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GENERALIZED CASH-TYPE SECOND DERIVATIVE
EXTENDED BACKWARD DIFFERENTIATION
FORMULAS FOR STIFF SYSTEMS OF ODES

T. OKOR AND G. C. NWACHUKWU

ABSTRACT. In this paper, a generalized Cash-type second de-
rivative extended backward differentiation formulas (GCE2BD)
is developed as boundary value methods (BVMs) for the numer-
ical solution of stiff systems of ordinary differential equations
(ODEs). The proposed class of methods is Ov, (k+1)−v−stable
and Av, (k+1)−v -stable with (v, (k + 1) − v )-boundary condi-
tions and order k + 3 for all values of the step-length k ≥ 1.
The class of methods proposed is exceptional for the numerical
solution of stiff systems whose Jacobians have some relatively
large eigenvalues near the imaginary axis. The accuracy and
efficiency of the constructed methods are examined in some de-
tails via the numerical experiments carried out on some well-
known linear and non-linear stiff systems. The boundary value
technique considered allows the solutions of a problem to be ob-
tained simultaneously on the entire interval of integration. The
new class of methods is found to compare favorably with exist-
ing standard methods in the literature.

Keywords and phrases: Linear multistep formulas, Boundary
value methods, Ok1, k2−stable, Ak1, k2−stable, Super future points,
Cash methods.
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1. INTRODUCTION

The problem of deriving efficient algorithms for the numerical in-
tegration of stiff systems of ODEs of the form:

y′ = f (x, y) , y (a) = y0, x ∈ [a, b] (1)
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where f :R×Rm −→ Rm satisfies a Lipschitz condition (see [25])
and y, y0 ∈ Rm has been analyzed extensively over the years past
and as a result a wide variety of approaches (see [41] for exam-
ple) have been proposed. The system of ODEs (1) is stiff if the
magnitude of the Jacobian is large. According to Dahlquist [18], a
potentially good numerical method for the solution of stiff systems
of ODEs must have good accuracy and some reasonably wide region
of absolute stability. It was on this ground the so-called A-stability
property was required. Accordingly, Cash [13] proposed that as far
as stability is concerned, the property of A-stability is an excellent
one for a code intended for the solution of stiff systems to possess.
However, the A-stability requirement proposed by Dahlquist [18]
came with the restriction that the most accurate A-stable method
is the trapezoidal rule which is of order 2 and as a result “the
problem confronting numerical analysts was to derive high-order
methods which have the stability necessary for dealing with stiff
differential systems” Cash [13]. For many years, the backward dif-
ferentiation formulae (BDF) proposed by Gear [23] have been the
most prominent and most widely used for the solution of stiff sys-
tems due to its A-stability property for step-lengths k = 1 and
k = 2 and orders 1 and 2 respectively. Since then several authors
carried out invaluable research to extend the A-stability property
beyond k = 2 with higher order. In order to obtain methods with
higher degree of accuracy Bickart and Rubin [7] stated that the
conventional linear multistep method (LMM) should be modified
to another class of methods to circumvent the Dahlquist’s Barrier
[18]. Afterwards Hairer and Wanner [24] stated that the search for
higher order A-stable multistep methods is carried out in two main
directions: use higher order derivatives of the solutions, throw in
additional stages, off-step points, super-future points and the likes.
This leads into the large field of general linear methods. Obrechkoff
[40] introduced a general multi-derivative method for solving sys-
tems of ODEs. Special cases of the Obrechkoff multi-derivative
method were later derived by Enright [20], Cash [14], Jia-Xiang and
Jiao-Xun [29], Ehigie et al. [19], Ngwane and Jator [34], Longe and
Adeniran [33], Nwachukwu and Okor [37, 38] and recently Ogunfey-
itimi and Ikhile [42, 43]. Brugnano and Trigiante [9, 11] introduced
BVMs which “are numerical methods based on Linear Multistep
Formulae (LMF) and are renowned for high-order accuracy and
unconditional stability” Chan et. al. [16]. These methods approxi-
mate a given continuous initial value problem (IVP) by means of a
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discrete boundary value problem (BVP). The solution of the IVP
is given simultaneously at all grid points. BVMs overcome the lim-
itations of the well-known Dahlquist order and stability barrier for
an A-stable LMM. More so, the reader is advice to see ([1, 5, 6, 8-
11, 33, 36-39]) for more details on the stability properties of BVMs
with respect to A-stability.
The second derivative linear multistep method (SDLMM) of En-
right [20],

