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ENTROPY GENERATION DUE TO COUETTE FLOW

OF A VISCOUS INCOMPRESSIBLE FLUID BETWEEN

TWO VERTICAL PARALLEL POROUS PLATES

A. O. AJIBADE1 AND T. U. ONOJA2

ABSTRACT. This work studies entropy generation and irre-
versibility distribution due to Couettte driven flow of a viscous
incompressible fluid in a vertical channel formed by two parallel
porous plates. One of the porous plates is stationary while fluid
flow in the channel is induced by uniform motion of the other
parallel porous plate. Isothermal heating of the moving plate
and viscous dissipation cause heat transfer within the channel.
The viscous dissipation is combined with natural convection,
giving rise to non-linearity of the energy equation which is then
coupled with the momentum equation. The coupling of the non-
linear energy equation with the momentum equation makes it
practically not feasible to obtain a closed form solution to the
problem, the homotopy perturbation method is therefore em-
ployed to obtain approximate analytical solutions to the formu-
lated mathematical model capturing this physical phenomena.
The approximate analytical solutions obtained for velocity and
temperature are used to compute entropy distribution and ir-
reversibility distribution. Effects of the governing parameters
on velocity, temperature, entropy distribution and irreversibility
are presented, studied and discussed with the aid of graphs. Re-
sults obtained from the present study reveal that there is higher
entropy generation near the stationary cold porous wall than
the moving hot wall. Systems with low Prandtl number tend to
exhibit lower entropy generation number than those with higher
Prandtl number.
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Entropy is the measure of molecular disorder or randomness of a
system, it accounts for unavailability of energy to do work. It is well
known that all forms of energy can be converted to one another,
and that all forms of energy can be converted to useful work, but it
is practically impossible to convert the entire available energy into
work. Efforts to convert heat energy into work give rise to thermo-
dynamics as a field, the energy that is not available to do work is
of interest in thermodynamics. The second law of thermodynam-
ics establishes the concept of entropy as a physical property of a
thermodynamic system. Entropy determines whether a process is
reversible or impossible despite obeying the principle of conserva-
tion of energy as stated in the first law of thermodynamics. The
entropy of various parts of the system may change, but the sum
total change is zero for any given reversible process. The entropy
balance for a closed system shows that entropy change of the system
is equal to the sum of entropy transfer with heat and entropy gen-
eration. Since entropy generation accounts for the available work of
the system, a very good knowledge of the major factors influencing
entropy generation is vital in optimizing system performances. En-
tropy generation is associated with thermodynamic irreversibility
which is one of the methods used in predicting the performance of
engineering processes.
A number of research findings have been carried out to investi-
gate entropy generation between parallel plates. Among the related
studies on entropy generation is Bejan [1] which studied second law
analysis in heat transfer and thermal design. Another closely re-
lated work is entropy generation in the flow system generated be-
tween two parallel plates due to bi-vertical motion of the top plate
which was studied by Sahin and Yilbas [2]. They concluded that
increasing constant velocity and force, lower entropy generation.
Ajibade et al. [3] investigated entropy generation in a steady flow
of viscous incompressible fluids between two infinite parallel plates.
The fluid temperature variation is due to asymmetric heating of
the porous plates as well as viscous dissipation. Their investigation
further reveals that suction/injection exerts a significant influence
on the temperature and velocity distribution, which consequently
affects the entropy generation within the channel. Bejan [4] discov-
ered constructal thermodynamics, which he claimed unites the ani-
mate, inanimate, and engineered system. Das and Jana [5] studied
effects of magnetic field and Navier slip on the entropy generation
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in a flow of viscous incompressible electrically conducting fluid be-
tween two infinite horizontal parallel plates under constant pressure
gradient. In a related work, Das and Jana [6] studied effects of mag-
netic field and suction/injection on entropy generation in a flow of
a viscous incompressible electrically conducting fluid between two
infinite horizontal parallel porous plates under a constant pressure
gradient. Using analytical results, Aksoy [7] studied effects of cou-
ple stresses on the heat transfer and entropy generation rates for
a flow between parallel plates with constant heat flux. He found
that the couple stress parameter alters the parabolic and symmet-
ric velocity profile and that increasing couple stress effects lead to
a rise in fluid temperature. He further noted that there is a de-
crease of entropy generation with increasing couple stress effects
while increasing Brinkman number grows the entropy generation in
the fluid. Torabi et al. [8] studied the interface entropy generation
in micro porous channels with velocity slip and temperature jump.
They noted that the total entropy generation rate may increase or
decrease in accordance with the temperature jump parameter with
respect to the micro porous channel outer boundary conditions.
Makinde and Gbolagade [9] investigated the second law analysis on
a laminar flow of incompressible fluid through an inclined channel
with isothermal boundaries. From their study, it was shown that
the heat transfer irreversibility dominates along the centerline of
the channel. Jain et al. [10] studied entropy generation in gener-
alized Couette flow through porous medium with different thermal
boundary conditions. They observed that total entropy generation
increases throughout the channel by increasing the heat flux. Re-
lated studies involving entropy generation due to Couette flow in
cylindrical annulus were also carried out by [11, 12].

