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ELECTROMAGNETOHYDRODYNAMIC MICROPOLAR-

CASSON FLUID BOUNDARY LAYER FLOW AND HEAT

TRANSFER OVER A STRETCHING MATERIAL

FEATURING TEMPERATURE-BASED THERMOPHYSICAL

PROPERTIES IN A POROUS MEDIUM
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ABSTRACT. This study investigates the boundary layer flow
and heat transfer analysis in an electromagnetohydrodynamic
dissipative micropolar-Casson fluid over a two-dimensional
stretching sheet in porous medium. The physical model
comprises the impact of thermal radiation, suction/injection,
temperature-dependent thermophysical properties (viscosity
and thermal conductivity) associated with prescribed surface
temperature condition. Appropriate similarity transformation
variables are employed to redefine the governing equations from
partial into ordinary differential equations while the resultant
equations are solved by shooting technique cum Runge-Kutta
Fehlberg integration algorithm. The reactions of the physi-
cal parameters on the dimensionless quantities are presented
through various graphs and tables. From the investigation, it is
found out that the skin friction coefficient reduces with growth
in the micropolar material and in the presence of electric field
terms whereas an opposite trend occurs with a rise in the Casson
fluid material and magnetic field terms. More so, there is an in-
crease in the thermal and hydrodynamic boundary layer due to
a rise in the electric field and micropolar fluid material parame-
ter. The obtained data in the current study also agree well with
existing studies in literature under some limiting conditions.
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1. INTRODUCTION

The popularity of the non-Newtonian fluids has continued to abound
in the recent times due to their widespread applications in various
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fields of human endeavour ranging from sciences, engineering to
technology. Such applications are commonly found in polymer en-
gineering, crude oil extrusion, drug manufacturing, food processing,
paint rheology, etc. The non-Newtonian fluids are fluids which differ
in properties from those of Newtonian (classical) fluids, and thus fall
outside the domain of the classical field theories. Unlike the New-
tonian fluids which are characterized by linear relationship between
the shear stress and shear strain, the viscosity of non-Newtonian
fluids is dependent on shear rate or shear rate history and hence,
they do not conform to the Newtons law of viscosity. Such flu-
ids include ketchup, butter, cosmetics, polymer solutions, blood,
colloids, mud flows and gels. The constitutive models for the non-
Newtonian fluids vary due to differences in the fluid characteristics
in nature, as such, no single constitutive model can effectively cap-
ture the non-Newtonian fluids properties. In the light of this, var-
ious models have been formulated to describe the non-Newtonian
fluids physical attributes. Some of these models include: Casson
fluid, Maxwell fluid, tangent hyperbolic fluid, Johnson-Segalman
fluid, Jeffery fluid, micropolar fluid, etc. [1-3].

Prominent among the non-Newtonian fluids is the micropolar
fluid formulated by Eringen [4-5]. The concept of micropolar fluid
comprises of fluids with rigid, spherical (randomly oriented) parti-
cles suspended in a viscous where particles deformation is ignored
[6]. The rigid particles contained in a small volume can rotate about
the centroid of the volume element. This concept generalizes the
Navier-Stokes model and paves way for crucial applications in areas
such as slurry technologies, bio mechanics engineering (e.g.cervical
flows, blood flow in brain, synovial lubrication, arterial blood flows,
etc.), pharmacodynamics (e.g. drug delivery), sediment transport
in rivers, etc. [7-8]. Fluids that describes the attribute of micropo-
lar fluids include: colloidal fluids, fluid suspensions, animal blood,
liquid crystals, etc. [9-10]. Due to the indispensable applications
derivable from the transport of micropolar fluid various researchers
have investigated such fluids on different configurations considering
different parameters. Mishra et al. [11] numerically studied hy-
dromagnetic reactive micropolar fluid flow along an impermeable
stretching sheet. It was reported that the skin friction coefficient
falls with a rise in the micropolar material term. Rashad, et al.
[12] considered micropolar fluid flow over a continuously moving
vertical surface in a thermally and solutal stratified medium using



ELECTROMAGNETOHYDRODYNAMIC MICROPOLAR-CASSON . . . 247

Keller-box method. The authors found that growth in the microp-
olar term strengthened the viscous drag and improved the heat
transfer. For more studies related to this concept (see Mahmoud
[13]; Salawu and Fatunmbi [14]; Keimanesh and Aghanajafi, [15];
Fatunmbi and Adeniyan [16]; Fatunmbi et al. [1]).

