmaxk

)
,

b = r
Tmax

([
γ2

k2N2 + 2ργ2

k2N2β
+ ργ2

k2N2β2

]
− r

Tmax

(
2βγα1

k2N
+ 4γρα1

k2N
+ 2γρ2α1

k2Nβ

)
+βαα1

k
+ ραα1

k
+ rβα1

k
+ rρα1

k
+ rγ

kTmaxkN
+ rργ

kNβTmax
− β

)
,

c =
rγ

kN
+
αργ

kN
− αγ

kN
− αργ

kNβ
+

rγ2

(kN)2Tmax
+

2rβργ

(kNβ)2Tmax
− 2rρ2γ2

(kNβ)2Tmax
− s.
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Obviously Equation (2.4) will only exist provided R0 > 1.

2.1. Positivity of solutions
Theorem 2.1: Let the initial facts T (0) > 0,T ∗(0) > 0,V (0) > 0,
the ideas follow after that T (t),T ∗(t),V (t),of HIV free model (2.1)
are positive for all t ≥ 0
Proof: It is clear from equation (2.1) that

dT

dt
≥ −

(
α +

rT ∗

Tmax

+
kV

1 + α1V

)
T, (2.5)

dT

T
≥ −

(
α +

rT ∗

Tmax

+
kV

1 + α1V

)
dt. (2.6)

Integrating both sides of (3.2)

InT ≥ −αt−
∫ t

0

[
r

Tmax

T ∗ (τ)− kV (τ)

]
dτ + C1. (2.7).

Take exponential of both sides, (2.7) gives

T (t) ≥ C2 exp

(
−αt−

∫ t

0

[
r

Tmax
T ∗ (τ)− kV (τ)

1 + α1V (τ)

]
dτ

)
. (2.8)

Applying the initial condition.
Hence

T (t) ≥ T (0) exp

(
−αt−

∫ t

0

[
r

Tmax
T ∗ (τ)− kV (τ)

1 + α1V (τ)

]
dτ

)
. (2.9)

for all t > 0.
It is clear from equation (2.2) that

dT ∗

dt
≥ − (β + ρ)T ∗. (2.10)

So that,

T ∗(t) ≥ T ∗(0) exp

[
−
∫ t

0

(β + ρ) dz

]
> 0, (2.11)

For all t > 0
It is clear from equation (2.3) that

dV

dt
≥ −γV. (2.12)

So that,

V (t) ≥ V (0) exp

(
−
∫ t

0

γdz

)
> 0, (2.13)

for all t > 0
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2.2. Bifurcation Analysis
Numerous traditional disease model thresholds, based on the fun-
damental reproductive numbers If indeed the reproductive number
is one or less, in the feasible region, the resulting model only has the
disease-free equilibrium, which would be globally stable. Whenever
the most basic reproductive numbers are less than or equal to one,
the model has a one-of-a-kind, globally stable endemic equilibrium
in addition to the unstable disease-free equilibrium. When the dis-
ease’s reproductive number reaches less than or equal to one, it dies.
But if the number is greater than one, the disease is still present in
the population. However, there is mounting evidence that perhaps
the fundamental reproductive number alone is insufficient to com-
pletely ascertain the global dynamics of disease transmission. Even
in simple epidemiology models, backward bifurcation with many
endemic equilibria and or Hopf bifurcation yielding periodic solu-
tions can occur [13,16,8,9,7,17,11], and the it’s also possible that a
Bogdanov-Takens singularity could occur [14,15]. In a model with
only forward bifurcation, the sum (volume or fraction) of infective
individuals is low when the reproductive number is greater than
but similar to one. In a model of backward bifurcation, however,
when the reproductive number is less than but similar to one, the
model has two endemic equilibria, one of which is a saddle and the
other of which is locally. While there is a special endemic equilib-
rium when the reproductive number is less than or equal to one,
when the reproductive number is greater than but identical to one,
the sum (number or fraction) of the infective individual is higher,
according to the forwarding bifurcation model.
There are normally two thresholds in a scheme of backward bifurca-
tion: R0 = Rc (0 < Rc < 1) and R0 = 1at R0 = Rc, a saddle-node
bifurcation exists, and at R0 = 1 has a bifurcation that is in the
opposite direction. If the model has an endemic equilibrium, it’s
special, that is R0 ≥ 1orRc = R0 < 1, we have an endemic equilib-
rium if there are two endemics, that is Rc < R0 < 1, and if there is
no endemic equilibrium, Rc < R0,
Apply Theorem 2.2(See Appendix) to demonstrate the system (2.1)-
(2.3) if there is a backward or forward bifurcation:

