
Journal of the Vol. 40, Issue 3, pp. 205-226, 2021

Nigerian Mathematical Society c©Nigerian Mathematical Society

CATTANEO-CHRISTOV HEAT FLUX AND HEAT

GENERATION/ABSORPTION EFFECT ON VISCOUS

WALTERS’ B FLUID THROUGH A POROUS MEDIUM

WITH CHEMICAL REACTION

B.J. AKINBO1 AND B.I. OLAJUWON

ABSTRACT. The study of Walters’ B fluid is essential in poly-
mer materials processing which are useful in industries for the
formation of plastic film and artificial fibers among others. In
this paper, the significance of Cattaneo-Christov heat flux model
on heat and mass transfer of a Walters B fluid through a medium
porosity have been examined. The Cattaneo-Christov heat flux
model was used to investigate the behaviours of heat transfer
in the presence of Newtonian heating. The non-linear model
equations for the study are re-worked into ordinary differen-
tial equations through exponential similarity transformation and
executed via Homotopy Analysis Method. The obtained re-
sult were validated using Galerkin Weighted Residual method
and good agreement is observed. Some of the major finding
were that different values of the local Weissenberg Number en-
hances viscoelasticity of the fluid which reduces the motion of
fluid and consequently thin momentum boundary layer thick-
ness while various values of heat generation enhances the tem-
perature field which enable the penetration of thermal effect to
quiescent fluid.
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cous dissipation, Newtonian heating, Chemical Reaction, Homo-
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1. INTRODUCTION

The transport phenomenon via the electrical non-conducting fluid
has been one of the most successful models to describe the behav-
iors of heat and mass transfer in many relevant situations. Recent
development in the science and engineering field which focused on
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higher molecular liquid shifted the attention of many researchers to
the case of non-Newtonian fluid with vast industrial and scientific
applications among which are lubrication systems, hydro-dynamical
machines, and polymer processing. Keeping in mind the heat trans-
fer phenomenon via Fouriers law of heat conduction, Hayat et al.
[1-3] considered the impact of Cattaneo-Christov heat flux model
on the different non-Newtonian models, such as Jeffrey liquid and
Eyring-Powell fluid towards a stretching cylinder as well as Maxwell
fluid over a stretching sheet with variable thickness. The result re-
vealed among others that the temperature for Cattaneo-Christov
heat flux model is less than the Fouriers expression. Dogonchi and
Ganji [4] reported that the Nusselt number raises with the raising
volume fraction of nanofluid and it abates with the ascending the
radiation parameter while working on Cattaneo-Christov heat flux
on buoyancy MHD nanofluid with the impact of Joule heating as
well as thermal radiation. Shah et al. [5] worked on magnetohy-
drodynamics influence on the UCM fluid with Cattaneo-Christov
heat flux model, where it was reported among others that the
temperature declined with enhancement in Deborah number due
to the reduction in time of deformation process. Mustafa [6] in-
vestigated upper-convected Maxwell fluid with Cattaneo-Christov
heat flux model and the result perfectly agreed when compared
with other numerical solutions. The velocity slip boundary con-
dition is invoked by Han et al. [7] while investigating Maxwell
fluid in the presence of Cattaneo-Christov heat flux model and it
was reported that the elastic-force boosts heat transfer of the vis-
coelastic fluid. Kumar et al. [8] reported that the heat transfer
rate of the flow past a cone is higher than that of the wedge flow
while investigating MHD Cattaneo-Christov flow over a cone and
a wedge with variable heat generation/absorption. UCM nanofluid
flow across a melting surface is examined through Runge-Kutta-
Fehlberg based shooting method with Cattaneo-Christov heat flux
by Mahanthesh et al. [9] where the local Nusselt number declined
with variation in Brownian motion and thermal stratification pa-
rameter. Ali and Sandeep [10] investigated MHD Casson-ferrofluid
with the Cattaneo-Christov model for radiative heat transfer. The
result indicated that the cone possesses a higher heat transfer rate
in comparison with the flow over a wedge and a plate. Nadeem
et al. [11] examined viscoelastic fluid with Cattaneo-Christov flux
in the flow under the influence of Newtonian heating. Khan and
Khan [12] worked on Burgers fluid via Cattaneo-Christov heat flux
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model on three-dimensional flow while the Cattaneo-Christov heat
flux impact is considered on Dogonchi and Ganji [13] through mag-
netohydrodynamics nanofluid flow via parallel plates. The result
revealed that Nusselt number is an incrementing function of heat
source but a diminishing function of the thermal relaxation parame-
ter. The various values of Deborah number were found to magnifies
heat flux relaxation time by Abbasi and Shehzad [14] while working
on Maxwell fluid via a three-dimensional flow, in the presence of
temperature-dependent thermal conductivity. This enhanced heat
flux relaxation time poses a reduction in the temperature but en-
hances the temperature gradient. Others researchers on the field
like Liu et al. [15] and Kumar et al. [16] made their point in
literature.