Moreover, the simplicity of the Casson fluid model among the
other non-Newtonian fluids has drawn the attention of many re-
searchers to study such a fluid on various configurations with di-
verse assumption. This model captures the flow characteristics of
a non-Newtonian fluid and accurately predict the flow of blood in
arteries at very low shear rate. Casson fluid characterizes a shear
thinning fluid which manifests yield stress attribute. It possesses
a property of infinite viscosity at zero rate of shear stress and zero
viscosity at infinite rate of shear stress Casson [17]. This model
describes the rheological behaviour of various ingredients such as
paints, lubricants, jelly, tomato sauce, blood, honey, etc. Ahmad
et al. [18] discussed Casson fluid transport past a heated stretching
sheet in a porous device with non-uniform viscosity via a finite-
difference method. The authors pointed out that the surface tem-
perature increased with a rise in the porosity term. An unsteady
flow of a dissipative magneto-Casson nanofluid with convective heat
transfer, thermal radiation over a stretching vertical surface plate
was scrutinized by Shit and Mandal [19]. The analysis showed that
the Casson fluid term caused a resistance to the fluid motion due
to a rise in the viscosity. Fatunmbi and Okoya [20] numerically
analyzed the impact of quadratic Boussinesq approximation and
variable thermal conductivity in a stagnation point flow of Casson
fluid. The authors reported that the Casson fluid material term
enhanced both the thermal field and the viscous drag. Recently,
Omotola and Fatunmbi [21] studied the motion of a radiative Cas-
son fluid over a convectively heated permeable material with Joule
heating and slip effects.

The attention of researchers and scientists have been drawn to the
consequential engineering and manufacturing applications of mag-
netohydrodynamic in various fields. This phenomenon is frequently
encountered in nuclear reactors, electric power generation devices,
MHD generators and accelerators/or MHD thrusters, boundary
layer control in aerodynamics, etc. [22]. Magnetohydrodynamic
deals with the interaction of electrically conducting fluid (e, g. salt
water, liquid metals and plasmas with magnetic field [23-24] while
studying the combined effects of electric and magnetic fields on the
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flow and heat transfer of nanofluid noticed that the fluid veloc-
ity accelerated with high values of electric field while it decelerated
with magnetic field parameter. Aliy and Kishan [25] analytically in-
spected the flow of an electrical magnetohydrodynamic Williamson
fluid over a convectively heated sheet with uneven thickness. The
process of suction/injection has been found to be dominant in var-
ious engineering processes such as the design of radial diffusers,
thrust bearing and thermal oil recovery. Fluid flow and heat trans-
fer can be easily altered in the presence of suction/injection. Suc-
tion has been found to enhance the skin friction whereas injection
acts otherwise. In view of the applications of such a concept, Rohni
et al. [26] studied laminar, steady two-dimensional flow and heat
transfer of a Newtonian fluid with buoyancy force over a shrink-
ing sheet with suction effect. Fatunmbi et al. [1] evaluated the
flow and heat transfer characteristics of micropolar fluid over an in-
clined nonlinearly stretched sheet with suction/injection processes
whereas Ullah et al. [27] investigated an incompressible flow of a
tangent hyperbolic fluid featuring wall suction/injection effects.

The mixture of the micropolar and Casson fluid has been found
to be useful in bio-engineering activities, food processing, produc-
tion of pharmaceutical products, paints, synthetic lubricants, bio-
logical fluids. Such a blend was investigated by Mehmood et al.
[28] over a convectively heated stretching surface featuring internal
heat source. Iqbal et al. [29] conducted a research with such a
composition featuring an inclined magnetic field and viscous dissi-
pation. Nevertheless, there has not been a study with the mixture
of micropolar and Casson fluid encompassing the combined effects
of magnetic and electric fields with temperature-dependent viscos-
ity and thermal conductivity over a permeable material surface to
the best of the authors knowledge. For accurate prediction of flow
and heat transfer characteristics in the flow region and coupled with
the consequential applications, it is necessary to investigate such a
phenomenon.