k = k∗ =
(β + ρ) γ

T0Nβ
, (2.14)
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J(ε0, k
∗) =

 −α + r − 2rT0
Tmax

rT0
Tmax

+ ρ − (β+ρ)γ
Nβ

0 − (β + ρ) (β+ρ)γ
Nβ

0 Nβ −γ

 . (2.15)

are given by: λ1 = −2Tr−rTmax+αTmax+Tmax

Tmax
; λ2 = −γ− ρ− β; λ3 = 0

Thus λ3 = 0 is a simple zero eigenvalue, and the rest are true
negative eigenvalues. Conversely, when k = k∗(or a similar expres-
sion whenR0 = 1), the disease-free equilibrium ε0 is an equilibrium
that isn’t hyperbolic: the presumption (A1) of Theorem 1.5 is then
validated.
Denote now with w = (w1, w2, w3)

T the zero eigenvalue is associated
with a right eigenvector λ3 = 0
It follows:(
−α + r − 2rT0

Tmax

)
w1−

(
rT0
Tmax

+ ρ

)
w2−

(
(β + ρ) γ

Nβ

)
w3 = 0, (2.16)

− (β + ρ)w2 +

(
(β + ρ) γ

Nβ

)
w3 = 0, (2.17)

(Nβ)w2 − (γ)w3 = 0. (2.18)

So that;

w =

(
− γ (rT0 + (β + 2ρ)Tmax)

Nβ (2rT0 + (r − α)Tmax)
,

γ

Nβ
, 1

)T
. (2.19)

In addition, the left eigenvector v = (v1, v2, v3) upholding v.w = 1
is provided with:

v1

(
−α + r − 2rT0

Tmax

)
= 0, (2.20)

v1

(
− rT0
Tmax

+ ρ

)
− v2 (β + ρ) + v3 (Nβ) = 0, (2.21)

v1

(
−(β + ρ) γ

Nβ

)
−v2

(
(β + ρ) γ

Nβ

)
−v3 (γ) = 0. (2.22)

Using v3 = 1. As a result, the left eigenvector v is:

v = (0, 1, 1) . (2.23)

Let

f1 = s−αT + rT

(
1− T + T ∗

Tmax

)
− kV T

V α1 + 1
+ ρT ∗, (2.24)

f2 =
kV T

V α1 + 1
− (β + ρ)T ∗, (2.25)
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f3 = NβT ∗ − γV. (2.26)
In Theorem 1.5, the coefficients a and b are established, and this
may be computed as follows: scriptsize

a =

3∑
k,i,j=1

vkwiwj
∂2fk
∂Ti∂Tj

(ε0,K
∗) +

3∑
k,i,j=1

vkwiwj
∂2fk
∂Ti∂Vj

(ε0,K
∗)

+

3∑
k,i,j=1

vkwiwj
∂2fk
∂Ti∂T ∗

j

(ε0,K
∗) +

3∑
k,i,j=1

vkwiwj
∂2fk

∂T ∗
i ∂T

∗
j

(ε0,K
∗)

+

3∑
k,i,j=1

vkwiwj
∂2fk
∂Vi∂Vj

(ε0,K
∗) +

3∑
k,i,j=1

vkwiwj
∂2fk

∂T ∗
i ∂Vj

(ε0,K
∗) , (2.27)

b =
3∑

k,i=1

vkwi
∂2fk
∂Ti∂K

(ε0, K
∗) . (2.28)

Taking to system’s account (2.1)-(2.3) and taking into account all
components of the left eigenvector v and also taking into account
just the eigenvector v’s nonzero components at virus free equilib-
rium;
It follows that:

a =
∂2f1
∂T 2

+
∂2f1
∂V 2

+
∂2f2
∂V 2

+
∂2f1
∂T∂T ∗

+
∂2f1
∂T∂V

+
∂2f2
∂T∂V

. (2.29)

In view of (2.24) and (2.29), we then have:

a = −
6 (2NTrβ −NrβTmax +NαβTmax + Trγ − rγTmax + αγTmax − βγTmax)

2

TmaxN2β2 (2Tr − rTmax + αTmax)
2

, (2.30)

where

T = (r − α)Tmax +
1

2

√
T 2
max (r − α)2 + 4rs

r
.