Taking into consideration the importance of heat and mass trans-
port systems in the related disciplines and previous studies in the
field, considerable attention has not been given to the influence of
Cattaneo-Christov heat flux model in the flow of Walters’ B fluid.
On this note, this work is put together to examine the impact of
Cattaneo-Christov heat flux model on a viscous Walters B fluid
under the influence of Newtonian heating through an exponentially
stretching sheet in the presence of heat generation/absorption and
chemical reaction, which appeared on unaddressed in the literature
to the best of our knowledge. The model equations executed via
Homotopy Analysis method are compared with Galerkin Weighted
Residual method for successful implementation of the numerical
results.

2. FORMULATION

We examine a steady-case of an incompressible Walters’ B fluid over
an exponentially stretching sheet. The medium porosity is consid-
ered with electrically non-conducting fluid. The characteristic of
heat transfer is executed in view of viscous dissipation and heat gen-
eration/absorption with Newtonian Heating while the mass transfer
is considered with chemical reaction. The flow is confined in the re-
gion y ≥ 0 in the presence of Cattaneo-Christov heat flux while the
plate is assumed to be stretched with a velocity Uw = U0exp(x/l)
along x− axis.
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Fig. 1. Flow Geometry

Incorporating the assumption stated above, the model equations
for transport phenomena of the studies under the boundary layer
are considered as (Nandeppanavar et al. [17] and Hayat et al. [18])
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Notations (u, v) considered in (x, y) directions represent velocity
components, Q0 stands for heat generation/absorption coefficient,
k0 connotes elastic parameter, ΓE stands for relaxation time of heat
flux, ν presents kinematic viscosity, δ represents elastic-deformation,
k symbolizes thermal conductivity, ρ denotes density, Cp body-forth
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specific heat at constant pressure. Thus, ΩE in energy Eq. (3) is
defined as
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Which are performed under the following domain
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where, T (> T∞) and C(> C∞) symbolizes temperature and con-
centration of the fluid (ambient temperature and concentration),
U0 body-forth reference velocity, hs pose heat transfer coefficient,
l stands for characteristic length. The introduction of u = ∂ψ
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with the associated similarity-transformation techniques
in line with (Khan [19])
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on Eq. (1-7) result in non-dimensional equations of the form
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connote heat generation/absorption, Porosity parameter, local Weis-
senberg number, Prandtl number, thermal relaxation time, conju-
gate parameter for Newtonian heating and Eckert number respec-
tively. The local Skin-friction, local Nusselt number and local Sher-
wood number are considered as
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with τw for shear stress on the plate, qw stands for surface heat flux
and qm portray surface mass transfer which are defined as
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Invoking (8) result in
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While Rex = cx2

ν
body-forth local Reynolds number.

3. SOLUTION OF THE MODEL

Different methods like Adomial Decomposition, Differential Trans-
form method, and shooting iteration technique together with Runge-
Kutta and many more play an important role in providing solu-
tion to various forms of differential equations. Homotopy Analysis
Method is utilized subject to its efficiency in addressing nonlin-
ear differential equations. Invoking (12-13) in agreement with the
procedure of solution (See Rashidi et al. [20]), we have

f0(η) = 1− exp(−η), θ0(η) =
γexp(−η)

(1− γ)
, φ0(η) = exp(−η) (17)

being the initial guess, while the linear operators Lf , Lθ and Lφ
posed as;
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are in accordance with

Lf [C1 + C2exp(η) + C3exp(−η) = 0, Lθ[C4 + C5exp(−η) = 0,

Lφ[C6 + C7exp(−η) = 0, (19)

where C1, C2, . . . , C7 are constants

3.1. ZERO ORDER DEFORMATION PROBLEM

(1− r)Lf [f(η; r)− f0(η)] = r~fHf (η)Nf [f(η; r)] (20)