Other important studies were carried out on fluid flow between
parallel plates, in which a plate moves relative to a stationary plate.
Among such works include Jha and Ajibade [13] which investigated
free convective flow of heat generating/absorbing fluid between ver-
tical parallel porous plates due to periodic heating of the porous
plates. Jha et al. [14] presented a numerical solution for transient
free convective flow of reactive viscous fluid in a vertical parallel
plates channel. Their study found excellent agreement between the
analytical solution of the steady state problem and numerical so-
lution of the transient problem at large value of time. Das et al.
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[15] considered the MHD flow and heat transfer in a viscous in-
compressible fluid between two parallel porous plates experiencing
a discontinuous change in temperature. Hafeez and Ndikilar [16]
studied the problem of steady laminar flow of viscous incompress-
ible fluid between two parallel porous plates with bottom injection
and top suction. Sharma [17] investigated the steady plane Cou-
ette flow of viscous incompressible fluid between two parallel porous
plates through porous medium, while Mandal et al. [18] analyzed
effects of thermal radiation and constant mass diffusion on the tran-
sient laminar free convective flow in a vertical channel with variable
temperature and mass diffusion. One of their results show that ve-
locity and temperature fields decrease with an increase in radiation
parameter. Recently, in an analysis of entropy generation for MHD
flow of viscous fluid embedded in a vertical porous channel with
thermal radiation, Abbas et al,[19] discussed the effects of mag-
netic field, suction/injection, radiation and entropy generation for
a fully developed flow in a vertical porous micro channel, it was
concluded that entropy generation rate improve with higher val-
ues of the injection parameter. Many authors [20, 21, 22, 23, 24]
have also investigated entropy generation in a Couette flow through
porous channels for different geometrical configurations and under
different thermal conditions.

Because the channel presentation in Ajibade et al. [3] is horizon-
tal, the effect of heat input on the momentum was ignored thereby
underestimating the contribution of fluid friction to total entropy
generation in the system. To address this issue, the present prob-
lem is set to investigate the effect of viscous dissipation on entropy
generation due to natural convection flow of viscous incompressible
fluids between two vertical parallel porous plates. In this case, the
external heat input as well as viscous dissipation is captured to
have significant effects on the buoyancy of the fluid and hence the
velocity. Combining viscous dissipation effects with natural con-
vection eventually leads to nonlinearity of the energy equation as
well as coupling of the momentum and energy equations. There-
fore, it become practically not feasible to obtain a closed form solu-
tion. Hence, the Homotopy perturbation method (HPM) has been
adopted to obtain an approximate solution to the problem. The
solutions obtained for velocity and temperature are used to deter-
mine the entropy generation as well as the irreversibility distribu-
tion within the channel. The solutions are presented graphically
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and discussed for some carefully selected values of the governing
parameters.