And

b =
6
(
(r−α)Tmax+

(√
r2T2

max−2rαT2
max+α

2T2
max+4rs

))
G+ 1

2

√
r2T2

max−2rαT2
max+α

2T2
max+4rs

√
r2T2

max−2rαT2
max+α

2T2
max+4rs

(2.31)

where

G = γ

(
1

2
r − 1

2
α + β

)
Tmax

Since the coefficient b is always positive, it is the sign of the coeffi-
cient a – which determines the local dynamics around the virus-free
equilibrium, according to Theorem 2.2 fork = k∗.Thus the following
result is established.
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3. ADOMIAN DECOMPOSITION TECHNIQUE
Explicitly constructions of non-perturbative approximations to the
system’s non-perturbative solutions (2.1)-(2.3) were examining us-
ing Adomian decomposition method. This system’s analogous canon-
ical form is as follows:

T (t) = T (0)+

∫ x

0
sdt+(r−α)

∫ x

0
Tdt− r

Tmax

∫ x

0
T 2+

r

Tmax

∫ x

0
TT ∗dt

−k(1 + α1)
−1
∫ x

0
V dt.

∫ x

0
V Tdt+ ρ

∫ x

0
T ∗dt, (3.1)

T ∗(t) = T ∗(0)+k(1+α1)
−1
∫ x

0
V dt.

∫ x

0
V Tdt− (β+ρ)

∫ x

0
T ∗dt, (3.2)

V (t) = V (0) +Nβ

∫ x

0
T ∗dt− γ

∫ x

0
V dt. (3.3)

Adomian decomposition methods for the solutions of equations
(3.1)-(3.3) are considered as the following series;

T =
∞∑
n=0

Tn, (3.4)

T ∗
∞∑
n=0

T ∗n , (3.5)

V =
∞∑
n=0

Vn (3.6)

The nonlinear terms in the system are then approximated (3.1)-
(3.3) as follows;

TT =
∞∑
n=0

(An(T0....Tn, T0....Tn)) (3.7)

V T =
∞∑
n=0

(Bn(V0....Vn, T0....Tn)) (3.8)

TT ∗ =
∞∑
n=0

(
Cn(T0....Tn, T ∗

0
....T ∗0 )

)
, (3.9)

where

An =
1

n!

[
dn (
∑∞

m=0 Tmλ
m) (

∑∞
m=0 Tmλ

m)

dλm

]
m=0

, (3.10)

Bn =
1

n!

[
dn (
∑∞

m=0 Vmλ
m) (

∑∞
m=0 Tmλ

m)

dλm

]
m=0

, (3.11)
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Cn =
1

n!

[
dn (
∑∞

m=0 Tmλ
m) (

∑∞
m=0 T

∗
mλ

m)

dλm

]
m=0

. (3.12)

The non-linear function An, Bn, Cn, are called Adomian’s polyno-
mials. Substituting equation (3.4)-(3.12) into (3.1)-(3.3) then we
have;

∞∑
n=0

Tn = T (0) + sx+ (r − α)
∫ x

0

∞∑
n=0

Tndt−
r

Tmax

∫ x

0

∞∑
n=0

Andt

+
r

Tmax

∫ x

0

∞∑
n=0

Cndt− k (1 + α1)
−1
∫ x

0

∞∑
n=0

Vndt

∫ x

0

∞∑
n=0

Bndt

+ρ

∫ x

0

∞∑
n=0

T ∗ndt, (3.13)

∞∑
n=0

T ∗n = T ∗(0) + k (1 + α1)
−1
∫ x

0

∞∑
n=0

Vndt

∫ x

0

∞∑
n=0

Bndt

−(β + ρ)

∫ x

0

∞∑
n=0

T ∗ndt, (3.14)

∞∑
n=0

Vn = V (0) +Nβ

∫ x

0

∞∑
n=0

T ∗ndt− γ
∫ x

0

∞∑
n=0

Vndt. (3.15)

Using the equation (3.13)-(3.15) The following scheme is described:

T0 = T (0) + st, (3.16)

T ∗0 = T ∗(0), (3.17)

V0 = V (0). (3.18)
∞∑
n=0

Tn = (r−α)