Therefore, the focus of the present study is to investigate the
combined effects of magnetic and electric fields in the boundary
layer flow and heat transfer of micropolar-Casson fluid over a two-
dimensional stretching sheet with temperature-based viscosity, ther-
mal conductivity, suction/injection processes, viscous dissipation
and internal heat generation. The boundary layer equations of
the fluid flow consist of the continuity equation, the momentum
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equation, and energy equation derived in view of Maxwell equa-
tion and Ohms law in the presence of electrical magnetohydrody-
namic (EMHD). A prescribed surface temperature (PST) heating
condition is applied in the heat equation in the presence of weak
concentration of micropolar rigid particles. A numerical method
via shooting technique alongside Runge-Kutta Fehlberg scheme is
employed to solve the outlining equations while the results are pre-
sented in tables and graphs with appropriate discussion

2. PROBLEM DEVELOPMENT

The development of the partial differential equations for the elec-
tromagnetohydrodynamic flow and heat transfer in a micropolar-
Casson fluid is carried out with the assumptions that: the flow
is steady, incompressible in a two-dimensional linearly stretching
sheet in a saturated porous medium. The axes of the sheet are
taken to be (x, y, 0) with the flow being measured in x direction
along the stretching surface while y axis is normal to it. The re-
spective velocity components are u and v as illustrated in Figure.
1. External magnetic and electric fields of uniform strength are ap-
plied normal to the flow direction without accounting for the impact
of the induced magnetic field and Hall current due to significantly
low Reynolds number. The fluid thermophysical properties such as
the viscosity and thermal conductivity are assumed to be linearly
dependent on temperature while the other fluid properties are as-
sumed to be constant. The velocity of the linearly stretching sheet
is taken as u = uw = bx where b is the stretching rate greater than
zero, the wall suction/injection is considered to be v = vw. A pre-
scribed surface temperature (PST) is assumed for the energy equa-
tion with the surface temperature Tw > T∞. The impact of thermal
radiation, viscous dissipation and internal heat source are modelled
into the heat equation while the microrotation field is assumed to
have weak concentration throughout this study. The stress tensor
and couple stress tensor relations for isotropic micropolar fluid are
expressed as [3, 4, 6].

τij = (−P + λrvk,k) δij+µ (vi,j + vj,i)+β (vj,i − vi,j)−βεkijωk, (1)

Cij = coωk,kδij + cd (ωi,j + ωj,i) + ca (ωi,j − ωj,i) , (2)

where τij is the Cauchy stress tensor, P is the pressure, λr and µ
are second viscosity coefficient and dynamic viscosity respectively.
also, β is the dynamic microrotation/vortex viscosity, co, ca and
cd are the coefficients of angular viscosity, vi, ωk and εijk are the
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velocity component, angular velocity component and the alternat-
ing/permutation stress tensor, Cij is the couple stress tensor, δij
is the usual Kronecker delta. In a similar manner, the rheologi-
cal equation of an isotropic, incompressible flow of Casson fluid is
specified as [30-32].

Gij =

(
µb +

Py√
2π

)
2eij ;π > πc, Gij =

(
µb +

Py√
2πc

)
2eij ;π < πc, (3)

where Gij denotes the Cauchy stress tensor, Py stands for the yield

stress of the fluid described as Py = µB
√
2π

γ
. The plastic dynamic

viscosity of the non-Newtonian fluid is described as µb while π de-
picts the product of deformation rate with itself (π = eijeij), πc
indicates the critical value of the product of the component of the
deformation rate with itself which is based on the non-Newtonian
model. The fluid viscosity can also be expressed as µ = µb + Py√

2π
.

Thus, in view of Py, the fluid viscosity becomes µ = µb

(
1 + 1

γ

)
where γ = µb

√
2π
Py

describes the Casson fluid parameter.

Fig. 1 Flow Geometry

Taking cognizance of the aforementioned assumptions coupled with
boundary layer approximation with the condition of temperature-
based viscosity, and variable thermal conductivity, wall suction/injection,
viscous dissipation and porosity of the medium, the governing equa-
tions of the mass conservation, momentum and energy equations are
specified as follows [28, 32].

