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ABSTRACT. This paper proposes fast and reliable algorithm
for the numerical solution of the nonlinear Klein-Gordon partial
differential equation. A modified new iterative method was em-
ployed to formulate six steps algorithm. To demonstrate the ef-
ficiency of the proposed algorithm, we considered four examples
from available literature, and the numerical solutions obtained
confirmed that the proposed algorithm is efficient and reliable.
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1.0 INTRODUCTION

The Klein-Gordon equation was named after the physicists Oskar
Klein and Walter Gordon (1926), who proposed an equation de-
scribing relativistic electrons; which Schrodinger considered a quan-
tum wave equation. The equation plays a vital role in formulating
mathematical models in quantum mechanics, which attracts much
attention in studying the condensed matter and investigating the
interaction of solutions in a collisionless plasma. They occur in
various areas of physical sciences and engineering such as the prop-
agation of fluxions in the Josephson junctions, the motion of rigid
pendula attached to a stretched wire, solid-state physics, nonlinear
optics, quantum field theory, fluid dynamics, mathematical biology,
chemical kinematics, and dislocations in crystals. This equation is
a relativistic version of the Schrodinger equation which describes
scalar spineless particles [1, 2, 3]. In this paper, we consider a
one-dimensional nonlinear Klein-Gordon equation of the form:

∂2

∂t2
φ(x, t)− β ∂2

∂x2
φ(x, t) +F (x, t, φ) = ψ(x, t) : β > 0, a ≤ x ≤ b, t > t0 (1)
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subject to initial conditions

φ(x, t0) = h1(x), φt(x, t0) = h2(x) (2)

and with boundary condition

φ(x, t) = h(x, t), (3)

where φ = φ(x, t) represents the wave displacement at position x
and time t, β is a known constant and F (x, t, φ) is the nonlinear
force such that ∂F

∂φ
≥ 0, h1(x), h2(x), h(x, t), and φ(x, t) are known

functions. Suppose F (x, t, φ) is of the form [4, 5]:

F (x, t, φ) =


sin (φ)

sin (φ) + sin (2φ)

sinh (φ) + sinh (2φ)

eφ

(4)

F (x, t, φ) is characterized by any of the sine-Gordon, double sine
Gordon, double sinh-Gordon and Liouville equations in (4) above.
In recent years, several numerical and computational researchers
have proposed and employed several techniques to solve the non-
linear Klein-Gordon equation such as [6] studied the adiabatic dy-
namics of topological solitons in presence of perturbation terms
and the solitons due to sine-Gordon equation, double sine-Gordon
equation and sineCosine Gordon equation, authors in [7] developed
and applied numerical schemes to solve one-dimensional nonlinear
KleinGordon equation with quadratic and cubic nonlinearity us-
ing collocation points and approximating the solution using thin
plate splines (TPS) radial basis function (RBF), [8] developed a
new approach to the nonlinear Klein-Gordon equations by using
Taylor matrix method, [9] presented an algorithm to solve lin-
ear and nonlinear Klein-Gordon equation using pertubation itera-
tion transform method, [10] presented numerical solutions for two-
dimensional sine-Gordon equation using the radial basis functions,
[11] investigated the numerical solutions of Klein-Gordon equation
using Legendre wavelets, [12] presented numerical solutions of new
traveling wave solutions to the boussinesq and the KleinGordon
equations, [13] used Hes variational iteration method to obtain nu-
merical solutions of the KleinGordon equation, [14] proposed and
applied multiquadric Quasi-interpolation scheme for the numeri-
cal solutions of the nonlinear Klein-Gordon, [15] solving nonlin-
ear Klien-Gordon equation with high accuracy multiquadric quasi-
interpolation scheme was considered, [16] developed the spectral
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method for solving sine-Gordon equation by new orthogonal poly-
nomial, [17] presented the finite difference method for φ4 nonlin-
ear Klein Gordon equation, and [18] applied variational method
and finite element techniques for the numerical solution of damped
nonlinear KleinGordon equations.
In this paper, we employed modified new iterative method (MNIM)
discussed in [19] to formulate MAPLE18 software codes for the
development of six steps algorithm to solve the nonlinear Klein-
Gordon equation. The procedures are more accurate in comparison
with many numerical techniques available in literature.
This paper is organized as follows; In section 1, a brief introduc-
tion on the Klein-Gordon equation is discussed, and in section 2,
formulation of modified new iterative method and modified new it-
erative algorithm are discussed while in section 3, we present four
computational experiments to illustrate the proposed algorithm.
3Dplots for the numerical solutions for four Klein-Gordon equation
examples are presented in section 4. Finally, the discussion and
conclusion are presented in section 5.

