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LOCAL NONSIMILARITY SOLUTION OF CASSON FLUID

FLOW ALONG A STRETCHING SURFACE IN THE

PRESENCE OF VISCOUS DISSIPATION, VARIABLE

VISCOSITY AND THERMAL CONDUCTIVITY

M. O. LAWAL1 AND S. O. AJADI

ABSTRACT.The study of heat and mass transfer of Casson
fluid flow along a stretching sheet in the presence of viscous
dissipation, variable viscosity and thermal conductivity is in-
vestigated. The governing partial differential equations are re-
duced to a system of coupled nonlinear quasi-ordinary differen-
tial equations through Sparrow-Quack-Boerner Local Nonsimi-
larity Method evaluated at a particular streamwise location by
Midpoint method based on Richardson Extrapolation Enhance-
ment scheme implemented on MAPLE 17 platform. The numer-
ical results for velocity, temperature and concentration distribu-
tions as well as skin friction coefficient, Nusselt and Sherwood
numbers were obtained. Parametric analysis of some embed-
ded parameters such as Eckert number, Casson, thermal radi-
ation and magnetic strength were carried out and these results
have been displayed graphically. It is observed that the velocity,
temperature and concentration profiles increase with increase in
variable viscosity but the converse is true for the variable ther-
mal conductivity.

Keywords and phrases: Casson fluid, local nonsimilarity, viscous
dissipation, variable thermal conductivity, variable viscosity.
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1. INTRODUCTION

The study of non-Newtonian fluids characterized by nonlinear rela-
tionship between stress and rate of strain are well documented in the
literature. Some examples of non-Newtonian fluids are Jeffery fluid
[1] - [2], Maxwell fluid, Williamson fluid, Oldrody B fluid, Johnson-
Segalman fluid, Viscoelastic fluid etc.
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There is another non-Newtonian fluid called Casson fluid, which
became more popular in recent years in the study of non-Newtonian
fluids due to its importance in many devices such as magnetohydrody-
namic (MHD) power generators, MHD pumps, aerodynamics heating,
polymer extrusion, petroleum industry, pharmaceutical process, pu-
rification of crude oil, fluid droplet sprays, metal forming, wire and
glass fiber drawing and several others.

Casson [3] examined the validity of the Casson fluid model in his
studies concerning the flow characteristics of blood. He reported that
at low shear rates, the yield stress for blood is nonzero. Based on
this concept, Mustafa [4] reported the unsteady boundary layer flow
of Casson fluid on a moving surface to further explain the Casson
fluid model. Dash et al. [5] defined Casson fluid as a shear thinning
liquid which is assumed to have an infinite viscosity at zero rate of
shear: a yield stress below which no flow occurs,and a zero viscosity
at an infinite rate of shear. Models [1]-[2] have been proposed to
clarify all the physical behaviors of Casson fluids. Some examples
of Casson fluids include jelly, ketchup, custard, toothpaste, molten
chocolate, yoghurt, maizena, paint, shampoo, tomato sauce, honey,
soup, suspension or solution of clay, starch or graphite and human
blood.

A boundary layer analysis was presented by Mukhopadhyay et al.
[6] for non-Newtonian fluid flow and heat transfer over a nonlinearly
stretching surface where it is noted that the Casson fluid model is used
to characterize the non-Newtonian fluid behaviour. The process of suc-
tion or blowing has also its importance in many engineering activities
for example, in the design of thrust bearing and radial diffusers, and
thermal oil recovery. Suction or injection (blowing) of a fluid through
the bounding surface can significantly change the flow field. Suction
is applied to chemical processes to remove reactants whereas blowing
is used to add reactant, cool the surface, prevent corrosion or scaling
and reduce the drag.

In the same vein, Mukhopadhyay [7] numerically examined the bound-
ary layer flow due to an exponentially stretching surface in the presence
of an applied magnetic field. It was found that the effect of increasing
values of the Casson parameter is to suppress the velocity field. How-
ever the temperature is enhanced when Casson parameter increases.
Shateyi et al. [8] investigated Casson fluid flow in the presence of free
convection of combined heat and mass transfer toward an unsteady
permeable stretching sheet with thermal radiation, viscous dissipa-
tion and chemical reaction. The equations were solved numerically
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using Runge-Kutta-Fehlberg method for different values of parameters
such as magnetic parameter, radiation parameter, chemical reaction
parameter, suction/injection parameter and Eckert number.

Nadeem et al. [9] investigated MHD three-dimensional Casson fluid
flow past a porous linearly stretching sheet for momentum equation
adopting fourth-order Runge-Kutta-Fehlberg method with a shooting
technique. Pramanik [10] studied Casson fluid flow and heat transfer
past an exponentially porous stretching surface in presence of thermal
radiation applying the fourth order classical Runge-Kutta method.
Ramesh and Devakar [11] presented some analytical solutions for flows
of Casson fluid with slip boundary conditions where they studied three
fundamental flows namely Couette, Poiseuille and generalized Couette
flows of an incompressible Casson fluid between parallel plates using
slip boundary conditions.

Afikuzzaman [12] presented MHD Casson fluid flow through a paral-
lel plate under the action of mass transfer by using implicit finite dif-
ference method has been taken into consideration. The physical prop-
erties are graphically discussed for different values of corresponding
parameters. Arthur et al. [13] analyzed Casson fluid flow over a verti-
cal porous surface with chemical reaction in the presence of magnetic
field. A similarity analysis was used to transform the system of partial
differential equations describing the problem into ordinary differential
equations. The reduced system was solved using the Newton-Raphson
shooting method alongside the forth-order Runge-Kutta algorithm.