∂u

∂x
+
∂v

∂y
= 0, (4)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ∞

[(
1 +

1

γ

)
∂

∂y

(
µb
∂u

∂y

)]
+

β

ρ∞

∂2u

∂y2
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+
β

ρ∞

∂ω

∂y
+ fb, (5)

u
∂ω

∂x
+ v

∂ω

∂y
=
H

ρj

∂2ω

∂y2
− β

ρ∞j

(
2ω +

∂u

∂y

)
, (6)

u
∂T

∂x
+v

∂T

∂ȳ
=

1

ρ∞cp

∂

∂y

[(
k(T ) +

16T 3
∞σ

?

3k?

)
∂T

∂y

]
+

B?

ρ∞cp
(T − T∞)

+
1

ρ∞cp

[
µ(T )

(
1 +

1

γ

)
+ β

](
∂u

∂y

)2

. (7)

Eqs. (4-6) are subject to boundary conditions specified as:

y = 0 : u = uw = bx, v = vw, ω = −s∂u
∂y
, T = Tw = (T∞ + Axκ)

y →∞ : u→ 0, ω → 0, T → T∞, (8)

where fb, the last term in Eq. (5) denotes some body forces. Also, u
and v are component of velocities in x and y directions respectively,
b is the stretching rate, ρ defines the fluid density, β represents vor-
tex viscosity, T is the fluid temperature, ω is the component of
microrotation, j is the microinertia density, cp is the specific heat
at constant pressure, H describes the spin gradient viscosity, B?

is the coefficient of heat generation/absorption and kp is the per-
meability of the porous medium. More so, subscript w/∞ signifies
wall/infinity condition, s is a surface boundary parameter with the
interval 0 ≤ s ≤ 1. The case when s = 0 corresponds to ω = 0,
this represents no-spin condition i.e. strong concentration such that
the micro-particles close to the wall are unable to rotate. The case
n = 1

2
, indicates weak concentration of micro-particles and the van-

ishing of anti-symmetric part of the stress tensor and the case s = 1
represents turbulent boundary layer flows [33-34].

Analysis is carried out for the various body force to which the
micropolar-Casson fluid is subjected as (i) Electromagnetohydro-
dynamic force (EMHDF) (ii) Darcy force (DF). The Lorentz force
per unit mass is stated as

1

ρ∞
(J×B) , (9)

where

J = σ (E + V ×B) . (10)

In the preceding equation, E = (0, 0,−E0) denotes the transverse
electric field, B = (0, B0, 0) represents magnetic field vector, V =
(u, v, 0) connotes velocity field while J is the current density. In
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view of Eqs. (10), the applied electric and magnetic fields Eq. (9)
reduces to

σ

ρ∞

(
B0E0 −B2

0u
)
. (11)

Likewise, the Darcy force per unit mass is expressed as

− µb
ρ∞kp

V = − µb
ρ∞kp

(u, v, 0) =

(
− µb
ρ∞kp

u,− µb
ρ∞kp

v, 0

)
. (12)

Where the minus sign connotes the draglike opposing force. In
view of boundary layer assumption, the Darcy force Eq. (12) can
be expressed as

− µb
ρ∞kp

V = − µb
ρ∞kp

(u, v, 0) =

(
− µb
ρ∞kp

u, 0, 0

)
. (13)

Now combining Eqs. (11) and (13), the body force fb can now be
expressed as

fb =
σ

ρ∞

(
B0E0 −B2

0u
)
− µb
ρ∞kp

u. (14)

The viscosity µb and the thermal conductivity k vary linearly with
temperature as considered by Layek et al. [35]; Akinbobola and
Okoya [36]; Opadiran and Okoya [37]. The respective variation of
the viscosity µb and the thermal conductivity k are expressed in
Eq. (15) as

µb(T ) = µb∞ [1 + a (Tw − T )] , k(T ) = k∞ [1 + c (T − T∞)] . (15)

3. THE TRANSFORMED EQUATIONS

Introducing similarity transformations variables and dimension-
less quantities (16) into the governing equations (4-7) leads to the
automatic satisfaction of the continuity equation (4).