2. ENTROPY GENERATION RATE AND IRREVERSIBILITY ANALYSIS

According to Bejan [25], the volumetric rate of entropy generation
rate for the flow of a Newtonian incompressible fluid under the effect
of Fourier law of heat conduction, is given in Cartesian coordinates
as

EG =
k

T 2
0

((
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+
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In this form of entropy generation, irreversibility is due to two
effects, which are; conduction (k) and viscosity (µ). The pres-
ence of temperature and velocity gradients in a medium implies
entropy generation rate is finite and positive. Assuming the flow
to be hydro-dynamically fully developed

(
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= 0
)
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(
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6= 0
)

or thermally fully developed
(
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= 0
)
, (see

[26, 27, 28]), then eq. (1) is reduced to the form:
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The dimensionless form of EG has been presented as entropy gen-
eration number (Ns) by Bejan [1] which is given to be equal to
the ratio of the actual entropy generation rate to the characteristic
entropy transfer rate EG,C .

EG,C =
q2

kT 2
0

=
k(∆T )2

L2T 2
0

(3)

q is the heat flux, T0 is the absolute reference temperature, ∆T is
the temperature difference and L is the characteristic length de-
pending on geometry of the channel and problem type.

The expression on the right hand side of eq. (3) is applied for
isothermal boundary conditions while that at the middle of the
same equation is used for isoflux boundary conditions. Eq. (2) is
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reduced, in dimensionless form, to:

NS =
1

Pe2

(
∂θ
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)2

+
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+
Br

Ω

(
∂u
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)2

= Nc +Ny +Nf (4)

This is achieved by scaling the velocity u with the reference ve-
locity u0, the distance y with L, the distance x with L2u0α

−1 and
expressing the dimensionless temperature θ as (T −T0)∆T−1 where
Pe = L2u0α

−1 is the Peclet number, and Ω = ∆TT−1
0 is the dimen-

sionless temperature difference. The first term (Nc) stands for the
entropy generation by heat transfer due to axial conduction, the
middle term (Ny) represents entropy generation due to heat trans-
fer across different fluid sections within the channel, and the last
term (Nf ) gives the contribution of viscous dissipation to entropy
generation.

Both heat transfer and fluid friction irreversibility account for the
entropy generation rate in many convective problem. Eq. 4 shows
the extent of spatial distribution of entropy generation but could
not indicate the relative contributions of each irreversibility to the
total entropy generation. In order to identify which of the irre-
versibilities (between fluid friction or heat transfer) that dominate
total entropy generation, Bejan [1] showed the irreversibility ratio φ
as the ratio of entropy generation due to fluid friction Nf to entropy
generation due to heat transfer (Nc + Ny). Since flow is assumed
to be thermally fully developed in the present work, heat transfer
due to axial conduction is neglected (Nc = 0) ( see also Aydin and
Avci [29]) so that irreversibility distribution ratio becomes.

φ =
Nf

Ny

(5)

Entropy due to heat transfer dominates irreversibility for 0 ≤ φ ≤ 1,
entropy due to fluid friction dominates for φ > 1 while φ = 1 im-
plies both heat transfer and fluid friction irreversibilities contribute
equally to the total entropy generation. Due to the relevance of
contribution from heat transfer irreversibility to entropy genera-
tion in many physical situations, Paoletti et al [30] developed an
alternative irreversibility distribution parameter in terms of Bejan
number (Be), which they defined as the ratio of entropy due to
heat transfer (Nc+Ny) to the total entropy generation (Ns). Bejan
number could be Mathematically expressed as

Be =
Nc +Ny

Ns

=
1

1 + θ
(6)
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One can easily conclude from the expression for Bejan Number (eq.
6) that 0 ≤ Be ≤ 1, with the following possibilities; Be = 1 implies
that entropy is generated only by heat transfer irreversibility, for
Be = 0 signifies that total entropy generation is only due to fluid
friction irreversibility while Be = 1

2
indicates that both heat trans-

fer and fluid friction contribute equally to total entropy generation.
We investigate the second law analysis for a couette flow in a

channel between vertical porous walls.

3. MATHEMATICAL ANALYSIS

Fig. 1. Diagramatic Representation of the Flow Domain.