yn+k = yn+k−1 + h
k∑

j=0

βjfn+j + h2γkgn+k (2)

which is A-stable for k = 1(1)2 and A(α)−stable for k = 3(3)7
with order k+2 is extended by Cash [14] via the super future point
technique to obtain two new classes of methods called second de-
rivative extended backward differentiation formulas (E2BD). These
methods became superior to the Enright scheme in terms of order
and accuracy. They are given in the form of formulas of Class 1
(A-stable up-to k = 5 with order k + 3) and formulas of Class 2
(A-stable up-to k = 3 with order k + 3)).
The aim of this paper is to develop Cash [14] E2BD-type BVMs
with A-stable methods for all values of the step-length k ≥ 1,
larger regions of absolute stability and no barriers concerning the
maximum order attainable. Also, the proposed methods will be
implemented using the boundary value technique in the sense of [9,

11, 36-38] whereby all approximations (y1, y2, y3, . . . , yN)
T of the

solution of (1) are simultaneously generated on the entire interval.
The advantage of this implementation approach is that the global
errors at the end of the interval are smaller than those produced by
the step-by-step methods as in [31], see Ehigie et al. [19].
Next sections of the paper are organized as follows: In Section
2, the theoretical procedure on which BVMs are developed and
analyzed is given. In Section 3, the generalized Cash-type second
derivative extended backward differentiation formulas (GCE2BD)
is derived and analyzed. Section 4 is devoted to the implementation
approach considered. In Section 5 some numerical experiments to
confirm the theoretical results in Section 3 are presented. Lastly,
some concluding remarks are given in Section 6.

2. THEORETICAL PROCEDURES
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The continuous IVP (1) is usually solved by means of a discrete IVP,
that is, a set of k initial conditions y0, y1, . . . , yk−1 is associated with
the LMF:

k∑
j=0

αjyn+j =h

k∑
j=0

βjfn+j (3)

If k1 and k2 are two integers such that k1 + k2 = k then one
may impose the k conditions for the LMF (3) by fixing the first
k1 ≤ k values of the discrete solution y0, y1, . . . , yk1−1 and the
last k2 ≡ k − k 1 values yN−k2+1, . . . , yN so that the discrete
problem becomes:

k2∑
j=−k1

αj+k1yn+j = h

k2∑
j=−k1

βj+k1fn+j, n = k1, . . . , N − k2,

y0, y1, . . . , yk1−1, yN−k2+1 , . . . , yN , fixed. (4)

Thus, the given continuous IVP is approximated by means of a dis-
crete BVP. The methods obtained in this way are called Boundary
Value Methods (BVMs) with (k1, k2)-boundary conditions. Ob-
serve that, for k1 = k and therefore k2 = 0, one has the initial value
methods (IVMs). So, the class of IVMs is a subclass of BVMs for
ODEs based on LMF (see [12]). Since the continuous problem (1)
only provides the initial solution y0, the remaining y1, . . . , yk1−1,
initial values and yN−k2+1, . . . , yN final values need to be found
by introducing a set of k−1 additional equations which are derived
by a set of k1 − 1 additional initial methods.

k2∑
j=−k1

α
(i)
j yj = h

k2∑
j=−k1

β
(i)
j fj, i = 1, . . . , k1 − 1 (5)

and k2 final methods

k2∑
j=−k1

α
(i)
K−jyN−j = h

k2∑
j=−k1

β
(i)
k−jfN−j, i = N−k2+1, . . . , N

(6)
Practically equations (4), (5) and (6) form a composite scheme

of the same order.

2.1 STABILITY CONCEPT FOR BVMs
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The stability of the family of methods to be considered is charac-
terized by two kinds of polynomials: Sk1k2 and Nk1k2 .