η = y

(
b

ν

)1/2

, ψ = f(η)x (bν)1/2 , ω = bxg(η)

(
b

ν

) 1
2

, u =
∂ψ

∂y
,

v = −∂ψ
∂x

, θ =
T − T∞
Tw − T∞

, Ec =
u2w

cp(Tw − T∞)
, Q =

B?

bρcp
,M =

σB2
0

bρ∞
,

ε = c(Tw − T∞), R =
β

µb
, Da =

ν

bkp
, P r =

µ∞cp
k∞

, δ = a(Tw − T∞),

E1 =
E0

B0uw
, Nr =

16σ?T 3
∞

3k?k
, fw = − vw√

bν
. (16)
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In view of Eq. (16), the momentum, microrotation and energy Eqs.
(5-7) transform to the underlisted ordinary differential equations:[(

1 +
1

γ

)
(1 + δ − δθ) +R

]
f ′′′ −

(
1 +

1

γ

)
δθ′f ′′ +Rg′ − f ′2

−(Mf ′−E1)+ff ′−
[
Da

(
1 +

1

γ

)
(1 + δ − δθ) +R

]
f ′ = 0, (17)

(1 +R/2) g′′ + fg′ − f ′g −R (2g + f ′′) = 0, (18)

(1 + εθ +Nr) θ′′ + εθ′2 + Pr (fθ′ − κf ′θ) + PrQθ

+PrEc

[(
1 +

1

γ

)
(1 + δ − δθ) +R

]
f ′′2. (19)

Likewise, the boundary conditions (8) transform to:

f ′(0) = 1, f(0) = fw, g = sf ′′(0), θ(0) = 1

f ′(∞) = 0, θ(∞) = 0, g(∞)→ 0.
(20)

4. THE QUANTITIES OF ENGNEERING INTEREST

The quantities useful for the engineering community in this study
are the skin friction coefficient and the local Nusselt number (which
correspond to heat transfer at the surface of the sheet). These
quantities are sequentially stated in Eq. (21) as:

Cfx =
Hw

ρ∞u2w
, Nux =

xqw
k (Tw − T∞)

, (21)

where Hw indicates the shear stress while qw defines the heat flux
at the surface. Where

Hw =

(
µ+

Py√
2πc

+ β

)
+ βω

∣∣∣∣
y=0

, qw = −
(
k∞ +

16T 3
∞σ

?

3k?

)
∂T

∂y

∣∣∣∣
y=0

. (22)

The non-dimensional forms of Eq. (21) in view of Eq. (16) are
respectively expressed in (23-24) as:

Cfx =

[
(1 + δ − δθ +

1

γ
) +R(1− s)

]
Re−1/2x f ′′(0), (23)

Nux = − [1 +Nr (1 + θ(0))]Re1/2x θ′(0). (24)
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5. NUMERICAL METHOD WITH VALIDATION

Owing to the nonlinearity of the governing equations, the analyti-
cal solution is not feasible, hence a numerical solution is sought to
tackle the set of Eqs. (17-19) subject to the boundary conditions
(20). The shooting technique is adopted alongside Runge-Kutta-
Fehlberg algorithm. The detail of this method can be found in the
studies of Fatunmbi et al. [1]; Mabood and Das [38]; Mahanthesh
et al. [39] and Attili [40]. To carry out the parametric computa-
tions, the physical parameters have been subjected to the following
default values fw = 0.3, γ = 0.1, R = E1,M = Da = 0.5, Nr =
ε = Q = δ, 0.2, Ec = 0.1, s = 0.5 and Pr = 0.7 unless otherwise
specified in the graphs. The accuracy of the numerical code devel-
oped is authenticated by direct comparison of the obtained data
with some related published studies under limiting conditions as
depicted in Tables 1 and 2.