We consider a steady flow of viscous incompressible heat gener-
ating/absorbing fluid in a vertical channel bounded by two infinite
parallel porous walls. The x′ axis is taken vertically parallel to one
of the channel porous walls and normal to the y′ axis. The two
porous walls are placed parallel to each other at l distance apart
and the flow is induced by the uniform motion of the porous wall
placed at y′ = l, see Figure 1. Heat transfer in the system is due
to the isothermal heating of the moving porous wall as well as vis-
cous dissipation within the channel. Also, we assume the flow to
be steady and fully developed; hence, the temperature and velocity
fields are functions of y′ alone.
The governing equations for the steady flow of viscous incompress-
ible fluid between two heated parallel porous walls are the conser-
vation of mass

∇ • ~V = 0 (7)
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conservation of momentum(
~V • ∇

)
~V = v∇2~V − 1

ρ
∇P + gβ (T ′ − T0) (8)

and conservation of energy(
~V • ∇

)
T =

k

ρCp
∇2T +

µ

ρCp
(∇u)2 +

Q0 (T ′ − T0)

ρCp
(9)

where ∇ = ∂
∂x′
i + ∂

∂y′
j + ∂

∂z′
k. Physical quantities ρ, ~V , v, k and P

have been defined in nomenclature.
Considering a two dimensional flow so that ~V = (u′, v′, 0) where u′

and v′ are the vertical and horizontal (suction/injection) compo-
nents of the velocity respectively. Also, we assume the flow is along
the x′-axis which is fully developed and depends on y alone so that
eq. (7) is reduces to

dv′

dy′
= 0 (10)

We integrate (10) to obtain the horizontal velocity, v′ = −v0 (con-
stant), which is the velocity of suction/injection.

Adopting the Boussinesqs approximation, the equations of motion
for steady Couette flow of viscous incompressible heat generating
fluid with viscous dissipation are given as,

v
d2u′

dy′2
+ v0

du′

dy′
+ gβ (T ′ − T0) = 0 (11)

k

ρCp
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+ v0

dT ′

dy′
+

µ

ρCp

(
du′

dy′

)2

+Q0
(T ′ − T0)

ρCp
= 0 (12)

with the boundary conditions:

u′(0) = 0, T ′(0) = T0

u′(l) = U, T ′(l) = Tw

}
(13)

We present eqs. (11) and (12) in dimensionless form as follows

d2u

dy2
+ S

du

dy
+Grθ = 0 (14)

d2θ

dy2
+ SPr

dθ

dy
+ EcPr

(
du

dy

)2

+ δθ = 0 (15)

With boundary conditions

u(0) = 0, θ(0) = 0
u(1) = 1, θ(1) = 1

}
(16)
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The non-dimensional quantities in equations (14)-(16) are;

y =
y′

l
, u =

u′

U
, θ =

T ′ − T0

Tw − T0

, S =
v0l

v
, Pr =

µCp
k
, δ =

Q0l
2

k
,

Gr =
gβl3 (Tw − T0)

v2
, Ec =

U2

Cp (Tw − T0)

Pr is the Prandtl number which is inversely proportional to the ther-
mal diffusivity of the fluid. S is the dimensionless suction/injection
parameter, where positive values denote suction at the porous wall
y′ = 0 with a corresponding injection on the wall y′ = l while
negative values denote injection at the porous wall y′ = 0 with a
corresponding suction on the other wall. Ec, the Eckert number is
the measure of viscous dissipation in the system. Gr is the Grashof
number which is the ratio of the buoyancy to the viscous force act-
ing on the fluid. δ is the temperature dependent heat source/sink
parameter, positive values represent heat source and negative val-
ues represent heat sink.

In view of the nonlinearity and coupling of the governing equa-
tions, obtaining an exact solution becomes elusive; we therefore
employ the Homotopy Perturbation Method, (He [31, 32, 33, 34])
to obtain approximate analytical solutions. Solving equations (14)
and (15) with the boundary conditions (16) using the Homotopy
perturbation technique, He [31, 32, 33, 34] we obtain the following
approximate solutions for velocity and temperature

u(y) = u0(y) + u1(y) + u2(y) + . . . (17)

θ(y) = θ0(y) + θ1(y) + θ2(y) + . . . (18)

where; θ0(y) = y
θ1(y) = A2y

6 + A3y
4 + A4y

3 + A5y
2 + k5y

θ2(y) = A12y
11 +A13y

9 +A14y
8 +A15y

7 +A16y
6 +A17y

5 +A18y
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2 + k9y
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3 + k3y
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8 +B2y
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3 +B6y
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4 + A30y
3 + A31y