2.0 METHOD OF SOLUTION

2.1 Modified New Iterative Method (MNIM)

New iterative method (NIM) was proposed by [20] and simple easy
to implement on computer using symbolic computation packages
such as Maple, Mathematica, Matlab e.t.c. This method is better
than some numerical techniques as it is free from rounding off errors
and does not require large computer power [21, 22].
Consider new iterative method (NIM) as a numerical technique for
solving a functional equation of the form

φ(x̄) = f(x̄) +N(φ(x̄)) (5)

where N a nonlinear operator from a Banach space B → B and
f(x̄) is a known function, x̄ = (x1, x2, x3, . . . , xn). We need to
obtain the solution φ(x̄) of equation (5) having the series of the
form;

φ(x̄) =
∞∑
i=0

φi(x̄) (6)

The nonlinear operator which is on the right-hand side of equation
(5) can be decomposed as follow:

N

(
∞∑
i=0

φi(x̄)

)
= N(φ0)+

∞∑
i=1

(
N

(
i∑

j=0

φj

)
−N

(
i−1∑
j=0

φj

))
(7)
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substitute equations equation (6) and (7) into the equation (5) and
(5) becomes:

∞∑
i=0

φi(x̄) = f(x̄)+N(φ0)+
∞∑
i=1

(
N

(
i∑

j=0

φj

)
−N

(
i−1∑
j=0

φj

))
(8)

The recurrence relation is given by

φ0 = f,

φ1 = N(φ0),
...

φm+1 = N(φ0 + φ1 + · · ·+ φm)−N(φ0 + φ1 + · · ·+ φm−1)

m = 1, 2, 3, . . .

(9)
Then

(φ1 +φ2 + · · ·+φm+1) = N(φ0 +φ1 + · · ·+φm), m = 1, 2, 3, . . .
(10)

and
∞∑
i=0

φi = f +N

(
∞∑
i=0

φi

)
(11)

The q− term approximate solution of equation (5) is given by;

φ = φ0 + φ1 + φ2 + · · ·+ φq−1 (12)

In order to improve the convergence rate of NIM discussed in Sec-
tion 2.1 for the numerical solution of the nonlinear Klein-Gordon
equation where source term was difficult to evaluate using NIM,
authors [19] discussed the introduction of source terms into the in-
tegral representing N(φ) and the modification was stated as follows:

(1) if the source term is a function of the independent variable
x only, it is included in N(φ);

(2) if the source term is a function of the independent variables
x and t, it is included in N(φ);

(3) if the source term is a function containing terms with func-
tions of x, t, and both x and t then, we include in N(φ) the
terms involving t and both x and t;

(4) and if the source term is sin (x) sin (t), then MNIM can be
applied to obtain the close exact solution.

2.2 Modified New Iterative Algorithm (MNIA)

In this section, we develop six steps algorithm using the MINM
discussed in Section 2.1 in order to reduce computational time taken
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in simplifying and evaluating the derivatives involve in the modified
new iterative method while the convergence rate is faster. Modified
new iterative algorithm formulation goes thus:

restart
Step 1:
Digits := 8;
N := R+ ;

β := R+

;
φ(x, t0) := h1(x);
φt(x, t0) := h2(x);
φ[0] := φ(x, t0) + t ∗ φt(x, t0);
Step 2:
KGPDE := value(β ∗ diff(φ[0], x, x)− F (x, t, φ[0]) + ψ(x, t));
φ[1] := value(int(KGPDE, t = 0..t, t = 0..t));
Step 3:
for m from 1 to N do
φ[m + 1] = value((int((β * Diff(sum(φ[n],n=0..m, x,x)-
F(x,t,sum(φ[n], n=0..m))
+ ψ(x, t)))))) - (int((β * Diff(sum(φ[n],n=0..m-1, x,x)-
F(x,t,sum(φ[n], n=0..m-1)) + ψ(x, t))))))); end do;
Step 4:
φ∗ := sum(φ[k], k=0..N+1);
φ[sol] := evalf(φ∗);
Step 5:
for i from -1 by 0.2 to 1 do
φ := evalf(eval(φ[sol], x = i, t = i))
end do
Step 6:
φ[3Dplot] := plot3d(φ [sol], x=-10..10, t=-60..60, grid=[100,100],
color);
φ[3Dplot] := plot3d(φ[example1, example2], x=-10..10, t=-60..60,
grid = [100,100], color:red,blue);
φ[3Dplot] := plot3d(φ [example3, example4], x=-10..10, t=-60..60,
grid = [100,100], color:green,purple);
Output: See Table 1, Table 2, Table 3,Table 4 and Figures
(1,2,3,..,6) where N is the computational length and is positive
constant.
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3.0 NUMERICAL EXAMPLES