(1− r)Lθ[θ(η; r)− θ0(η)] = r~θHθ(η)Nθ[f(η; r), θ(η; r)] (21)

(1− r)Lφ[φ(η; r)− φ0(η)] = r~φHφ(η)Nφ[f(η; r), φ(η; r)] (22)
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∂f(η = 0; r)

∂η
= 1,

∂θ(η = 0; r)

∂η
= −γ [1 + θ(η = 0; r)] , φ(η = 0; r) = 1 (23)

∂f(η →∞; r)

∂η
= 0, θ(η →∞; r) = 0 = φ(η →∞; r) (24)

The symbols ~ 6= 0 and H 6= 0 connote auxiliary functions while
r ∈ [0, 1] body-forth embedded parameter. The expressions for Nf ,
Nθ and Nφ which defined nonlinear operator are modeled as

Nf [f(η; r)] =
∂3f(η; r)

∂η3
+ f(η; r)

∂2f(η; r)

∂η2
− 2

(
∂f(η; r)

∂η

)2

+We

[
3

2

(
∂2f(η; r)

∂η2

)2

− 3
∂f(η, r)

∂η

∂3f(η; r)

∂η3
+

1

2
f(η; r)

∂4f(η; r)

∂η4

]

− 2Ps
∂f(η; r)

∂η
= 0 (25)

Nθ[f(η; r), θ(η; r)] =
∂2θ(η; r)

∂η2
+ Prf(η; r)

∂θ(η; r)

∂η

−1

2
δWePrEc

[
∂f(η; r)

∂η

(
∂2f(η; r)

∂η2

)2

− f(η; r)
∂2f(η; r)

∂η2
∂3f(η; r)

∂η3

]

+
1

2
Prλe

(
f(η; r)

df(η; r)

dη

dθ(η; r)

dη
− (f(η; r))2

d2θ(η; r)

dη2

)
+ PrEc

(
∂2f(η; r)

∂η2

)2

+ PrQθ(η; r) = 0 (26)

Nφ[f(η; r), φ(η; r)] =
∂2φ(η; r)

∂η2
+ Scf(η; r)

∂φ(η; r)

∂η

−RScφ(η; r) = 0 (27)

The functions f(η; r), θ(η; r) and φ(η; r) approach f0(η), θ0(η) and
φ0(η) when r varies between zero to one, to form f(η), θ(η) and
φ(η). The functions f(η; r), θ(η; r) and φ(η; r) in Taylor series are
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considered as

f(η; r) = f0(η) +
∞∑
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The convergence of above equation (28) stands on ~. However, if ~
is taken to give way for equation (28) to converge at r = 1, then
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The mth− order − deformation are modeled as
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and
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Xm = 0 for m ≤ 1

Xm = 0 for m > 1

the model general-solutions of above Eq. (30) are

fm(η) = fm(η)∗ + C1 + C2exp(η) + C3exp(−η) (36)

θm(η) = θm(η)∗ + C4 + C5exp(−η) (37)
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φm(η) = φm(η)∗ + C6 + C7exp(−η) = 0 (38)

3.2. CONVERGENCE OF THE (HAM) SOLUTION

Taking cognizant of the ideas of other researchers like Hayat et
al. [21], Koriko et al. [22], Akinbo and Olajuwon[23-26], the con-
vergence of the series solution of the models depend on non-zero
auxiliary parameters (~f , ~θ, ~φ) which significantly controls the
region at which the series solutions converge. Invoking Q = 0.1,
We = 0.1, δ = 0.2, Ps = 0.1, Ec = 0.1, Pr = 0.72, λe = 0.1, and
γ = 0.2, the parallel region of ~− curve, which depict the conver-
gences region of ~f , ~θ and ~φ are selected as ~f ∈ [−2.7,−0.2],
~θ ∈ [−3.7,−0.3] and ~φ ∈ [−2.3,−0.2] (See Fig. (2)).

Fig. 2. ~f,θ,φ − curves for f
′′
(0), θ

′
(0) and φ

′
(0) at 10th order of

approximations

Fig. 3. Effect of We on f
′
(0)
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4. DISCUSSION OF RESULTS

The significance of various dimensionless parameters are discussed
here for more insight into the model.

Table 1. Convergence of solution with Q = 0.1, We = 0.1, δ = 0.2,
Ps = 0.1, Ec = 0.1, Pr = 0.72, λe = 0.1, and γ = 0.2.