2 + k11y
Where Ai, ki, for i = 1, 2, . . . are constants of integration and are

given as;
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2
k5 = −(A2 +A3 +A4 +A5) A6 = −GrA2
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,
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, A8 = −GrA4
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,
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A11 = −Sk3
2

, A12 = −
(

24A1A11EcPr
55

)
, A13 = −

(
9A1A7EcPr+4A6k3EcPr

18

)
,

A14 = −
(

30A1A8EcPr+A2δ
56

)
, A15 = −

(
A2SPr+4A1A9EcPr+2A7k3EcPr

7

)
,

A16 = −
(

18A1A10EcPr+10A8k3EcPr+A3δ
30

)
,

A17 = −
(

4A3SPr+12A1A11EcPr+8A9k3EcPr+A4δ
20

)
,

A18 = −
(

3A4SPr+6A1k7EcPr+6A10k3EcPr+A5δ
12

)
,

A19 = −
(

2A5SPr+4A11k3EcPr+k5δ
6

)
, A20 = −

(
k5SPr+2k3k7EcPr

2

)
,

k9 = − (A12 + A13 + A14 + A15 + A16 + A17 + A18 + A19 + A20),
A21 = −A12Gr

156
, A22 = −A13Gr

110
, A23 = −A14Gr

90
, A24 = −A15Gr+8A6S

72
,

A25 = −A16Gr
56

, A26 = −A17Gr+6A7S
42

, A27 = −A18Gr+5A8S
42

,

A28 = −A19Gr+4A9S
20

, A29 = −A20Gr+A10S
12

, A30 = −k9Gr+2A11S
6

,

A31 = −k7S
2

, k11 = −(A21 + A22 + A23 + A24 + A25 + A26 + A27 +
A28 + A29 + A30 + A31)

We then compute the entropy generation in the system by sub-
stituting the expressions for velocity and temperature into eq. (4).

Ns =

(
dθ

dy

)2

+
Br

Ω

(
du

dy

)2

(19)

to obtain;

Ns = τ1 +
Br

Ω
τ 2

2 (20)

where,
(
dθ
dy

)2

= τ1,
(
du
dy

)2

= τ 2
2 , τ1 = d1y

20 + d2y
18 + d3y

17 +

d4y
16 + d5y

15 + d6y
14 + d7y

13 + d8y
12 + d9y

11 + d10y
10 + d11y

9 +
d12y

8 + d13y
7 + d14y

6 + d15y
5 + d16y

4 + d17y
3 + d18y

2 + d19y + d20,
τ 2

2 = 13A21y
12 + 11A22y

10 + 10A23y
9 + 9A24y

8 + (8A6 + 8A25)y7 +
7A26y

6 +(6A7 +6A27)y5 +(5A8 +5A28)y4 +(4A9 +4A29)y3 +(3A1 +
3A10 +3A30)y2 +(2A11 +2A31)y+(k3 +k7 +k11) d1 = (11A12)2, d2 =
2 (9912A13), d3 = 2 (88A12A14), d4 = 154A12A15 + (9A13)2, d5 =
66A12(A2+A16)+144A13A14, d6 = 110A12A17+126A13A14+(8A14)2,
d7 = 22A12(4A3 + 4A18) + 18A13(6A2 + 6A16) + 112A14A15, d8 =
22A12(3A4 + 3A19) + 90A13A17 + 16A14(6A2 + 6A16) + (7A15)2, d9 =
22A12(4A3+4A18)+18A13(6A2+6A16)+112A14A15, d10 = 22A12(1+
k5+k9)+18A13(3A4+3A19)+16A14(4A1+4A18)+70A15A17+(6A12+
6A16)2, d11 = 18A13(2A5 +2A20)+16A14(A4 +3A19)+14A15(4A3 +
4A18) + 10A17(6A2 + 6A16), d12 = 18A13(1 +k5 +k9) + 16A14(2A2 +
2A20) + 14A15(3A4 + 3A19) + 2(6A2 + 6A16)(4A3 + 4A18) + (5A17)2,
d13 = 16A14(1+k5 +k9)+14A15(2A5 +2A20)+2(6A2 +6A16)(3A4 +
3A19) + 10A17(4A3 + 4A18), d14 = 14A15(1 + k5 + k9) + 2(6A2 +
6A17)(2A5+2A20)+10A17(3A4+3A19)+(4A3+4A18)2, d15 = 2(6A2+
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6A16)(1+k5 +k9)+10A17(2A5 +2A20)+2(4A3 +4A18)(3A4 +3A19),
d16 = 10A17(1+k5+k9)+2(4A3+4A18)(2A5+2A20)+(3A4+3A19)2,
d17 = 2(4A3 + 4A18)(1 + k5 + k9) + 2(3A4 + 3A19)(2A5 + 2A20),
d18 = 2(3A4 + 3A19)(1 + k5 + k9) + (2A5 + 2A20)2, d19 = 2(2A5 +
2A20)(1 + k5 + k9), d20 = (1 + k5 + k9)2