Example 1: We consider the nonlinear KleinGordon equation (1)
with β = 5

2
, F (x, t, φ) = 3

2
φ3 and ψ(x, t) = 0. [7, 8]

∂2φ

∂t2
− 5

2

∂2φ

∂x2
+ φ+

3

2
φ3 = 0 − 1 ≤ x ≤ 1 (13)

with the initial conditions

φ(x, 0) = B tan(Kx), φt(x, 0) = BcK sec2(kx) (14)

Here B =
√

2
3
, K =

√
−1

2(−2.5+c2) and c = 0.05.

The exact solution is given as;

φ(x, t) = B tan(K(x+ ct)) (15)

Apply algorithm proposed when h1(x) = B tan(Kx), h2(x) = BcK
sec2(Kx) and taking computational length N = 2. We obtain nu-
merical solutions given in Table 1.

Table 1: Numerical solutions for φ(x, t) wave displacement in
Example 1.

φ(x, t) Exact solution MNIA [7] [8]
(0.1, 0.01) 0.03674054 0.00×100 0.00×100 5.20×10−7

(0.2, 0.01) 0.07344602 1.10×10−9 1.78×10−6 9.42×10−6

(0.3, 0.01) 0.11044836 0.00×100 1.77×10−7 3.68×10−6

(0.4, 0.01) 0.14790165 1.10×10−8 1.54×10−6 2.62×10−6

(0.5, 0.01) 0.18596741 1.10×10−8 1.53×10−7 2.19×10−6

(0.6, 0.01) 0.22481755 0.00×100 1.72×10−6 3.79×10−6

(0.7, 0.01) 0.26463756 1.10×10−8 1.73×10−7 2.96×10−6

(0.8, 0.01) 0.30563029 0.00×100 2.00×10−6 1.12×10−5

(0.9, 0.01) 0.34802048 0.00×100 1.99×10−7 3.63×10−6

(1.0, 0.01) 0.39206013 0.00×100 0.00×100 2.68×10−6

Example 2: We consider nonlinear KleinGordon equation (1) with
β = 1, F (x, t, φ) = φ2 and ψ(x, t) = −x cos(t) + x2 cos2(t). [8, 11]

∂2φ

∂t2
− ∂2φ

∂x2
+ φ2 = −x cos(t) + x2 cos2(t) − 1 ≤ x ≤ 1 (16)

with the initial conditions

φ(x, 0) = x, φt(x, 0) = 0 (17)

The exact solution is given as;

φ(x, t) = x cos(t) (18)
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Apply algorithm proposed when h1(x) = x, h2(x) = 0 and taking
computational length N = 3. We obtain numerical solutions given
in Table 2.

Table 2: Numerical solutions for φ(x, t) wave displacement in
Example 2.

φ(x, t) Exact solution MNIA [8] [11]
(0.0, 0.0) 0.00000000 0.00×100 0.00×100 0.00×100

(0.1, 0.1) 0.09950042 1.83×10−7 2.89×10−6 **
(0.2, 0.2) 0.19601332 1.68×10−6 1.65×10−6 1.62×10−7

(0.3, 0.3) 0.28660095 3.05×10−6 3.59×10−6 **
(0.4, 0.4) 0.36842440 4.40×10−6 4.77×10−6 7.78×10−7

(0.5, 0.5) 0.43879128 3.28×10−6 4.42×10−6 **
(0.6, 0.6) 0.43879128 7.63×10−6 4.44×10−6 2.81×10−6

(0.7, 0.7) 0.53538953 8.04×10−6 1.18×10−5 **
(0.8, 0.8) 0.55736537 9.96×10−5 4.20×10−5 1.65×10−5

(0.9, 0.9) 0.55944897 3.28×10−5 1.22×10−4 **
(1.0, 1.0) 0.99500417 6.28×10−5 2.95×10−4 1.39×10−5

** - Not available

Example 3: We consider nonlinear KleinGordon equation (1) with
β = 1, F (x, t, φ) = φ2 and ψ(x, t) = 6tx3 − 6xt3 + (xt)6. [8, 9]

∂2φ

∂t2
− ∂2φ

∂x2
+ φ2 = 6tx3 − 6xt3 + (xt)6 − 1 ≤ x ≤ 1 (19)

with the initial conditions

φ(x, 0) = 0, φt(x, 0) = 0 (20)

The exact solution is given as;

φ(x, t) = x3t3 (21)

Apply algorithm proposed when h1(x) = 0, h2(x) = 0 and taking
computational length N = 4. We obtain numerical solutions given
in Table 3.
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Table 3: Numerical solutions for φ(x, t) wave displacement in
Example 3.