∫ x

0

∞∑
n=0

Tndt−
r

Tmax

∫ x

0

∞∑
n=0

Andt+
r

Tmax

∫ x

0

∞∑
n=0

Cndt

−k (1 + α1)
−1
∫ x

0

∞∑
n=0

Vndt

∫ x

0

∞∑
n=0

Bndt+ ρ

∫ x

0

∞∑
n=0

T ∗ndt

(for n ≥ 0), (3.19)
∞∑
n=0

T ∗n = k (1 + α1)
−1
∫ x

0

∞∑
n=0

Vndt

∫ x

0

∞∑
n=0

Bndt− (β + ρ)

∫ x

0

∞∑
n=0

T ∗ndt

(for n ≥ 0) . (3.20)
∞∑
n=0

Vn = Nβ

∫ x

0

∞∑
n=0

T ∗ndt− γ
∫ x

0

∞∑
n=0

Vndt

(for n ≥ 0) . (3.21)
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Using Equation (3.7)-(3.12). The following are some of the Ado-
mian polynomials:

F (t) = T 2 (3.22)

We first set

T =
∞∑
n=0

Tn. (3.23)

Substituting (3.23) into (3.22) gives

[F (t) = (T0 + T1 + T2 + T3 + T4 + T5 + ....)2 (3.24)

When the right-hand side of the expression is expanded, it results
in

F (t) = T 2
0 + 2T0T1 + 2T0T2 + T 2

1 + 2T0T3 + 2T1T2 + ... (3.25)

The expansion in equation (3.25) can be rearranged by adding the
sum of the subscripts of the components of the same to all terms.
As a result, we can rewrite equations (3.25) as

F (t) = T 2
0 + 2T0T1 + 2T0T2 + T 2

1 + 2T0T3 + 2T0T2 + 2T0T4 + 2T1T2

+T 2
2 + 2T0T5 + 2T1T4 + 2T2T3 + .... (3.26)

This gives Adomian polynomials for Equation (3.22) as

A0 = T 2
0 ,

A1 = 2T0T1
A2 = 2T0T2 + T 2

1 ,

A3 = 2T0T3 + 2T0T2, (3.27)

A4 = 2T0T4 + 2T1T2 + T 2
2 ,

A5 = 2T0T5 + 2T1T4 + 2T2T3,

F (t) = V T (3.28)

We first set

V =
∞∑
n=0

Vn, (3.29)

T =
∞∑
n=0

Tn. (3.30)

Substituting (3.29)-(3.30) into Equation (3.28) yields

F (T ) = (V0 + V1 + V2 + V3 + V4 + V5 + ....)× (T0 + T1

+T2 + T3 + T4 + T5 + ....). (3.31)

When you multiply the two variables together, you get
F (t) = V0T0 + T0V1 + V0T1 + T0V2 + V0T2 + T1V1 + T2V0

+T0V3 + T1V2 + T2V2 + T3V0 + T0V4
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+V0T4 + T1V3 + V1T3 + V2T2 + ... (3.32)

Obtaining every terms with the very same element’s subscript amount
Tn, We have the ability to rewrite
Equation (3.32) in the manner of:

F (t) = T0V1+V0T1+T0V2+T1V1+T2V0+T0V3+T1V2+T2V1+T3V0

+T0V4 + T1V3 + T2V2 + T3V1 + T4V0 + .... (3.33)

As a result, the Adomian polynomials are denoted by
B0 = T0V0
B1 = T0V1 + V0T1
B2 = T0V2 + T1V1 + T2V0
B3 = T0V3 + T1V2 + T2V1 + T3V0
B4 = T0V4 + T1V3 + T2V2 + T3V1 + T4V0

 , (3.34)

T (t) = TT ∗ (3.35)

We first set

T =
∞∑
n=0

Tn, (3.36)

T ∗ =
∞∑
n=0

T ∗n . (3.37)

Substituting (3.36 and 3.37) into Equation (3.35) yields

F (T ) = (T0 + T1 + T2 + T3 + T4 + T5 + ....)× (T ∗0 + T ∗1

+T ∗2 + T ∗3 + T ∗4 + T5 + ....). (3.38)

Multiplying the two factors gives

F (T ) = T0T
∗
0 + T ∗0 T1 + T0T

∗
1 + T ∗0 T2 + T ∗1 T1 + T ∗2 T0 + T ∗0 T3 + T ∗1 T2

+T ∗2 T1 + T ∗3 T0 + T ∗0 T4 + T0T
∗
4 + T ∗1 T3 + T1T

∗
3 + T2T

∗
2 + ....(3.39)