In order to analyze the irreversibility distribution within the sys-
tem, we compute the Bejan number by substituting the expressions
for velocity and temperature into eq.(6) to get:

Be =
τ1

τ1 + Br
Ω
τ 2

2

(21)

Results of these computations are plotted on line graphs gener-
ated by MATLAB.

VALIDATION OF RESULTS

In order to validate the results obtained in the present study, we set
the buoyancy term, Gr and the heat generation/absorption term,
δ to zero in the present work and compare with the exact solutions
obtained in [3]. The result of this comparison shows that with Gr
and δ set to zero in the present study, a very good approximation of
[3] is recovered as shown in table 1. The slight variation is as a result
the semi-analytical method (homotopy perturbation method) used
in obtaining the solution of the governing equations of the present
problem due to its non linearity, which was truncated at the second
order of the homotopy parameter (P 2). A better approximation is
expected with a higher order of the homotopy parameter, P .

TABLE 1:Numerical comparison between the present problem and
[3]

[3]; y = 0.5 Present work; Gr = δ = 0, y = 0.5
S θ θ

-1.0 0.437758611397176 0.437875000000000
-0.5 0.482101262450140 0.482250000000000
0.5 0.570618979285886 0.571000000000000
1.5 0.654438795486174 0.659750000000000
S u u

-1.0 0.377540668798145 0.377604166666667
-0.5 0.437823499114202 0.437825520833333
0.5 0.562176500885798 0.562174479166667
1.5 0.679178699175393 0.678710937500000
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4. RESULTS AND DISCUSSION

The present study presented entropy generation due to flow of vis-
cous incompressible heat generating/absorbing fluids between two
vertical parallel porous walls. The considered problem is a Cou-
ette flow between two vertical porous walls with asymmetric lateral
heating and viscous dissipation. The study investigates the roles
of Grashof number (Gr), temperature dependent heat source/sink
(δ), Prandtl number (Pr), suction/injection parameter S and the
Eckert number (Ec) on entropy generation and irreversibility dis-
tribution within the channel. In this discussion, the values of Pr
are chosen between the non-dimensional values of 0.04 to 0.99 to
accommodate some known fluids such as mercury (0.008-0.041), wa-
ter vapour (0.882-0.994), oxygen (0.729-0.759) and air (0.703-0.784)
(see Lienhard and Lienhard [35]). S is chosen from -1.0 to 1.0 to
account for injection and suction, δ is chosen between -2.2 and 2.2
to accommodate both heat source δ > 0 and heat sink δ < 0 while
the values of Gr are selected between 5 and 25.

Figs. 2 and 3 show the velocity profiles for different values of Gr
and δ respectively. Fig 2 reveals that increasing Gr leads to increase
in the velocity of fluid within the channel. This is true because
increasing Gr in the channel leads to increase in the buoyancy force
which tends to overcome the restraining viscous force in the fluid
and consequently cause rise in fluid velocity within the channel. Fig
3 shows that fluid velocity increases with heat source (δ > 0) and
decreases with heat sink (δ < 0).

Effects of Gr and δ on the temperature distribution within the
system are displayed in figures 4 and 5. Fig. 4 shows that tem-
perature increases with increase in Gr. Physically speaking, the
significance of the Grashof number is that it represents the ratio of
the buoyancy force as a result of spatial variation in fluid density as
a result of temperature differences, to the restraining force caused
by viscous force on the fluid. Fig. 5 shows the temperature pro-
files for different values of δ. It is observed that the temperature
decreases with heat sink (+δ) but increases with heat source (−δ).