Many boundary layer flow and contemporary heat transfer prob-
lem of interest are not admissible to similarity solutions. According
to White [14], the coordinates x, y must disappear through suitable
transformation in the transformed equations of a similar problem oth-
erwise, the problem is not self similar or locally similar. However,
Sparrow et al. [15] stated that nonsimilarity boundary layer may stem
from a variety of causes such as variation in the wall temperature,
variation in free-stream velocity, surface mass transfer, effect of suc-
tion or injection of fluid at the wall, buoyancy force effect, inclination
angle effect etc. Mohamad et al. [16] observed that the nonsimilarity
of boundary layer can also arise from more than one factor while in-
vestigating the combined heat and mass transfer on mixed convection
non-similar flow of electrically conducting nanofluid along a permeable
vertical plate in the presence of thermal radiation.

There are various numerical methods proposed to deal with such
nonsimilar boundary layer problems, the most popular among them is
the local nonsimilarity method initiated by Sparrow et al. [15]. This is
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described and applied for treating nonsimilar boundary layer problems
in which all terms appearing in the conservation equations are retained
without approximation but are selectively neglected in the derived
subsidiary equations. This present research considered some thermo-
physical parameters in which buoyancy effect, surface mass transfer
and pressure gradient are included therefore making the problem not
admissible to local similarity solution approach or that any solution
obtained will be of uncertain accuracy. Hence, the adoption of the
local nonsimilarity approach.

Ibrahim and Hassanien [17] carried out analysis to study the heat
transfer characteristics of laminar mixed convection boundary layer
flow of a micropolar fluid over a semi-infinite horizontal flat plate with
nonuniform surface temperature. The effect of material parameter,
the exponent for the power-law variation in wall temperature and the
nonsimilar mixed convection parameter are considered. The boundary
layer equations were solved numerically by means of finite difference
method with different correction. Patil et al. [18] obtained non-similar
solutions for steady two dimensional double diffusive mixed convection
boundary layer flows over an impermeable exponentially stretching
sheet in an exponentially moving free stream under the influence of
chemically reactive species using an implicit finite difference scheme
in combination with the Newtons linearization technique.

Animasahun et al. [19] investigated the behaviour of Casson fluid
flow with variable thermo-physical property along exponentially stretch-
ing sheet with suction and exponentially decaying internal heat gen-
eration using the homotopy analysis method.

The objective of the present study is to obtain Local Nonsimilar-
ity Solution of MHD Mixed Convective Casson Fluid Flow along a
Stretching Sheet in the Presence of Viscous Dissipation, Variable Vis-
cosity and Thermal Conductivity. To the best of the authors’ knowl-
edge, the investigation on Casson Fluid along a Stretching Surface in
the Presence of Variable Viscosity and Thermal Conductivity using
Local Nonsimilarity approach have not been carried out.

The governing equations modelling MHD flow, heat and mass trans-
fer over stretching surfaces are highly nonlinear therefore making exact
solutions impossible to obtain. Therefore, numerical solutions have
always been developed and modified with the aim of getting more
accurate and stable solutions. This present work seeks to obtain Lo-
cal Nonsimilarity Solution(LNS) of MHD mixed convective Casson
fluid flow along a stretching sheet in the presence of viscous dissipa-
tion, variable viscosity and thermal conductivity employing Midpoint
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Method based on Richardson Extrapolation Enhancement scheme im-
plemented on the MAPLE 17 platform.

1.2 Research Questions

Based on the aforementioned, the following research questions are ap-
propriate:

(i) Does the viscous dissipation have effect on Casson fluid stretch-
ing surface?

(ii) What are the contributions of variable viscosity and thermal
conductivity?

(iii) What is the influence of nonlinear stretching velocity? and
(iv) Why the need for Local Nonsimilarity Solution Approach?

2. FORMULATION OF THE PROBLEM

Consider heat and mass transfer of an incompressible two-dimensional
unsteady laminar boundary layer flow of Casson fluid over a stretch-
ing sheet with viscous dissipation, thermal radiation, variable viscosity
and thermal conductivity. The rheological equation of an isotropic and
incompressible flow of a Casson fluid (Mustafa et al. [4]) is given by:

τ 1/n = τ
1/n
0 + µγ̇1/n. (1)

It can also take the form (Nakamura and Sawada [2])

τij =

[
µB +

(
Py√
2π

)1/n
]n

2eij. (2)

Different values of the flow index n are used in rheological application.
For example, chocolate and blood flow system, n = 2. However, in
this paper, and for obvious reason, we take n = 1. Therefore,

τij = 2eij

(
µB +

Py√
2π

)
when π > πc,

τij = 2eij

(
µB +

Py√
2πc

)
when π < πc,

(3)

where Py is known as yield stress of the fluid, mathematically ex-

pressed as Py = µB
√
2π

β
then, eij is the (i, j)th component of the

deformation rate, µB is known as plastic dynamic viscosity of the
non-Newtonian fluid, π = eijeij is the product of the component of
deformation rate with itself and πc is the critical value based on the
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non-Newtonian model. For Casson fluid (Non Newtonian) flow, where
π > πc, it is possible to say that

µ = µB +
Py√
2π
. (4)

Substituting Py into (4), the kinematics viscosity of Casson fluid is
now depending on plastic dynamic viscosity µB, density ρ and Casson
parameter β,

ν =
µB
ρ

(
1 +

1

β

)
. (5)

Furthermore, the temperature dependent viscosity and thermal con-
ductivity are respectively given as (Mukhopadhyay et al. [6]; Ani-
masahun et al. [19]; Bhattacharyya et al. [20]; Prasad et al. [21])

µ(T ) = µ∗[b+ r(Tw − T )] and κ(T ) = κ∗[d+ ε(Tw − T )], (6)

where µ∗ and κ∗ are the coefficients of viscosity and thermal conductiv-
ity respectively in the free stream r = r∗(Tw−T∞) and ε = ε∗(Tw−T∞).
Also b, d, r and ε are constant. We consider the case when b = d = 1
and r, ε∗ > 0.