OrderofApproximation |f ′′
(0)| |θ′

(0)| |φ′
(0)|

5 1.4659 0.1310 0.4754
10 1.4666 0.1376 0.4611
12 1.4667 0.1393 0.4595
14 1.4668 0.1408 0.4585
16 1.4668 0.1420 0.4579
18 1.4669 0.1431 0.4576
20 1.4669 0.1441 0.4575
22 1.4669 0.1450 0.4575
24 1.4669 0.1450 0.4575
26 1.4669 0.1451 0.4575
28 1.4669 0.1451 0.4575
30 1.4669 0.1451 0.4575

Table 1 elucidates convergence orders of the iterations in agree-
ment with the far-field boundary conditions. Clearly from the ta-
ble, the momentum equation converges at 18th-order of iterations
while the concentration and energy equations follow suit at 20th
and 26th-orders of iterations respectively.

Fig. 4. Effect of We on θ(η)
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Fig. (3-4) illustrate the reaction of the local Weissenberg Number
(We) on non-dimensional velocity f

′
(0) and temperature θ(η). Var-

ious values of (We) give rise to viscoelasticity influence by virtue of
tensile stress which thusly declines the motion of the fluid as well
as momentum layer thickness. However, the reverse is the case for
θ(η) which consequently strengthens thermal layer thickness.

The impact of porosity parameter (Ps) on velocity f
′
(η) and

temperature θ(η) are demonstrated in Fig. (5-6). A deeper hin-
drance is observed against the motion of the fluid which reduces
the momentum boundary layer thickness. However, more heat is
produced across the boundary layer which significantly improves
θ(η) and brace-up thermal layer thickness.

Fig. 5. Effect of Ps on f
′
(η)

Fig. 6. Effect of Ps on θ(η)
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Fig. 7. Effect of Pr on θ(η)

Fig. 8. Effect of Ec on θ(η)

Fig. 7 depicts the behaviors of Prandt number (Pr) on temper-
ature θ(η). An increase in (Pr) limits conduction which obviously,
corresponds to a lower thermal diffusivity that thusly reduces θ(η)
and thins thermal boundary layer thickness. The behavior of Eck-
ert number (Ec) on temperature field θ(η) is pictured in Fig. 8.
Eckert number (Ec) expresses relationship between the conversions
of kinetic energy to internal energy by work done against viscous
stresses which makes the process to be irreversible. On this note,
enhancement in (Ec) portrays improvement in conversion rate of
kinetic energy to internal energy which consequently boosts the
temperature field and its associated thermal boundary layer thick-
ness (Koriko et al. [27] ). The fluid near the surface gets heated as
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(Ec) increases. This consequently magnifies the temperature field
θ(η) due to the heat addition by means of frictional heating and
boosts thermal boundary layer thickness. This outcome conformed
with Abel and Begum [28]. The impact of Elastic-deformation (δ)
depresses the dimensionless temperature θ(η) with an increase in
(δ) of which its aftermath reduces thermal boundary layer thickness
(See Fig. 9)

Fig. 9. Effect of δ on θ(η)

Fig. 10. Effect of λe on θ(η)

Fig. 10 poses the significance of thermal relaxation time (λe) on
the temperature profile. The temperature field θ(η) and thermal
layer thickness thin with variation in thermal relaxation time (λe).
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Indicating that materials particles crave for excessive time for the
nearest particles on the bounding surface to experience heat.

Fig. 11 portrays the behaviors of conjugate parameter (γ) which
expresses the strength of Newtonian heating on temperature field
θ(η). The presence of (γ > 0) pioneer greater convective heating
across the boundary layer which magnifies the temperature field
and boosts thermal layer thickness. Fig. 12 elucidates the signif-
icance of Heat Generation (Q > 0)/Absorption (Q < 0) on non-
dimensional temperature θ(η). An increase in Q amplifies the fluid
molecules which results in an increase in θ(η) as well as thermal
layer thickness.