φ(x, t) Exact solution MNIA [8] [9]
(0.0, 0.0) 0.00000000 0.00×100 0.00×100 0.00×100

(0.1, 0.1) 0.00000100 0.00×100 0.00×100 0.00×100

(0.2, 0.2) 0.00006400 0.00×100 0.00×100 0.00×100

(0.3, 0.3) 0.00072900 0.00×100 0.00×100 0.00×100

(0.4, 0.4) 0.00409600 0.00×100 0.00×100 0.00×100

(0.5, 0.5) 0.01562500 0.00×100 0.00×100 0.00×100

(0.6, 0.6) 0.04665600 0.00×100 0.00×100 0.00×100

(0.7, 0.7) 0.11764900 0.00×100 0.00×100 0.00×100

(0.8, 0.8) 0.26214400 0.00×100 0.00×100 0.00×100

(0.9, 0.9) 0.53144100 0.00×100 0.00×100 0.00×100

(1.0, 1.0) 0.00100000 0.00×100 0.00×100 0.00×100

Example 4: We consider nonlinear KleinGordon equation (1) with
β = 1, F (x, t, φ) = φ2 and ψ(x, t) = x2t2. [9, 19]

∂2φ

∂t2
− ∂2φ

∂x2
+ φ2 = x2t2 − 1 ≤ x ≤ 1 (22)

with the initial conditions

φ(x, 0) = 0, φt(x, 0) = x (23)

The exact solution is given as;

φ(x, t) = xt (24)

Apply algorithm proposed when h1(x) = 0, h2(x) = x and taking
computational length N = 2. We obtain numerical solutions given
in Table 4.



A NEWLY FORMULATED ALGORITHM FOR THE NUMERICAL . . . 21

Table 4: Numerical solutions for φ(x, t) wave displacement in
Example 4.

φ(x, t) Exact solution MNIA [9] [19]
(0.0, 0.0) 0.00000000 0.00×100 0.00×100 0.00×100

(0.1, 0.1) 0.01000000 0.00×100 0.00×100 0.00×100

(0.2, 0.2) 0.04000000 0.00×100 0.00×100 0.00×100

(0.3, 0.3) 0.09000000 0.00×100 0.00×100 0.00×100

(0.4, 0.4) 0.16000000 0.00×100 0.00×100 0.00×100

(0.5, 0.5) 0.25000000 0.00×100 0.00×100 0.00×100

(0.6, 0.6) 0.36000000 0.00×100 0.00×100 0.00×100

(0.7, 0.7) 0.49000000 0.00×100 0.00×100 0.00×100

(0.8, 0.8) 0.64000000 0.00×100 0.00×100 0.00×100

(0.9, 0.9) 0.81000000 0.00×100 0.00×100 0.00×100

(1.0, 1.0) 0.10000000 0.00×100 0.00×100 0.00×100

Fig.1.0 φ(x, t) wave displacement of position x and time t on 3D plot for nonlinear

Klein-Gordon equation: Example 1

4.0 CONCLUSION

In this paper, we developed fast and accurate six steps algorithm
using modified new iterative method to obtain numeric-analytic so-
lutions of nonlinear Klein-Gordon equation. Four examples are con-
sidered from available literature to demonstrate the feasibility of the
proposed algorithm which shows a good agreement with exact so-
lutions. Figures 1, 2, 3, 4, 5 and 6 depict φ(x, t) wave displacement
at position x and time t which are plotted on 3Dplots. From a com-
putational point of view, MNIA takes few computational lengths to
achieve a close form solution. Therefore, we recommend the newly
introduced algorithm for similar problems in computational physics
and engineering sciences.
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Fig.2.0 φ(x, t) wave displacement of position x and time t on 3D plot for nonlinear
Klein-Gordon equation: Example 2

Fig.3.0 φ(x, t) wave displacement of position x and time t on 3D plot for nonlinear

Klein-Gordon equation: Example 3

Fig.4.0 φ(x, t) wave displacement of position x and time t on 3D plot for nonlinear

Klein-Gordon equation: Example 4
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Fig.5.0 φ(x, t) wave displacement of position x and time t on 3D plot for nonlinear
Klein-Gordon equation: Example 1 and Example 2

Fig.6.0 φ(x, t) wave displacement of position x and time t on 3D plot for nonlinear

Klein-Gordon equation: Example 3 and Example 4
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