Extending Shateyi [8] and Mukhopadhyay [7] among others, intro-
ducing the boundary layer approximations, the MHD heat and mass
transfer fluid flows are governed by the following conservative equa-
tions written as:

∂u

∂x
+
∂v

∂y
= 0, (7)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

ρ

(
1 +

1

β

)
∂

∂y

(
µ(T )

∂u

∂y

)
− 1

ρ

∂P

∂x

+ gβT (T − T∞) + gβc(C − C∞)− σB2

ρ
u,

(8)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

ρCp

(
1 +

1

β

)
∂

∂y

(
κ(T )

∂u

∂y

)
+
µ(T )

ρ

(
1 +

1

β

)(
∂u

∂y

)2

− 1

ρCp

∂qr
∂y

+
σB2

ρ
u2,

(9)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
=
Dm

ρCp

∂2C

∂y2
−Kr(C − C∞). (10)

The associated initial and boundary conditions for the present problem
are

t = 0 : u = 0, v = 0, T = Tw, C = Cw at y ≥ 0, (11)

t > 0 : u = Uw(x, t), v = Vw, T = Tw, C = Cw at y = 0, (12)
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t > 0 : u = Ue(x, t), w → 0, T → T∞, C → C∞ as y →∞. (13)

Local Nonsimilarity Method
Problems involving mixed convection in boundary layers analysis are
usually not self similar or locally similar because the embedded param-
eters are not independent of the original variables. The implementa-
tion of local nonsimilarity method as detailed in Minkowycz and Spar-
row [22] involves the execution of a definite succession of steps which
starts with the transformation of coordinates. The first step in the
development of the solution method is to transform the problem from
the x, y coordinate system to the ξ, η system. The coordinate η, which
involves both x and y, with x denoting the streamwise coordinate and
y the transverse coordinate, may be termed a pseudo-similarity vari-
able; it is chosen to reduce to a true similarity variable for boundary
layers which are similar. In the same vein, ξ is related to x alone and is
so chosen that x does not appear explicitly in the transformed conser-
vation equations or the boundary conditions. Following Sparrow and
Yu [23], Ishak et al. [24] and Khan et al. [25], we devise the following
dimensionless velocity quantities and parameters as functions of f, θ
and φ and in accordance with the foregoing, η and ξ for the problem
of uniform-surface mass transfer:

ψ =

√
λνb

1− ct
x

j+1
2 f(ξ, η), η =

√
λb

ν(1− ct)
yx

j−1
2 , ξ = x,

Ue =
λaxj

1− ct
, θ = θ(ξ, η) =

T − T∞
Tw − T∞

, φ = φ(ξ, η) =
C − C∞
Cw − C∞

,

Uw =
λbxj

1− ct
, B2 =

B2
0

1− ct
.

(14)

The introduction of the power of x follows from Kundu [26]. If j =
1 = λ, (14) reduces to Shateyi et al. [8] among others in the literature,
where b is stretching rate, t is the time and j is a numerical exponent
associated with pressure gradient parameter. λ is a scaling parameter
of the dimension L1−j and L 6= 0.
Due to the adopted nonlinear unsteady stretching sheet velocity from
Kundu [26], Lawal and Ajadi [27], Shateyi et al. [8] and Thumma
et al. [28], the dimensionally balanced and homogeneous surface tem-
perature and concentration of the sheet which varies with the distance
x, y and time t take the form:

Tw = T∞ + T0
λ2bx2j

2ν(1− ct)3/2
, Cw = C∞ + C0

λ2bx2j

2ν(1− ct)3/2
. (15)
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The expressions Uw(x, t), Ue(x, t), Tw(x, t), Cw(x, t) are valid only for
the time t < 1

c
(i.e. ct < 1) and c > 0 (positive constant). T0 is the

reference temperature such that 0 ≤ T0 ≤ Tw.

By using the Rosseland approximation [29, 30], the radiative heat flux
is given by

qr = − 4σ∗

3K∗
∂T 4

∂y
, (16)

where σ∗ and K∗ are the Stefan-Boltzman constant and the Rosseland
mean absorption coefficient respectively. We assume that the temper-
ature differences within the flow are sufficiently small such that T 4

may by expressed as a linear function of temperature. Expanding
T 4 in a Taylor series about T∞ and neglecting higher order terms we
obtain

T 4 ≈ 4T 3
∞T − 3T 4

∞. (17)

Using (16) and (17) in the third term on the right hand side of equation
(9) we obtain

∂qr
∂y

= −16σ∗

3K∗
∂2T

∂y2
. (18)

Introducing the stream function ψ, the velocity components u and v
can be written as

u =
∂ψ

∂y
and v = −∂ψ

∂x
, (19)

and thus the continuity equation (7) is automatically satisfied.
By applying these similarity variables and quantities above in (14) and
(15), the governing partial differential equations are transformed into
a system of coupled non-linear ordinary differential equations as:

[1 + ε− θε]
(

1 +
1

β

)
f ′′′ − ε

(
1 +

1

β

)
θ′f ′′ +

j + 1

2
ff ′′

+ j
(
ω − (f ′)2

)
− A

(
f ′ +

1

2
ηf ′′
)

+Grξθ +Gcξφ−Mf ′

= ξ

[
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

]
,

(20)

1

Pr
(1 + rθ +

4

3
R)θ′′ +

r

Pr
θ′

2
+

(
j + 1

2
f − A

2
η

)
θ′

−
(

2jf ′ +
3A

2

)
θ + Ec

[
(1 + ε− θε)

(
1 +

1

β

)
f ′′

2
+Mf ′

2

]
= ξ

[
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

]
,

(21)
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1

Sc
φ′′ +

(
j + 1

2
f − A

2
η

)
φ′ −

(
2jf ′ +

3A

2
+ LrRex

)
φ

= ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
.

(22)

The corresponding dimensionless initial and boundary conditions are

f(ξ, 0) = fw, f
′(ξ, 0) = 1, θ(ξ, 0) = 1, φ(ξ, 0) = 1, (23)

f ′(ξ,∞) = ω, θ(ξ,∞) = 0, φ(ξ,∞) = 0, (24)

where primes denote the differentiation with respect to η, θ is the di-
mensionless temperature, φ is the dimensionless concentration,

Pr =
µCp
κ

, Sc =
ν

D
, Aξ =

c

λbξj−1
, M =

σB2
0

ρb
, R =

4σ∗T 3
∞

KsK
,

Grξ =
gβT (Tw − T∞)ξ

U2
w

, Gcξ =
gβc(Cw − C∞)ξ

U2
w

, Lr =
Kr(1− ct)
bξj−1

,

ω =
a

b
, Ec =

U2
e

Cp(Tw − T∞)
. If f(0) = fw then Vw = −(νUw

ξ
)
1
2f(0)

represents the mass transfer at the surface where fw < 0 for injection
and fw > 0 for suction.

In obtaining the local nonsimilarity solutions of equations (20) - (22),
the appearance of the terms ∂/∂ξ may be changed for the next level

of truncation by defining the new dependent variables as
∂f

∂ξ
= F ,

∂θ

∂ξ
= X and

∂φ

∂ξ
= Y .

First Level of Truncation (Local Similarity)
The respective right hand side (RHS) terms of equations (20) - (22)
ξ [f ′F ′ − Ff ′′], ξ [f ′X − Fθ′] and ξ [f ′Y − Fφ′] are deleted which co-
incides with equations for local similarity approach.

[1 + ε− θε]
(

1 +
1

β

)
f ′′′ − ε

(
1 +

1

β

)
θ′f ′′ +

j + 1

2
ff ′′+

j
(
ω − (f ′)2

)
− A

(
f ′ +

1

2
ηf ′′
)

+Grξθ +Gcξφ−Mf ′ = 0,

(25)

1

Pr

(
1 + rθ +

4

3
R

)
θ′′ +

r

Pr
θ′

2
+

(
j + 1

2
f − A

2
η

)
θ′

−
(

2jf ′ +
3A

2

)
θ + Ec

[
(1 + ε− θε)

(
1 +

1

β

)
f ′′

2
+Mf ′

2

]
= 0,

(26)
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1

Sc
φ′′ +

(
j + 1

2
f − A

2
η

)
φ′ −

(
2jf ′ +

3A

2
+ LrRex

)
φ = 0. (27)

Second Level of Truncation
The governing equations for f, θ and φ at this level of truncation in
equations (20) - (22) are retained without approximation. The aux-

iliary equations for F,X and Y are derived by taking
∂

∂ξ
of (20) -

(22),

[1 + ε− θε]
(

1 +
1

β

)
F ′′′ − ε

(
1 +

1

β

)
X ′f ′′ − ε

(
1 +

1

β

)
θ′F ′′

+
j + 1

2
[fF ′′ + Ff ′′]− 2jF ′f ′ − A

(
F ′ +

1

2
ηF ′′

)
+GrξX

+GcξY −MF ′ = f ′F ′ − Ff ′′ + ξ

[
∂

∂ξ
(f ′F ′ − Ff ′′)

]
,

(28)

1

Pr

(
1 + rθ +

4

3
R

)
X ′′ +

r

Pr
2X ′θ′

2
+

(
j + 1

2
f − A

2
η

)
X

+
j + 1

2
Fθ′ −

(
2jf ′ +

3A

2

)
X − (2jF ′)θ

+ Ec

[
(1 + ε− θε)

(
1 +

1

β

)
(2f ′′F ′′) + 2Mf ′F ′

]
= f ′X − Fθ′ + ξ

[
∂

∂ξ
(f ′X − Fθ′)

]
,

(29)

1

Sc
Y ′′ +

(
j + 1

2
f − A

2
η

)
Y ′ −

(
3A

2
+ 2jf ′ + LrRex

)
Y

+
j + 1

2
Fφ′ − 2jF ′φ = f ′Y − Fφ′ + ξ

[
∂

∂ξ
(f ′Y − Fφ′)

]
.