Obtaining all terms with the very same sum of component sub-
scripts Tn, We have the ability to rewrite equations (3.39) in the
manner of:

F (T ) = T0T
∗
0 + T ∗0 T1 + T0T

∗
1 + T ∗0 T2 + T ∗1 T1 + T ∗2 T0 + T ∗0 T3 + T ∗1 T2

+T ∗2 T1 +T ∗3 T0 +T ∗0 T4 +T ∗1 T3 +T ∗2 T2 +T ∗3 T1 +T ∗4 T0 + .......... (3.40)

Consequently, the Adomian polynomials, are given by

C0 = T0T
∗
0 ,

C1 = T ∗0 T1 + T0T
∗
1 ,

C2 = T ∗0 T2 + T ∗1 T1 + T ∗2 T0, (3.41)
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C3 = T ∗0 T3 + T ∗1 T2 + T ∗2 T1 + T ∗3 T0.

C4 = T ∗0 T4 + T ∗1 T3 + T ∗2 T2 + T ∗3 T1 + T ∗4 T0.
T = 719.57 + 1030.113124t + 34.97820628t2−719.6610060t3−41.31829380t4+......
T∗ = 27 + 56.00465683t− 39.08106622t2−6.185455807t3+11.57469526t4 + .......

V = 3341− 7937.173347t + 9608.980705t2−7735.947760t3+4631.970360t4 + .....

4. NUMERICAL RESULTS AND DISCUSSION

Figure 1: Uninfected CD4+ T-cell count without treatment against
time when β = 0.3;α = 0.002; r = 3.0; γ = 2.4; k = 0.000027;Tmax =

1500; ρ = 0.01; s = 15.

This figure shows the absence of chemotherapy in an individual’s
infected with HIV. The CD4

+ T cell count reduces to zero hence it
leads to full blown AIDS and give rooms for opportunist infection
which leads to death.
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Figure 2: Infected CD4+ T-cell count without treatment against time
when β = 0.3;α = 0.002; r = 3.0; γ = 2.4; k = 0.000027;Tmax =

1500; ρ = 0.01; s = 15.

This plot shows the absence of chemotherapy in an actively in-
fectious CD4

+ T cell in an individual’s infected with HIV. It was
observed that the cells were increasing with time.

Figure 3: Viral load without treatment against time when
β = 0.3;α = 0.002; r = 3.0; γ = 2.4; k = 0.000027;Tmax = 1500; ρ =

0.01; s = 15.

This graph shows the infectious viral particles in the absence of the
chemotherapy during the infection. This leads to heavy viral loads
(virus replication) in an individuals and it results to death.
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Figure 4: Uninfected CD4+ T-cell count with treatment against time
when β = 0.3;α = 0.002; r = 3.0; γ = 2.4; k = 0.000027;Tmax =

1500; ρ = 0.01; s = 15

This profile shows the presence of treatment in an individual. The
effect of the drugs was shown by the number of CD4

+ T cell count
which is increasing with time and allows at least partial recovery
of immunity. This suggests that an infected individual could live
normal life.

Figure 5: Uninfected CD4+ T-cell count with treatment against time
when β = 0.3;α = 0.002; r = 3.0; γ = 2.4; k = 0.000027;Tmax =

1500; ρ = 0.01; s = 15
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This diagram shows the effect of presence of therapy by reducing
the number of actively infectious CD4

+ T cell not to progress to
AIDS.

Figure 6: Viral load with treatment against time when β = 0.3;α =
0.002;r= 3.0; γ = 2.4; k = 0.000027;Tmax = 1500; ρ = 0.01; s = 15.

This figure shows the response to the drugs, suppresses activities of
viral load, and this suggests that therapy could present replication
of the virus.

5. CONCLUSION

We investigated a compartment’s deterministic model that explains
HIV viral dynamics with treatment. In this paper, our model shows
that long-term activity can be divide into two categories: endemics
and extinctions. We use the bifurcation method introduced in [10]
and center manifold theory [18] to provide a precise indication of
bifurcation thresholds.
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Appendix

Let us consider a general system of ODEs with parameterφ:

d
•
x

dt
= f (x, φ) , f : <n×< → <n, f ∈ C2 (<n ×<) .

(2.32)
Without loss of generality, we assume that x = 0 is equilibrium for
(2.32).