Table 1. Comparison of the values of Nux with existing works for
various values of Pr

Pr Chen [41] Qasim et al. [42] Present study
0.72 0.46170 0.46360 0.46368
1.00 0.58010 0.58202 0.58211
3.00 1.16525 1.16525 1.16535
5.00 1.56805 1.56805 1.56816
7.00 1.89540 1.89542 1.89551
10.00 2.30800 2.30800 2.30811
100.00 7.76565 7.75826 7.76576

Table 1 records the comparison of the Nusselt number Nux gotten
in this study with the works of Chen [41] and Qasim et al. [42]
for different values of Prandtl number Pr when R = Ec = Nr =
Da = M = ε = δ = Q = 0 and γ → 0. Likewise, Table 2
reveals the comparison of the skin friction coefficient Cfx in the
current study with the studies of Kumar [43] and Tripathy et al.
[44] under limiting conditions. It is worthy to state that both tables
show evidence of good agreement with the published works which
confirm the accuracy and validity of the present numerical code.
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Table 2. Comparison of the values of Cfx with published studies of
Kumar [43] and Tripathy et al. [44] for variation in R,M and Da

R M Da Kumar [43] Tripathy et al. [44] Present study
0.0 0.0 0.0 1.000000 1.000008 1.0000084
0.5 0.0 0.0 0.880200 0.901878 0.8994515
0.5 1.0 0.0 1.209900 1.250358 1.2496132
0.5 1.0 1.0 - 1.510062 1.5127320
0.0 0.5 0.0 1.189000 1.225590 1.2257448
1.0 0.5 0.0 0.997600 0.995088 0.9919970
1.0 0.5 1.0 - 1.2651260 1.2646592

5. RESULTS AND DISCUSSION

In this section, the reactions of the dimensionless quantities,
namely: velocity, temperature, microrotation as well as skin fric-
tion coefficient and Nusselt number for variations in the physical
parameters are analyzed and discussed.

5.1. Parameters effects on the quantities of engineering interest

Firstly, the impacts of some selected parameters on the skin fric-
tion coefficient Cfx and on Nusselt number Nux (heat transfer) are
analyzed in this sub-section. As displayed in Table 3, the impacts
of the Casson fluid material parameter γ, micropolar material pa-
rameter R, magnetic field term M , electric field parameter E1 and
suction/injection parameters fw are checked on Cfx and Nux. It
is clearly shown in this the table that the parameters γ,M and
fw > 0 compels a rise in the skin friction coefficient Cfx whereas a
rise in R,E1 and fw < 0 act in opposite manner. The micropolar
fluid as well as injection processes with the imposition of electric
field are suitable for the reduction of the skin friction coefficient.
Conversely, there is need to reduce the magnitudes of the mag-
netic field term, Casson fluid material and suction term to achieve
the lowering of the skin friction coefficient Cfx. The heat transfer
(Nux) on the other hand improves by the enhancement of R,E1 and
fw > 0. Hence, to improve the transfer of heat across the surface
of the sheet, the magnitudes of these parameters can be increased
to achieve this aim. On the contrary, the magnetic field term as
well as injection processes and Casson fluid material term decrease
the rate of heat transfer across the surface as noted from Table 3.
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Table 3. Computational values of Cfx and Nux for variations in
γ,R,M,E1 and fw

γ R M E1 fw Cfx Nux
0.1 0.4117690 0.4641380
0.3 0.2 0.2 0.1 0.1 0.6118637 0.4503395
0.5 0.7280033 0.4304351

0.5 0.4003802 0.4696632
0.2 1.0 0.3470127 0.4948168

1.5 0.3241945 0.5049020
0.1 0.4046095 0.4673025

0.2 0.3 0.4326948 0.4547534
0.5 0.4658516 0.4395527

0.0 0.4157337 0.4606570
0.2 0.5 0.3960065 0.4773477

0.8 0.3842833 0.4865931
0.0 0.4063492 0.4299083

0.1 0.3 0.4225575 0.5355460
0.7 0.4439353 0.6887157
-0.1 0.4009127 0.3967346
-0.3 0.3790264 0.2757287
-0.6 0.3735312 0.2486793