(30)

Third Level of Truncation
The governing equations for F,X and Y at this level of truncation in
equations (28) - (30) are retained without approximation. The aux-

iliary equations for G,H and S are derived by taking
∂

∂ξ
of (28) -

(30), introducing
∂F

∂ξ
= G,

∂X

∂ξ
= H and

∂Y

∂ξ
= S and then re-

spectively deleting the terms
∂2

∂ξ2
(f ′F ′ − f ′′F ),

∂2

∂ξ2
(f ′X − θ′F ) and
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∂2

∂ξ2
(f ′Y − φ′F ). According to this concept as reported by Sparrow

et al. [15] and Mohamad et al. [16], the RHS of the equations are
assumed to be sufficiently small so that it may be approximated by
zero. Boundary conditions for F,X and Y are also obtained by differ-

entiating (28) and (30) with respect to ξ and deleting
∂G

∂ξ
,
∂H

∂ξ
and

∂S

∂ξ
.

[1 + ε− θε]
(

1 +
1

β

)
G′′′ − ε

(
1 +

1

β

)
(X ′F ′′ +H ′f ′′)

− ε
(

1 +
1

β

)
(θ′G′′ +X ′F ′′)− ε

(
1 +

1

β

)
θ′F ′′

+
j + 1

2
[fG′′ + Ff ′′ + f ′′G+ F ′F ]− 2j (F ′F ′ +G′f ′)

− A
(
G′ +

1

2
ηG′′

)
+GrξH +GcξS −MG′ − f ′G′ + (F ′)2

+ (f ′′G− F ′′F ) = ξ

[
∂2

∂ξ2
(f ′F ′ − Ff ′′)

]
,

(31)

1

Pr
(1 + rθ +

4

3
R)H ′′ +

2r

Pr

(
X ′2 + θ′H ′

)
+

(
j + 1

2
f − A

2
η

)
H ′

+
j + 1

2
(FX ′ +Gθ′)−

(
2jf ′ +

3A

2

)
H − 2j(X ′2 +Hθ)

− 2jF ′X + Ec

[
(1 + ε− θε)

(
1 +

1

β

)
2(F ′′F ′′ + f ′′G′′)

]
+ 2MEc

(
f ′G′ + F ′2

)
= f ′H + F ′X − (θ′G+X ′F )

+ ξ

[
∂2

∂ξ2
(f ′X − Fθ′)

]
,

(32)

1

Sc
S ′′ +

(
j + 1

2
f − A

2
η

)
S ′ −

(
3A

2
+ 2jf ′ + LrRex

)
S

+
j + 1

2
FY ′ +

j + 1

2
(FY ′ +Gφ′)− 2jF ′Y − 2j(F ′Y +G′φ)

− (f ′S − F ′Y ) + (FY ′ −Gφ′) = ξ

[
∂2

∂ξ2
(f ′Y − Fφ′)

]
.

(33)
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The governing equations and its auxiliary equation are therefore brought
together as

[1 + ε− θε]
(

1 +
1

β

)
f ′′′ − ε

(
1 +

1

β

)
θ′f ′′ +

j + 1

2
ff ′′

+ j
(
ω − (f ′)2

)
− A

(
f ′ +

1

2
ηf ′′
)

+Grξθ +Gcξφ−Mf ′

= ξ [f ′F ′ − Ff ′′] ,

(34)

1

Pr

(
1 + rθ +

4

3
R

)
θ′′ +

r

Pr
θ′

2
+

(
j + 1

2
f − A

2
η

)
θ′

−
(

2jf ′ +
3A

2

)
θ + Ec

[
(1 + ε− θε)

(
1 +

1

β

)
f ′′

2
+Mf ′

2

]
= ξ [f ′X − Fθ′] ,

(35)

1

Sc
φ′′ +

(
j + 1

2
f − A

2
η

)
φ′ −

(
2jf ′ +

3A

2
+ LrRex

)
φ

= ξ [f ′Y − Fφ′] .
(36)

[1 + ε− θε]
(

1 +
1

β

)
F ′′′ − εX

(
1 +

1

β

)
f ′′′ + ε

(
1 +

1

β

)
X ′f ′′

− ε
(

1 +
1

β

)
θ′F ′′ +

j + 1

2
[fF ′′ + Ff ′′]− j (2F ′f ′)

− A
(
F ′ +

1

2
ηF ′′

)
+GrξX +GcξY −MF ′ = f ′F ′ − Ff ′′

+ ξ
[
f ′G′ + (F ′)2 − (f ′′G+ F ′′F )

]
,

(37)

1

Pr
(1 + rθ +

4

3
R)X ′′ +

rX

Pr
θ′′ +

r

Pr
2X ′θ′

2

+

(
j + 1

2
f − A

2
η

)
X ′ +

j + 1

2
Fθ′ −

(
2jf ′ +

3A

2

)
X

− (2jF ′)θ + Ec

[
(1 + ε− θε)

(
1 +

1

β

)
(2f ′′F ′′) + 2Mf ′F ′

]
= f ′X − Fθ′ + ξ [f ′H + F ′X − (θ′G+X ′F )] ,

(38)

1

Sc
Y ′′ +

(
j + 1

2
f − A

2
η

)
Y ′ −

(
3A

2
+ 2jf ′ + LrRex

)
Y +

j + 1

2
Fφ′

− 2jF ′φ = f ′Y − Fφ′ + ξ [f ′S + F ′Y − (FY ′ +Gφ′)] .
(39)
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[1 + ε− θε]
(

1 +
1

β

)
G′′′ − ε

(
1 +

1

β

)
(XF ′′′ +Hf ′′′)

− ε
(

1 +
1

β

)
(X ′F ′′ +H ′f ′′)− ε

(
1 +

1

β

)
(θ′G′′ +X ′F ′′)