Definition 1: A polynomial p(z) of degree k = k1 + k2 is an
Sk1k2-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zk1| < 1 < |zk1+1| ≤ . . . ≤ | zk |

and it is an Nk1k2-polynomial if

|z1| ≤ |z2| ≤ · · · ≤ |zk1| ≤ 1 < |zk1+1| ≤ . . . ≤ | zk |

with simple roots of unit modulus.
Observe that for k1 = k and k2 = 0, an Nk1k2-polynomial reduces
to a Von Neumann polynomial and an Sk1k2-polynomial reduces to

a Schur polynomial. Let ρ(z) =
∑k

j=0 αjz
j and σ(z) =

∑k
j=0 βjz

j

denote the two characteristic polynomials associated with the LMF
(3). Then π (z, q) = ρ(z) − qσ(z), q = hλ is the stability polyno-
mial when (3) is applied on the test problem y′ = λy, Re (λ) < 0.
Thus, we have the following definitions for BVMs (see, [10, 12]):

Definition 2: A BVM with (k1, k2)−boundary conditions is Ok1k2-
stable if ρ (z) is an Nk1k2-polynomial.
Observe that for k1 = k and k2 = 0, Ok1k2-stablity reduces to the
usual zero-stability for IVMs.

Definition 3 (a) For a given q∈C, a BVM with (k1, k2)−boundary
conditions is (k1, k2)−absolutely stable if π(z, q) is an Sk1k2− poly-
nomial. Again, (k1, k2)− absolute stability reduces to the usual
notion of absolute stability when k1 = k and k2 = 0 for LMF (3).
Similarly, one defines
(b) the region of (k1, k2)−absolute stability of the method as
Dk1k2 = { q∈C : π(z, q) is an Sk1k2 − polynomial}. Here
π(z, q) is a polynomial of type (k1, 0, k2).
(c) A BVM with (k1, k2)−boundary conditions is said to be Ak1k2−
stable if C− ⊆ Dk1k2 .
Dk1k2= { q ∈ C : π(Z, q) is of type (k1, 0, k2)}.

Finally, a BVM with (k1, k2)−boundary conditions is said to be
Ak1k2−stable if C− ⊆ Dk1k2 .

3. DERIVATION AND ANALYSIS OF THE METHOD
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The general second derivative extended linear multistep formula for
the numerical solution of (1) is given in the form:

k∑
j=0

αjyn+j =h

k+1∑
j=0

β∗
j fn+j + h2

k+1∑
j=0

γ∗
j gn+j (7)

where yn+j ≈ y (xn + jh) , fn+j ≡ f(xn + jh, y (xn + jh)) and

gn+j =
df(x, y(x))

dx

∣∣∣x=xn+j

y=yn+j

while, αj, β∗
j and γ∗

j are parameters to be determined.
Following Brugnano and Trigiante [9-11] and Cash [14] the extended
scheme associated with (2) can be written generally as

yn+i − yn+i−1 = h
k+1∑
j=0

β∗
j fn+j + h2γ∗

i gn+i ; i = 0 (1) k (8)

We note that for i = k one gets the conventional E2BD of Cash
[14]. However, for i ̸= k we can choose the values of i which
provide methods with the best stability properties for all values
of k ≥ 1. Practically, we get the best stability properties for the
choice i = v such that

v =


k+1
2

for odd k

k
2

for even k

(9)

Therefore (8) becomes

yn+v − yn+v−1 = h

k+1∑
j=0

β∗
j fn+j + h2γ∗

vgn+v, (10)

The class of methods (10) having order p = k+3 is called the gen-
eralized Cash-type second derivative extended backward differenti-
ation formulas (GCE2BD). It is Ov,(k+1)−v−stable and Av,(k+1)−v−
stable for all values of the step length k ≥ 1 with (v, (k+1)− v)-
boundary conditions ( i.e. with v number of roots inside the unit
circle and (k+1)−v number of roots outside the unit circle). Also,
the proposed class of methods have relatively small error constant
as k increases (see Table 2, Fig. 1).
Rewriting (10) in the form:

y (x+ vh)− y (x+ (v − 1)h)− h
k+1∑
j=0

β∗
j y

′(x+ jh)



GENERALIZED CASH-TYPE EXTENDED BACKWARD... 169

− h2γ∗
vy

′′(x+ vh) = 0 (11)

expanding in Taylor’s series and applying the method of undeter-
mined coefficient we obtained the coefficients of the methods (10)
for k = 1(1)10 as shown in Table 1 and Table 2.