5.2. Parameters effects on velocity, temperature & microrotation fields

Here, various graphs are plotted to illustrate the effects of differ-
ent physical parameters on the dimensional quantities. The impact
of electric field parameter E1 in the presence of the Darcy param-
eter Da is illustrated in Fig. 2. Increasing the magnitude of E1

raises the fluid motion as there is an expansion of the hydrody-
namic boundary layer structure. As noted in Table 3, the skin
friction coefficient reduces as E1 rises, this trend stirs up an ac-
celerating force which reduces the frictional resistance and thereby
leads to a rise in the streamline far from the stretching surface.
Such phenomenon improves the accelerating body force to the flow
and consequently raises the fluid velocity. However, a rise in the
Darcy number creates a resistance to the fluid motion and as such,
there is a reduction in the velocity profile as depicted in Fig, 2.
Figure 3 displays the effect of the Casson fluid term γ and material
micropolar term R on the velocity profile. There is decelerated flow
with a rise in γ whereas an increase in the strength of R improves
the fluid motion. Basically, a rise in γ enhances the viscosity of the
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Fig. 2. Effect E1 and Da on velocity profile

Fig. 3. Impact of γ and R on temperature

fluid and consequently creates resistance to the fluid motion lead-
ing to a decelerated flow as seen in this figure. This trend reveals
that rising values of γ dictates a fall in the velocity field owing to
a decrease in the yield stress as γ rises which in turn decelerates
the motion of the fluid. Besides, an enhancement in γ raises the
plastic dynamic viscosity over that of the Casson fluid and in such a
situation, the fluid motion is reduced. However, the hydrodynamic
boundary layer grows with an increase in R. A rise in R implies a
reduction in the dynamic viscosity but a rise in the vortex viscosity
β and in consequence, the viscous force is reduced such that the
fluid motion appreciates. Meanwhile, the influence of γ and R
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Fig. 4. Effects γ and R on temperature field

Fig. 5. Impact of R on microrotation profile

on the temperature field however shows a converse trend to that of
velocity profile as demonstrated in Fig. 4. The thermal boundary
layer rises with an increase in γ and in consequence, the temper-
ature distribution is improved. The resistance to the fluid motion
as a result of the fluid viscosity generates a frictional heating in
the flow field and thus provides additional heating leading to a rise
in temperature. Figure 5 reveals that a rise in material micropo-
lar parameter R reduces the microrotation profile in the presence
or otherwise of the magnetic and electric fields but the presence of
magnetic and electric fields raises the microrotation boundary layer
as observed in this figure. Figure 6 and 7 illustrate the responses
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of the velocity and temperature fields for variations in the viscosity
parameter δ. Increasing the magnitude of δ enables the fluid to be
more viscous and thereby offers a drag in the fluid motion leading
a decelerated flow as noticed this figure. Meanwhile, a frictional
heating is created due to the drag created in the fluid motion by
rising viscosity and consequently the surface temperature is raised
as demonstrated in Fig. 7. Hence, a rise in δ makes the thermal
boundary layer structure to be enlarged and enhance the temper-
ature as well. Figures 8 and 9 display the effects of injection and

Fig. 6. Effect of δ on velocity profile

suction on the temperature profiles. From Fig. 8, a rise in injection
boosts the thermal field and causes the surface temperature to rise.
On the other hand, the impact of suction is to lower the temper-
ature distribution as noticed in Fig. 9. The physical reason for
this can be attributed to the fact that the Casson-micropolar fluid
is brought closer to the surface such that it reduces the thermal
boundary layer thickness leading to reduction in the temperature
distribution within the boundary layer. Figure 10 describes the
variation of temperature profiles with for different values of Eck-
ert number Ec. The positive Eckert number applies to cooling the
sheet which is an indication of heat loss from the stretching sheet to
the fluid. It is clear that increasing values of Ec enhances tempera-
ture distribution. This response is due the fact that as Ec increases,
heat is generated as a result of the drag between the fluid particles.
The internal heat generation inside the fluid increases the bulk fluid
temperature which is an indication of additional heating in the flow
region due to viscous dissipation, thus, this additional heat causes
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Fig. 7. Graph of δ on temperature