− ε
(

1 +
1

β

)
θ′F ′′ +

j + 1

2
[fG′′ + Ff ′′ + f ′′G+ F ′F ]

− 2j(F ′F ′ +G′f ′)− A
(
G′ +

1

2
ηG′′

)
+GrξH +GcξS −MG′

− f ′G′ + (F ′)2 + (f ′′G− F ′′F ) = 0,

(40)

1

Pr

(
1 + rθ +

4

3
R

)
H ′′ +

r

Pr
(XX ′′ +Hθ′′) +

2r

Pr

(
X ′2 + θ′H ′

)
+

(
j + 1

2
f − A

2
η

)
H ′ +

j + 1

2
(FX ′ +Gθ′)−

(
2jf ′ +

3A

2

)
H

− 2jF ′X − 2j(X ′2 +Hθ) + 2MEc
(
f ′G′ + F ′2

)
− f ′H − F ′X

+ Ec

[
(1 + ε− θε)

(
1 +

1

β

)
2(F ′′F ′′ + f ′′G′′)

]
+ (θ′G+X ′F ) = 0,

(41)

1

Sc
S ′′ +

(
j + 1

2
f − A

2
η

)
S ′ −

(
3A

2
+ 2jf ′ + LrRex

)
S

+
j + 1

2
FY ′ +

j + 1

2
(FY ′ +Gφ′)− 2jF ′Y − 2j(F ′Y +G′φ)

− (f ′S − F ′Y ) + (FY ′ −Gφ′) = 0.

(42)

The corresponding dimensionless initial and boundary conditions are

f(ξ, 0) = fw, f
′(ξ, 0) = 1, f ′(ξ,∞) = ω,

θ(ξ, 0) = 1, θ(ξ,∞) = 0, φ(ξ, 0) = 1, φ(ξ,∞) = 0,
(43)

F (ξ, 0) = 0, F ′(ξ, 0) = 0, F ′(ξ,∞) = 0,

X(ξ, 0) = 0, X(ξ,∞) = 0, Y (ξ, 0) = 0, Y (ξ,∞) = 0,
(44)

G(ξ, 0) = 0, G′(ξ, 0) = 0, G′(ξ,∞) = 0,

H(ξ, 0) = 0, H(ξ,∞) = 0, S(ξ, 0) = 0, S(ξ,∞) = 0.
(45)

The physical quantities of engineering interest in this problem are the
local Skin-friction coefficients (Cfx), the local Nusselt number (Nux)
and the local Sherwood number (Shx). Given the velocity field, the
local Skin-friction coefficients on the sheet wall can be obtained in
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non-dimensional form as:

Cfx = −
2µ
(
∂u
∂y

)
y=0

ρU2
w

from which we obtain

1

2

√
RexCf = −

(
1 +

1

β

)
f ′′(ξ, 0).

(46)

Given the temperature field, the rate of heat transfer coefficient can
be obtained in the form

Nux =
xqw

κ(Tw − T∞)
from which we obtain

1√
Rex

Nux = −
(

1 +
4

3
R

)
θ′(ξ, 0),

(47)

where qw = κ
(
∂T
∂y

)
y=0

+ (qr)w is the wall heat flux while

qr = −16σ∗

3K∗ T
3
∞
∂T
∂y

(See Akinbobola and Okoya [31], Bataller [32] and

Fatunmbi et al. [33] and Khan et al. [34]).
Also, given the concentration field, the rate of mass transfer coeffi-

cient can be obtained in non-dimensional form. The Sherwood number
is thus given by

Shx =
xqw

D(Cw − C∞)
from which we obtain

1√
Rex

Shx = −φ′(ξ, 0).

(48)

3. MATHEMATICAL SOLUTION

The governing equations reduced to non-linear coupled differential
equations (34)-(45) with the boundary conditions (34)-(45) are not
amenable to exact (analytical) solutions thus we resolve to numerical
solution by employing Midpoint Method based on Richardson Ex-
trapolation (MMRE) Enhancement scheme implemented on MAPLE
17 platform. The asymptotic boundary conditions (24) for ηmax as
follow:

ηmax = 14, f ′(14) = θ(14) = φ(14) = 0. (49)

From this process of numerical computation, the skin-friction coeffi-
cient, the Nusselt number and Sherwoood number which correspond
to f ′′(0), θ′(0) and φ′(0) respectively are also obtained and their nu-
merical values are presented in a tabular form.

4. RESULTS AND DISCUSSION

The basic target of this section is to examine the influences of phys-
ical parameters on the dimensionless axial and transverse velocities,
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the temperature and Casson fluid concentration. The computations
have been carried out by assuming various values of the parameters
involved in the problem and the results are illustrated through graphs.
However, In a bid to validate the present solution, comparisons have
been made with previously published data from the literature for the
modified skin friction coefficient in Table 1 and excellent agreement is
found.

From Table 1, we discovered that the modified skin friction coeffi-
cient increases when the values of the unsteadiness parameter increase.
Also, it is observed as expected from Table 1 that the modified skin
friction coefficient is strongly influenced by the presence of a strong
magnetic field. The implication of this is that application of a strong
magnetic field perpendicular to the field flow provides a drag force
that retards the flow thereby increasing the friction on the wall sur-
face. Furthermore, in Table 1, we found that the modified skin friction
coefficient increase with increasing value of suction. Fig. 1 displays
the effects of suction and blowing on the velocity distribution for ther-
mal buoyancy. It is clearly observed that an increase in convection
due to thermal buoyancy parameter the fluid velocity is accelerated.
Also, injecting fluid into the fluid flow increases the fluid while suction
decelerate the fluid flow which validates known results (Shateyi et al.
[8]). It is good to remark that mass convective parameter has similar
effect on the velocity profiles.
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Figure 1. f ′ vs η for some fw and Gr

Fig. 2 shows that the effects of the Eckert number with the variation
of thermal radiation on the velocity distribution. The presence of
viscous dissipation causes heat generation, which in turn accelerates
the fluid flow. It is also found that increasing values of the Eckert
number causes increase in the velocity profiles. In the same vein, the
presence of thermal radiation increases the flow because heat is already
in the system though there is heat loss due to thermal radiation.