Figures 6-10 describe the response of entropy generation number
with respect to the different flow parameters. Fig. 6 shows that
entropy generation number increases with increase inGr. The effect
is higher close to the porous walls but decreases towards the center-
line of the channel, which is in excellent agreement with [23]. This
effect is stronger near the stationary/cold wall (y = 0) as compared
to the heated/moving wall, (y = 1). Entropy generation number
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increases with increase in heat source, δ > 0; this is shown in fig.
7. This change is stronger near the stationary wall, y = 0 than
the moving wall, y = 1. Fig.8 shows entropy generation number
for different values of the Prandtl number. It shows that entropy
generation number grows with increasing Pr. This implies that
systems designed with fluids having low Prandtl number performs
better than those with high Prandtl number. Fig. 9 describes
entropy generation number for different values of Ec. The figure
shows that entropy generation increases with growing Ec near the
cold wall. In addition, the influence of Ec on the total entropy
generation diminishes near the center line while it is higher near
the cold stationary wall, y = 0. Effect of the group parameters
(BrΩ−1) on entropy generation number is shown in fig.10.

Fig. 2. Velocity for different Gr
(Pr = 0.71, Ec = 0.3, S = 0.5, δ = 0.2).

Fig. 3. Velocity for different δ
(Pr = 0.71, Ec = 0.3, S = 0.5, Gr = 10).
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Fig. 4. Temperature for different Gr
(Pr = 0.71, Ec = 0.3, S = 0.5, δ = 0.2).

Fig. 5. Temperature for different
δ(Pr = 0.71, Ec = 0.3, S = 0.5, Gr = 10).

Fig. 6. Entropy Generation number for different Gr
(Pr = 0.71, Ec = 0.3, S = 0.5, δ = 0.2, BrΩ−1 = 1).
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Fig. 7. Entropy Generation number for different
δ(Pr = 0.71, Ec = 0.3, S = 0.5, Gr = 10, BrΩ−1 = 1).

Fig. 8. Entropy Generation number for different
Pr(δ = 0.2, Ec = 0.3, S = 0.5, Gr = 10, BrΩ−1 = 1).

Fig. 9. Entropy Generation number for different
Ec(δ = 0.2, P r = 0.71, S = 0.5, Gr = 10, BrΩ−1 = 1).
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Fig. 10. Entropy Generation number for different BrΩ−1

(δ = 0.2, Ec = 0.3, S = 0.5, Gr = 10, P r = 0.71).

Fig. 11. Bejan number for different Gr
(δ = 0.2, Ec = 0.3, S = 0.5, P r = 0.71, BrΩ−1 = 1).

Fig. 12. Bejan number for different δ
(Ec = 0.3, S = 0.5, Gr = 10, P r = 0.71, BrΩ−1 = 1).
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Fig. 13. Bejan number for different Pr
(Ec = 0.3, S = 0.5, Gr = 10, δ = 0.2, BrΩ−1 = 1).

Fig. 14. Bejan number for different
Ec(δ = 0.2, P r = 0.71, S = 0.5, Gr = 10, BrΩ−1 = 1).

Fig. 15. Bejan number for different BrΩ−1

(δ = 0.2, Ec = 0.3, S = 0.5, Gr = 10, P r = 0.71).
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The figure shows that entropy generation increases with growing
(BrΩ−1). However, there is a fluid section at which entropy gen-
eration number is insensitive to changes in magnitude of the group
parameter. This fluid section where viscous dissipation is negligi-
ble for each value of the parameter is closer to the hot moving wall
(y = 1) than the stationary wall, (y = 0). A critical look at this
figure shows that the magnitude of entropy generation is higher at
the interface of the cold/stationary wall than at the moving/hot
wall. This is physically true because effect of viscous dissipation
is lowered due to higher temperature and fluid movement near the
moving/hot wall which eventually lowered the entropy generation
compared to the cold/stationary wall.