Fig. 8. Impact fw < 0 on temperature

an increase in the fluid temperature. On the other hand, the influ-
ence of the temperature exponent term κ is to reduce the magnitude
of the temperature as clearly demonstrated in Fig. 11. A rise in κ
shrinks the thermal boundary layer and consequently reduces the
average temperature as noticed in this figure. Figure 12 illustrates
the impact of the thermal conductivity parameter ε on the thermal
field. A rise in ε raises the surface temperature owing to a boost
in the thermal condition. The influence of heat source parameter
Q on the temperature profiles is captured in Fig. 13. It is clear
from this plot that the thermal boundary layer thickness increases
with a rise in the magnitude of Q. This is due to the fact that
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Fig. 9.Plot of fw > 0 on temperature

Fig. 10. Effect of Ec on temperature

energy is generated by the imposition of Q leading to a rise in the
Casson-micropolar fluid temperature. The dimensionless velocity
for different values of the magnetic fieldM is plotted in Fig. 14. It is
noticeable that velocity of the micropolar-Casson fluid reduces with
the intensification of the strength of M . The impact of the trans-
verse externally applied magnetic field to an electrically conducting
micropolar-Casson fluid generates a retarding force (Lorentz force).
This force creates va resistance in the fluid motion. The magnetic
field exerts draglike force on the fluid flow and thereby causes the
skin friction coefficient within the boundary layer vicinity to rise
as discussed in Table 3. However, as M increases, the drag force
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Fig. 11. Response of κ on temperature

Fig. 12. Influence of ε on temperature

also rises leading to additional heating in the vicinity of the bound-
ary layer. In view of this, there is a rise in the temperature of the
micropolar-Casson fluid as demonstrated in Fig. 15.

6. CONCLUDING REMARKS

A mathematical model has been developed to investigate the bound-
ary layer flow and heat transfer phenomenon in electromagnetohy-
drodynamic micropolar-Casson fluid over a two-dimensional stretch-
ing material in a porous medium. The flow equations features
the impacts of variable viscosity and thermal conductivity, suc-
tion/injection, viscous dissipation, heat source/sink with prescribed
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Fig. 13. Impact of Q on temperature

Fig. 14. Effect of M on velocity field

surface temperature heating condition. The main equations are
translated from partial to ordinary differential equations using rel-
evant similarity transformation variables and afterward solved via
shooting technique alongside Runge-Kutta Fehlberg integration sch-
eme. The data obtained from the analysis are validated with ex-
isting relevant studies in literature and found to be in good agree-
ment. Various graphs and tables have been sketched to illustrate
the effects of the various physical parameters on the dimensionless
quantities. Summarily, it is deduced from this study that:

• The electric field boosts the hydrodynamic boundary layer
and enhances the fluid motion whereas the magnetic field,
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Fig. 15.Impact of M on temperature profile

Casson fluid material and Darcy parameters causes a decline
in the motion of the fluid.
• The skin friction coefficient can be drastically reduced by

applying micropolar fluid in the presence of electric field
and injection processes whereas the Casson fluid material
term, magnetic field term and suction processes strengthen
the skin friction coefficient.
• Heat transfer improves in the presence of the Casson fluid,

micropolar material term, electric field and suction while
such a trend is reversed with the imposition of the magnetic
field and suction terms.
• There is an enlargement in the thermal boundary layer struc-

ture as well as surface temperature with growth in the mag-
nitude of thermal conductivity term, Eckert number, mag-
netic field term as well heat source n the presence of these
parameters.
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Table 4. NOMENCLATURE

Symbols description

u, v Velocity in x, y direction
T Temperature
ν kinematic viscosity
B0 magnetic field intensity
ρ fluid density
s surface boundary parameter
β vortex viscosity
k? mean absorption coefficient
Tw wall temperature
Nr thermal radiation parameter
σ electrical conductivity
T∞ upstream temperature
cp heat capacity of the fluid
j micro inertial density
k thermal conductivity
H spin gradient viscosity
x, y cartesian coordinates
B? heat generation coefficient
σ? Stefan-Boltzmann constant
ε thermal conductivity parame-

ter
vw wall suction/injection
Da Darcy number
b stretching constant
δ viscosity parameter
R material parameter
Ec Eckert number
Pr Prandtl number
E0 electric field intensity
E1 electric field parameter
Q heat source/sink parameter
M magnetic field parameter
a, c constants
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