3.1 ORDER CONDITION OF THE METHOD

In the spirit of Fatunla [21] and Lambert [32] we define the local
truncation error (LTE) associated with (10) as the linear difference
operator L [y (x) ;h] such that;

L [y (x) ;h] = y (x+ vh)− y (x+ (v − 1)h)− h
k+1∑
j=0

β∗
j y

′ (x+ jh)

− h2γ∗
vy

′′ (x+ vh) (12)

Assuming that y(x ) is sufficiently differentiable, we can find the
Taylor series expansion of the terms in (12) about the point x

L (y (x) ;h) = C0y (x)+C1hy
′ (x)+C2h

2y′′ (x)+· · ·+Crh
ryr (x)+. . .

Where,

C0 =
k+1∑
j=0

αj

C1 = 1−
k+1∑
j=0

βj

C2 =
1

2!

(
−(v − 1)2 + v

2
)
−

k+1∑
j=0

jβj − γv

C3 =
1

3!

(
−(v − 1)3 + v

3
)
− 1

2!

k+1∑
j=0

j2βj − vγv (13)
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...

Cr =
1

r!
(−(v − 1)r + v

r
)− 1

(r − 1)!

k+1∑
j=0

jr−1βj −
vr−2γv
(r − 2)!

,

for r = 0(1)p. Thus, the class of methods (10) is of order p if

C0 = C1 = C2 = · · · = Cp = 0 and Cp+1 ̸= 0 (14)

where Cp+1 is the error constant (EC) of the methods (10) and
Cp+1h

p+1yp+1 (x) is the principal LTE at the point x (see [24]). The
order and the error constants of the GCE2BD (10) are presented
in Table 2.