Fig. 11. Effect of γ on θ(η)

Fig. 12. Effect of Q on θ(η)
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Fig. 13. Effect of Sc on φ(η)

Fig. 14. Effect of R on φ(η)

Various values of Schmidt number which varies from 0.24-2.62 for
diffusing chemical species in the air, obviously decreases the mass
diffusivity which decays the diffusion properties with aftermath re-
duction on concentration field φ(η) and its boundary layer thickness
(See Fig. 13). Fig. 14 body-forth the impact of chemical reaction
on non-dimensional concentration φ(η). As R > 0 the concentra-
tion buoyancy effect break-down, which consequently diminishes
the concentration field φ(η) and thins concentration boundary layer
thickness.

Table 2 reports numerically, the impact of We and Ps on local
Skin-friction. Variation in We and Ps obviously posed negative
values, indicating the presence of drag force on the fluid via the
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plate. However, the skin-friction is an increasing property of We
(Abegunrin et al. [29] ) with a reverse phenomenon on Ps .

Table 2. Validation of the result/Significance of the embedded
parameters on local Skin-friction.

parameters HAM GWRM

We Ps Re
1
2
xCfx Re

1
2
xCfx

0.1 0.1 -0.953574 -0.953571
0.2 -0.487186 -0.487187
0.3 0.095326 0.095321

0.5 -1.138849 -1.138867
1.0 -1.333918 -1.333919

Table 3. Validation of the result/Significance of the embedded
parameters on Nusselt number

parameters HAM GWRM

We Ec Pr δ γ λe Q −Re
1
2
xNux −Re

1
2
xNux

0.1 0.1 0.72 0.2 0.1 0.1 0.1 0.242325 0.242323
0.2 0.220969 0.220955
0.4 0.188078 0.188069

0.4 0.175679 0.175676
0.8 0.146269 0.146265

1.0 0.309169 0.309166
1.5 0.378475 0.378469

2.0 0.246472 0.246470
4.0 0.251164 0.251162

0.01 0.066011 0.066010
0.04 0.167788 0.167786
0.08 0.225613 0.225611

0.5 0.276276 0.276275
1.5 0.322176 0.322168

0.5 0.448594 0.448592
1.5 0.315158 0.315155

Table 3 report the interactive impact of various parameters on
the local Nusselt number. The surface heat is strengthening as
Conjugate parameter, thermal relaxation time, Prandtl number
and Elastic-deformation improved which consequently escalate the
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heat transfer rate. However, opposite phenomena are observed
as local Weissenberg number, Eckert number, and heat genera-
tion/absorption gain strength.

Table 4. Validation of the result/Significance of the embedded
parameter on local Sherwood number

parameter HAM GWRM

Sc R Re
1
2
xCfx Re

1
2
xCfx

0.24 0.263966 0.263831
0.62 0.474003 0.474356
0.78 0.549135 0.549139

0.5 0.416780 0.416676
1.0 0.548601 0.548685

Table 4 numerically reveals the behaviors of Sc and R on local
Sherwood number. Various values of Sc and R are found to improve
the Sherwood number, which consequently strengthens the surface
mass transfer.

5. CONCLUDING REMARKS

In this report, the interactive impact of Cattaneo-Christov heat
flux model, coupled with the influence of viscous dissipation, heat
generation/absorption and chemical reaction on the flow of Walters’
B fluid in the presence of Newtonian heating has been tackled via
Homotopy Analysis Method and the following key point are raised
among others.

• The result via Homotopy Analysis method perfectly agreed
with another method when compared with Galerkin Weighted
Residual.
• Various values of Heat Generation (Q > 0) amplifies the

fluid molecules, which brace-up the temperature field and
boosts the associated layer thickness.
• The local Sherwood number is strengthened with various

values of Schmidt number and chemical reaction and this
consequently improves the surface mass transfer.
• The temperature field declined over various values of ther-

mal relaxation time, indicating that materials particles re-
quire additional time to experience the heat at the closet
particles.
• Different values of local Weissenberg Number escalate vis-

coelasticity intensity via tensile stress, which slow-down the



224 B. J. AKINBO AND B. I. OLAJUWON

motion of fluid whose aftermath impact reduces momentum
boundary layer thickness.
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NOMENCLATURE

Q Heat generation/Absorption
We Local Weissenberg Number
Pr Prandtl number
Ec Eckert number
λe Thermal relaxation time
Ps Porosity parameter
Sc Schmidtl number
D Mass diffusivity
γ Conjugate parameter for Newtonian heating
α thermal diffusivity
η Similarity variable
θ dimensionless temperature
ν kinematic viscosity
ρ density
Cp specific heat at constant pressure
hs heat transfer coefficients
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