Theorem 2.2: Assume:

A1: A = Dxf (0, 0) is the linearization matrix of system (2.32)
around the equilibrium x = 0 with φ evaluated at 0. Zero is a
simple eigenvalue of A and all other eigenvalues of A have negative
real parts;

A2: Matrix A has a (nonnegative) right eigenvector w and a left
eigenvector v corresponding to the zero eigenvalue.
Let fk denotes the kth component of f,and

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂Ti∂Tj

(0, 0) , (2.33)

b =
n∑

k,i=1

vkwi
∂2fk
∂Ti∂φj

(0, 0) . (2.34)

The local dynamics of system (2.32) around x = 0 are totally de-
termined by a and b.

(1) a > 0, b > 0,when φ > 0, with |φ| << 1, x = 0 is locally
asymptotically stable and there exists a positive unstable
equilibrium; when 0 > φ << 1, x = 0, is unstable and there
exists a negative and locally asymptotically stable equilib-
rium;

(2) a < 0, b < 0,when φ < 0, with |φ| << 1, x = 0 is unstable;
when 0 < φ << 1, x = 0, is locally asymptotically stable
and there exists a positive and unstable equilibrium;

(3) a > 0, b > 0,when φ < 0, with |φ| << 1, x = 0 is unsta-
ble and there exists a locally asymptotically stable negative
equilibrium; when 0 < φ << 1, x = 0, is stable and a
positive unstable equilibrium appears;



76 B. GBADAMOSI AND F. O. AKINPELU

(4) a > 0, b < 0,when φ changes from negative to positive,
x = 0 changes its stability from stable to unstable. Corre-
spondently, a negative unstable equilibrium becomes posi-
tive and locally asymptotically stable.

Proof:

Let ξcand ξc be the generalized eigenspaces of A for the zero eigen-
value and all other eigenvalues, respectively. It is follows from the
center manifold theory that center manifold W c is one dimensional
and <n = ξc ⊗ ξs. Parameterize the center manifold by c (t) and
decompose it into ξcandξc, that is,

W = {c(t)w + h(c, φ) : v.h(c, φ) = 0, |c| ≤ c0, c(0) = 0} , (2.35)

Where c(t) ∈ ξcandh(c, φ) ∈ ξc. Because the center manifold is
tangent to ξc at the origin, h(c, φ)is a higher order term (h(c, φ)has
at least order 2). It also follows by the invariance of the center
manifold under the flow that;

d

dt
(c(t)w + h(c, φ)) = f(c(t)w + h(c, φ), φ), (2.36)

Applying Taylor expansion to the right hand side of equation (2.34)
at (0, 0) and noticing that
h (c, φ) is higher order, we obtain that

f(c(t)w + h(c, φ), φ) = f(0, 0) +Dxf(0, 0)((c(t)w + h(c, φ)

+Dφf(0, 0)φ) + 1
2
(In ⊗ (cw + h(c, φ))1)(D2

xxf(0, 0))

(c(t)w + h(c, φ)) + φ(D2
xφf(0, 0))(cw + h(c, φ))

+1
2
φ2(D2

φφf(0, 0)) + higher order terms, (2.37)

where D2
xφ is the Hessian matrix; In is the identity matrix of order

n; ⊗ is the Kronecker product. Using

f(0, 0) = Dxf(0, 0)c(t)w = Dφf(0, 0) = D2
φφf(0, 0) = 0. (2.38)

And the fact that ch(c, φ)is of higher order, we simplify the above
expansion for f as (higher order terms are dropped).

f(0, 0) = (Dxf)h(c, φ) +
c2

2
(In ⊗w1)(D2

xxf)w + cφ(D2
xφ)w. (2.39)

Multiplying both sides of equation (2.34) by v and using the fact
that v.h = 0and vDxf(0, 0) = 0, we finally obtain the following
equation for c(t) :
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=
c2

2

n∑
k,i,j

vkwiwj
∂2fk
∂xi∂xj

+
n∑
k,i

vkwi
∂2fk
∂xi∂xφ

cφ, (2.40)

dc

dt
=
c2

2
v(In ⊗ w1)D2

xxfw + cφvD2
xφfw. (2.41)

=
a

2
c2 + bφc. (2.42)

Namely,
dc

dt
=
a

2
c2 + bφc. (2.43)

Obviously, at φ = 0 a transcritical bifurcation takes place in equa-
tion (2.43).