Table 1. Coefficients, Error Constant (EC) and Order p of GCE2BD
for k = 1(1)10

k v β∗
0 β∗

1 β∗
2 β∗

3 β∗
4 β∗

5 β∗
6 β∗

7

1 1 7
24

2
3

1
24

2 1 97
360

19
30

13
120

−1
90

3 2 −7
960

59
180

19
30

1
20

−11
2880

4 2 −107
20160

97
315

586
945

113
1260

−277
20160

1
756

5 3 289
362880

−503
40320

13861
40320

586
945

2171
40320

−53
8064

191
362880

6 3 409
777600

−17483
1814400

197611
604800

13903
22680

29843
362880

−9127
604800

13169
5443200

−23
113400

7 4 −3391
29030400

643
362880

−58703
3628800

640307
1814400

13903
22680

101741
1814400

−1241
145152

2129
1814400

8 4 −69823
958003200

4969
3991680

−519493
39916800

6748817
19958400

379571
623700

1560991
19958400

−42389
2661120

3119
950400

9 5 6289
319334400

−611321
1916006400

173839
63866880

−1510661
79833600

57292261
159667200

379571
623700

9186203
159667200

−7619
760320

10 5 25797689
2179457280000

−61321669
290594304000

523498609
261534873600

−113923639
7264857600

1005044731
2905943040

294593723
486486000

261825097
3459456000

−119892569
7264857600

Table 2. Table 1 continued
k v β∗

8 β∗
9 β∗

10 β∗
11 γ∗

v Cp+1 p
1 1 −1

4
− 1

180
4

2 1 −19
60

7
2400

5
3 2 −11

48
1

1512
6

4 2 − 271
1008

− 289
846720

7
5 3 −191

864
− 23

226800
8

6 3 − 3233
12960

3391
65318400

9
7 4 −2497

29030400
− 2497

11520
263

14968800
10

8 4 −153707
319334400

263
7484400

− 90817
380160

− 6289
702535680

11
9 5 192103

106444800
−50063

212889600
14797

958003200
−14797

69120
− 133787

40864824000
12

10 5 345704453
87178291200

−27037529
34871316480

74011757
726485760000

−133787
20432412000

−109551893
471744000

4522787
2719962685440

13

We observed from the literature that, although some generalizations
of the Enright and BDF family of methods exist, which include:
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the GBDF by Brugnano and Trigiante [11] with order p = k, the
SDGBDF (p = k+1) and TDGBDF (p = k+2) of Nwachukwu and
Okor [37, 38], the GSDLMME (p = k+2) and SDGEBDFs (p = 2k)
of Ogunfeyitimi and Ikhile [42, 43], the GCE2BD (p = k + 3)
promises better approximate solutions to stiff systems of ODE per
step than the other generalizations in the literature (see, Brugnano
and Trigiante [11]). This is because the GCE2BD possesses a signif-
icantly smaller error constant per step than the other methods men-
tioned. Hence, in Fig. 1, we show their comparisons for k = 1 (1) 5.

Fig. 1. Semi-Log plot of the Absolute value of the error constant
against step length (k) of the GBDF, SDGBDF, TDGBDF,

SDGEBDFs, GSDLMME and the GCE2BD

3.2 STABILITY PROPERTIES OF GCE2BD

To analyze the stability of the proposed class of methods (10) (see
[24]), we apply it on the test problem

y′ = λy, y′′ = λ2y (15)

to obtain the characteristic equation

zv
(
1− q2γ∗

v

)
−zv−1−

k+1∑
j=0

qβ∗
j z

j = 0, q = λh, q ∈ C (16)

Inserting z = eiθ, i = 0 (1) k, θ ϵ [0, 2π] in (16) yields a polynomial
of degree two in q. The two roots of q are functions of θ describing
the stability domain of the GCE2BD (10) given in Figs. 1 and 2 for
odd and even values of k respectively. Note that the stability plots
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of the proposed class of methods (10) for the first 30 values of k
presented in Figs. 1 and 2 show distinctively that methods associ-
ated with the new class of methods are all Av, (k+1)−v−stable(since
its region of Dv,(k+1)−v contains the entire left half of the complex

q plane
(
C− ⊆ Dv,(k+1)−v

)
, see Definition 3) and the sizes of the

region of absolute stability (the exterior of the closed curves) is
considerably large.

Fig. 2. Stability plot of GCE2BD for k = 1(2)29

If the values of the coefficients (given in Tables 1 and 2) for a
specified method of the class of methods (10) are substituted in
its characteristic equation (16), the root distribution can be ob-
tained. In fact, the coefficients in row 2 of Table 1 and 2 which
defines the GCE2BD of order 4 when substituted in (16), taking
q = −100 (since the region Dv,(k+1)−v contains the entire left half
of the complex q plain) yields,

−1 + z = −175

6
− 7700z

3
− 25z2

6
and solving for the roots (zi ; i = 1(1)k + 1) we obtain the root

distribution for the GCE2BD of order 4 as,

{{z1 = −0.01096994732530235} , {z2 = −616.2290300526746}} .
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Fig. 3. Stability plot of GCE2BD for k = 2(2)30

Obviously, the root |z1| is strictly inside the unit circle, no root(s)
with unit modulus and the root |z2| is strictly outside the unit circle.
Thus, we have a root distribution equivalent to type (1, 0, 1).
Similarly,
The roots of the GCE2BD of order 11 is obtained as,
{{z1 = −11.6263} , {z2 = −0.0560} , {z3 = 0.0340} , {z4 = −1.8627
−14.2981} , {z5 = −1.8627 + 14.2981} , {z6 = 0.0043− 0.0393} ,
{z7 = 0.0043 + 0.0393} , {z8 = 14.5314− 8.7955} , {z9 = 14.5314
+8.7955}} , thus has a root distribution of type (4, 0, 5).