It is observed from Fig.3 that the velocity decreases with increasing
values of the Casson parameter leading to decrease in the fluid stress
and suppresses the velocity. The velocity is also observed to decrease
with increase in the values of unsteadiness parameter. In Fig. 4, the
effect of streamwise parameter is presented with the velocity power
law exponent. It is observed that the velocity distribution decreases
with increase in streamwise parameter (ξ) and then smoothened by
higher streamwise parameter which some authors have actually ne-
glected by setting it to 0 limiting the solution to self similar case. On
the contrary, the velocity profile increases with increase in velocity
power law exponent (j).

Fig. 5 depicts the effect of increase in magnetic field parameter
and solutal Grashof number on the velocity profiles. The presence of
a magnetic field induces a current in the conductive fluid, and then
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Figure 2. f ′ vs η for some Ec and R

Figure 3. f ′ vs η for some β and A
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Figure 4. f ′ vs η for some ξ and j

Figure 5. f ′ vs η for some M and Gc
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Figure 6. θ vs η for some M and R

Figure 7. θ vs η for some A and r
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Figure 8. θ vs η for some fw and A

Figure 9. θ vs η for some Pr and Ec
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Figure 10. θ vs η for some R and ε

creates a resistive-type of force on the fluid in the boundary layer,
which slows down the motion of the fluid. The implication is that
magnetic field can consequently be used to control boundary layer
separation. It is observed that the solutal Grashof number enhances
the velocity profiles.

Fig. 6 shows that the presence of a magnetic field strength parameter
and thermal radiation on the temperature profiles. The temperature
rises with increasing values of magnetic field strength parameter. This
is because the applied magnetic field enhances friction which tends
to heat the fluid and therefore leads to an increase in temperature.
Asogwa and Ibe [35] reported similar observation for the influence of
magnetic field in an electrically conducting fluid flow and temperature
profiles. It is also observed that the increase in thermal radiation
reduces the temperature profiles.

Fig. 7 depicts the influence of unsteadiness parameter as well as
the variable thermal conductivity on the temperature profiles. It is
noted that the fluid temperature is reduced by increasing value of
unsteadiness parameter as reported by Shateyi [8]. On the contrary,
the increase in variable thermal conductivity parameter is found to
have caused a distinct increase in the temperature profile.
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Figure 11. θ vs η for some j and ξ

Fig. 8 shows the effects of suction/injection as well as unsteadiness
parameter on the temperature profiles. It is observed that increase
in suction/injection parameter reduces the fluid temperature profiles.
Also, when the unsteadiness parameter is zero implies the steady state
and the temperature profiles are exceptionally high while the temper-
ature profiles are drastically reduced when the unsteadiness parameter
is nonzero (e.g. A = 2) which is the unsteady state.

The presence of viscous dissipation significantly influence the tem-
perature profiles as shown in Fig. 9. This is evident as increase in
Eckert number leads to increase in temperature, which is in agree-
ment with Khan et al. [34]. The effects of Prandtl number Pr is also
displayed in Fig. 9. It is observed that an increase in Prandtl number
leads to the reduction in the temperature. This behaviour is as a result
of Pr being strongly dependent on thermal diffusivity of fluid from the
definition Pr = µ

α
, meaning that larger Pr has weaker thermal diffu-

sivity which is responsible for a reduction in temperature. This finding
supports the report of Olanrewaju et al. [36] that increase in Prandtl
number decreases the temperature profile and thereby decreases the
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Figure 12. φ vs η for some j and ξ

Figure 13. φ vs η for some Lr and β
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Figure 14. φ vs η for some Lr and A

thermal boundary layer thickness leading to thinner boundary layer
which is in agreement with Rao et al. [37]. Also, the observation in
this result corroborate what is in literature as reported by Koriko et al.
[38]. The same Fig. 9 shows the strength of Ec, but on the contrary,
the dissipation phenomenon triggers to produce extra heat associated
with the frictional heating among the particles of fluid which leads to
boosting of the temperature profile as reported by Khan [34]. The
effect of variable viscosity parameter is also presented in Fig. 10. It is
clearly observed that the lower the value of variable viscosity parame-
ter the better the temperature profile, higher values make the profiles
closely packed.