Effects of the governing parameters on the irreversibility distribu-
tion ratio (Bejan number) are presented in figures 11-15. Figure 11
shows that irreversibility due to heat transfer took dominance over
total entropy generation near the center of the channel while fluid
friction irreversibility took the dominance near the channel porous
walls. However, as (Gr) increases, fluid temperature as well as ve-
locity increases and there is a decrease in the level of dominance
of heat transfer irreversibility close to the porous walls. Increas-
ing heat source is observed to increase contribution of heat transfer
irreversibility near the cold stationary wall while it decreases that
dominance near the moving heated wall. However, heat sink has in-
fluenced the entropy generation in a way that is directly opposite to
that of heat source in which growing the heat sink act in support of
the fluid friction irreversibility dominance of the total entropy gen-
eration as shown in figure 12. From fig. 13, it is clearly shown that
fluid friction irreversibility is the major cause of entropy generation
near the cold wall when the working fluid has a low Prandtl number
while the trend is reversed towards the heated wall. A particular
fluid section is observed in the neighborhood of y = 0.3 in which
irreversibility distribution does not depend on fluid type. At this
section, minimum entropy generation is achieved for the different
fluid types considered.

Fig. 15 presents the response of Be to different values of the group
parameter (BrΩ−1). It is shown that fluid friction irreversibility
dominates near the porous walls while heat transfer irreversibility
dominates towards the centerline of the channel. Increasing group
parameter is observed to increase the dominance of fluid friction
irreversibility near both porous walls. However, influence of the
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group parameter (BrΩ−1) diminishes as we approach that fluid sec-
tion with absolute heat transfer dominance.

5. CONCLUSION

We have investigated entropy generation and irreversibility distri-
bution in a steady fully developed Couette flow and heat transfer
with viscous dissipation in a vertical channel formed by two infi-
nite parallel porous walls. The governing momentum and energy
equations were solved using the Homotopy perturbation method.
Impacts of the operating parameters on the flow have been dis-
cussed with the aid of graphs. The results of the validation of the
present work agree significantly with Ajibade et al. [3]. It has been
discovered that heat source/sink and the Grashof number exert sig-
nificant influence on the temperature, velocity, as well as entropy
generation rate and irreversibility distribution within the channel.
The following major conclusions have also been drawn from the
present study:
i. Minimum entropy generation is obtained towards the channel’s
center-line.
ii. Entropy generation is higher at the surface of the cold/stationary
wall than the hot/moving wall.
iii. Fluid friction irreversibility dominates near the channel walls
while heat transfer irreversibility is dominant towards the center-
line of the channel.
iv. Dominance of fluid friction irreversibility is higher near the
hot/moving wall than the cold /stationary wall.
v. For optimal performance, engineering systems should be de-
signed with fluids having low Prandtl number.
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NOMENCLATURE

Be Bejan number
Br Brinkman number
Cp Specific heat at constant preasure [m2s−2K−1]
Ec Eckert number
EG volumetric rate of entropy generation
EG,C characteristic entropy transfer rate
g acceleration due to gravity [ms−2]
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Gr Grashof number
l channel width
Nc entropy generation by heat transfer due

to axial conduction
Nf entropy generation by viscous dissipation
Ns dimensionless entropy generation number
Ny entropy generation due to heat transfer

across fluid sections
Pe Peclet number
Pr Prandtl number
Q0 dimensional heat generating parameter

[Kgm−1s−3K−1]
Re Reynolds number
S dimensionless suction/injection parameter
T0 dimensional temperature at y′ = 0 [K]
T ′ dimensional fluid temperature [K]
Tw temperature of plate at y′ = l [K]
u′ dimensional velocity of fluid [ms−1]
u dimensionless velocity of fluid
U dimensional velocity of the moving plate [ms−1]
~V velocity vector having the components

u′, v′, w′ in the direction i, j, k [ms−1]
v0 velocity of suction/injection [ms−1]
x′ vertical axis [m]
y′ co-ordinate perpendicular to the plate [m]
y dimensionless horizontal co-ordinate
Greek
Alphabets
α thermal diffusivity [m2s−1]
β coefficient of thermal expansion K−1

δ dimensionless heat generating parameter
κ thermal conductivity

[Kgms−3K−1]
θ dimensionless temperature of fluid
φ irreversibility distribution ratio
ν kinematic viscosity [m2s−1]
µ coefficient of viscosity

[Kgm−1s−1]
ρ density of the fluid [Kgm−3]
Ω dimensionless temperature difference
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