The roots of the GCE2BD of order 12 is obtained as,
{z1 = −13.5354} , {z2 = −0.0846} , {z3 = −2.2628− 16.4919} , {z4 = −2.2628 + 16.4919} ,
{z5 = −0.0095− 0.0621} , {z6 = −0.0095 + 0.0621} , {z7 = 0.0439− 0.0274} ,
{z8 = 0.0439 + 0.0274} , {z9 = 16.6509− 10.1458} , {z10 = 16.6509 + 10.1458}
,
thus has a root distribution of type (5, 0, 5).

The roots of the GCE2BD of order 13 is obtained as,
{z1 = −9.4267} , {z2 = −0.0748} , {z3 = 14.8481} , {z4 = −3.5932− 10.9978} ,
{z5 = −3.5932 + 10.9978} , {z6 = −0.0087− 0.0552} , {z7 = −0.0087 + 0.0552} ,
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{z8 = 0.0391− 0.0245} , {z9 = 0.0391 + 0.0245} , {z10 = 8.6689− 10.9156} ,
{z11 = 8.6689 + 10.9156} and thus it has a root distribution of type
(5, 0, 6).

So, it is easy to see that the characteristic polynomial
π (z, q) = zv (1− q2γ∗

v)− zv−1 −
∑k+1

j=0 qβ
∗
j z

j(where “z” is the shift
operator which also denotes the characteristic roots of the GCE2BD
(10) and q ∈ C) of the GCE2BD is of type (v, 0, (k + 1)−v)∀k ≥ 1.
Hence it is an Sv,(k+1)−v − polinomial. In analogous with (k1, k2)−
stability illustrated for BVMs in Section 2, here, k1 = v, k2 =
(k + 1)− v and k1 + k2 = k + 1. Thus, the distribution,
|z1| ≤ |z2| ≤ · · · ≤ |zk1| < 1 < |zk1+1| ≤ . . . ≤ | zk+1 |. The
knowledge of the root distribution of the scheme ensures the correct
use of the methods as would be seen in Section 4.

4. USE OF METHODS

Here, the implementation procedure for the GCE2BD (10) as BVMs
in the sense of [9, 11, 36-38] is given. The proposed methods (10)
are conveniently used with the following set of v − 1 additional
initial methods

yi − yi−1 = h
k+1∑
j=0

β
∗(i)
j fj + h2γ∗(i)

v gv ; i = 1, 2, . . . , v − 1; (n = 0)

(17)
and (k + 1)− v final methods

yN+i−yN+i−1 = h
k+1∑
j=0

β
∗(i)
N+jfN+j+h2γ

∗(i)
N+vgN+v ; i = v+1, . . . , N ;

(n = N) (18)

Since the continuous problem (1) provides only the initial solu-
tion y0. As a result, the GCE2BD of order 6 (GCE2BD3) requires
1 initial method and 2 final methods, the GCE2BD of order 7
(GCE2BD4) requires 1 initial method and 3 final methods, the
GCE2BD of order 8 (GCE2BD5) requires 2 initial methods and 3
final methods, GCE2BD of order 9 (GCE2BD6) requires 2 initial
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methods and 4 final method, GCE2BD of order 10 (GCE2BD7) re-
quires 3 initial methods and 4 final methods and GCE2BD of order
11 (GCE2BD8) requires 3 initial methods and 5 final methods.

Example 1: The, GCE2BD3 given as:

yn+2 − yn+1 = h

(
− 7

960
fn +

59

180
fn+1 +

19

30
fn+2 +

1

20
fn+3

− 11

2880
fn+4

)
− 11

48
h2gn+2

is used with 1 initial method given as:
y1 − y0 = h

(
869
2880

f0 +
229
180

f1 − 11
30
f2 − 41

180
f3 +

59
2880

f4
)
+ 9

16
h2g2

and 2 final methods given respectively as:
yN+3 − yN+2 = h

(
− 11

2880
fN + 1

20
fN+1 +

19
30
fN+2 +

59
180

fN+3

− 7
960

fN+4

)
+ 11

48
h2gN+2,

yN+4 − yN+3 = h
(

59
2880

fN − 41
180

fN+1 − 11
30
fN+2 +

229
180

fN+3

+ 869
2880

fN+4

)
− 9

16
h2gN+2.