Fig. 11 displays the variation of pressure gradient (in terms of ve-
locity power law exponent j) on fluid temperature in that the temper-
ature profiles for j > 0 is higher than j < 0. This is because for a pos-
itive value of j, pressure gradient is negative and for a negative value

of j, pressure gradient is positive

(
−1

ρ

∂P

∂x
= Ue

dUe
dx

= j
λa2x2j−1

(1− ct)2

)
,

when Ue =
λaxj

(1− ct)2
according to Kundu et al. [26]. In the case of
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Figure 15. φ vs η for some Sc and fw

accelerating flows (j > 0), the velocity profiles have no points of inflec-
tion, whereas in the case of decelerated flows (j < 0) which corroborate
Fig. 3. According to Rosales-Vera and Valencia [39], the physical rel-
evant solutions exist only for −0.19884 < j ≤ 2. A negative pressure
gradient is as a result of pressure decrease in the direction of fluid flow
across the boundary layer. Thus the fluid within the boundary layer
has enough momentum to overcome the resistance which is trying to
push it backward and the flow accelerates. For a positive pressure gra-
dient the pressure increases in the direction of flow, the fluid within
the boundary layer has little momentum to overcome this resistance
which could make the flow to be retarded and possibly lead to flow
reversal. The above explanation accounts for the similar behaviour in
Fig. 12 and then smoothened by higher streamwise parameter which
some authors have actually neglected by setting it to 0 limiting the
solution to self similar case. Beg et al. [40] is also in support of Figs.
11 and 12.

Fig. 13 shows the effects of magnetic strength and Casson parame-
ters on the concentration profiles. It is observed that increase in mag-
netic strength parameter reduces the concentration profiles. This may
be due to friction which generating more heat energy that eventually
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increases the temperature distribution in the flow and therefore the
concentration reduces with increase in magnetic strength parameter.
Similarly increase in Casson fluid parameter increase the concentra-
tion profiles.

Fig. 14 presents the influence of variation of chemical reaction pa-
rameter on the concentration profiles at different values of unsteadi-
ness parameter. It is noticed that increase in chemical reaction param-
eter reduces the concentration profiles which is physically reasonable.
The effect of variation of A is also observed in that the steady state in-
crease the concentration profiles and converse is true for the unsteady
state.

Fig. 15 displays the influence of Sc on φ, it can be seen that the
presence of heavier species (high Schmidt number) reduces the con-
centration profiles. Similar report is given by Awais et al. [41].

4. CONCLUDING REMARKS

The current study is a theoretical analysis of a two-dimensional un-
steady laminar boundary layer, heat and mass transfer of an incom-
pressible Casson fluid over a stretching sheet in the presence of viscous
dissipation, variable viscosity and thermal conductivity. The research
questions have been answered by this study and the following conclud-
ing remarks are drawn:

• The contributions of variable viscosity and thermal conductiv-
ity are very significant and notable on Casson fluid by increas-
ing velocity and temperature profiles.
• The influence of nonlinear stretching velocity from exponent is

much felt on the fluid velocity by increasing its profiles while it
causes decrease in temperature and concentration profile; and
• The presence of the independent variable x in A, Grx, Gcx

and Lr justifies the need for the Local Nonsimilarity Solu-
tion Approach which is capable of handling such parameters
with error. Moreover, Local Nonsimilarity Solution Approach
provides full solution and never truncated at the first level of
truncation or solution like other in literature work.
• The increase in magnetic field reduces the velocity and con-

centration profiles but the magnetic field and Prandtl number
enhances the temperature.
• An increase in suction parameter reduces velocity and concen-

tration profiles.
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• The heat and mass transfer is reduced with the magnetic pa-
rameter, Prandtl number, Schmidt number buoyancy and chem-
ical reaction parameters.
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NOMENCLATURE

a, b, c initial stretching rate, stretching rate, positive constant
respectively,

Ax ratio of stretching rate or unsteadiness parameter,
Bo applied uniform transverse magnetic field strength,
C dimensional species concentration of the fluid,
Cw species concentration of the fluid along the sheet wall,
C∞ species concentration of the fluid far away from the sheet

wall,
Cp specific heat capacity at constant pressure,
Dm effective diffusive coefficient or mass diffusion coefficient,
E activation energy,
Ec Eckert number,
f dimensionless or reduced stream function,
f ′ dimensionless axial velocity variable,

F auxiliary velocity function,
∂f

∂ξ
,

g∗ acceleration due to gravity

G auxiliary velocity function,
∂F

∂ξ
,

Grx local thermal Grashof number
Gcx local Solutal Grashof number

H auxiliary temperature function,
∂X

∂ξ
,

KT thermal diffusion ratio
Lr chemical reaction parameter
M Magnetic strength parameter/Local Hartmann number
P pressure
Pr Prandtl number
r variable viscosity parameter
R thermal radiation parameter
R∗ universal gas constant
Rex local Reynolds number
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S auxiliary dimensionless concentration function,
∂Y

∂ξ
,

Sc Schmidt number
t time
T dimensional temperature of the fluid
Tm mean fluid temperature
Tw temperature of the sheet wall
T∞ dimensional or free stream temperature of the fluid far

away from the sheet
u, v, w velocity components in x, y and z direction respectively
Uw velocity at the sheet wall or mainstream velocity
U∞ velocity far away from the sheet wall or free stream velocity

X auxiliary dimensionless temperature function,
∂θ

∂ξ
,

Y auxiliary dimensionless concentration function, ∂φ/∂ξ,

Greek Symbols
α thermal diffusivity
βT thermal expansion(volumentric) coefficient
βc concentration expansion coefficient
δ heat source/sink parameter
ε variable thermal conductivity parameter
η pseudo-similarity variable
µ dynamic viscosity
ν kinematic fluid viscosity
κ constant thermal conductivity
θ dimensionless temperature
φ dimensionless concentration
ρ fluid density
σ electrical conductivity of fluid
ξ non-similarity variable
ω is the ratio of stretching rate of free stream velocity and velocity

at the wall

Subscripts and Superscripts
w condition at the wall
j exponent of nonlinear stretching velocity/streamwise pressure

gradient parameter.
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