Example 2: The GCE2BD4 given as:

yn+2 − yn+1 = h

(
− 107

20160
fn +

97

315
fn+1 +

586

945
fn+2 +

113

1260
fn+3

− 277

20160
fn+4 +

1

756
fn+5

)
− 271

1008
h2gn+2

is used with 1initial method given as:
y1 − y0 = h

(
643
2240

f0 +
149
105

f1 − 254
945

f2 − 73
140

f3 +
631
6720

f4 − 37
3780

f5
)

+ 863
1008

h2g2

and 3 final methods given respectively as:
yN+3 − yN+2 = h

(
− 37

20160
fN + 19

630
fN+1 +

586
945

fN+2 +
463
1260

fN+3

− 347
20160

fN+4 +
1

756
fN+5

)
+ 191

1008
h2gN+2,

yN+4 − yN+3 = h
(

13
2240

fN − 17
210

fN+1 − 254
945

fN+2 +
137
140

fN+3

+2521
6720

fN+4 − 37
3780

fN+5

)
− 271

1008
h2gN+2,

yN+5 − yN+4 = h
(
− 97

4032
fN + 97

315
fN+1 +

586
945

fN+2 − 1777
1260

fN+3

+24293
20160

fN+4 +
1139
3780

fN+5

)
+ 863

1008
h2gN+2.
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Example 3: The GCE2BD5 given as:

yn+3−yn+2 = h

(
289

362880
fn −

503

40320
fn+1 +

13861

40320
fn+2 +

586

945
fn+3

+
2171

40320
fn+4 −

53

8064
fn+5 +

191

362880
fn+6

)
− 191

864
h2gn+3

is used with 2 initial methods given respectively as:

y1 − y0 = h
(
104897
362880

f0 +
53033
40320

f1 − 79099
40320

f2 +
586
945

f3 +
34651
40320

f4 − 5417
40320

f5
+ 4447

362880
f6
)
− 1375

864
h2g3,

y2−y1 = h
(
− 907

120960
f0 +

953
2688

f1 +
14537
13440

f2 − 254
945

f3 − 2473
13440

f4 +
71

2688
f5

− 277
120960

f6
)
+ 13

32
h2g3

and 3 final methods given respectively as:
yN+4 − yN+3 = h

(
191

362880
fN − 53

8064
fN+1 +

2171
40320

fN+2 +
586
945

fN+3

+13861
40320

fN+4 − 503
40320

fN+5 +
289

362880
fN+6

)
+ 191

864
h2gN+3,

yN+5 − yN+4 = h
(
− 277

120960
fN + 71

2688
fN+1 − 2473

13440
fN+2 − 254

945
fN+3

+14537
13440

fN+4 +
953
2688

fN+5 − 907
120960

fN+6

)
− 13

32
h2gN+3,

yN+6 − yN+5 = h
(

4447
362880

fN − 5417
40320

fN+1 +
34651
40320

fN+2 +
586
945

fN+3

−79099
40320

fN+4 +
53033
40320

fN+5 +
104897
362880

fN+6

)
+ 1375

864
h2gN+3.

Example 4: The GCE2BD6 given as:

y3+n − y2+n = h
(

409
777600

fn − 17483
1814400

fn+1 +
197611
604800

fn+2 +
13903
22680

fn+3

+ 29843
362880

fn+4 − 9127
604800

fn+5 +
13169

5443200
fn+6 − 23

113400
fn+7

)
− 3233

12960
h2gn+3,

is used with 2 initial methods given respectively as:

y1 − y0 = h
(
1520143
5443200

f0 +
2573077
1814400

f1 − 1559669
604800

f2 +
8233
22680

f3 +
685043
362880

f4
−267847

604800
f5 +

439889
5443200

f6 − 119
16200

f7
)
− 33953

12960
h2g3,

y2 − y1 = h
(
− 32687

5443200
f0 +

614827
1814400

f1 +
711061
604800

f2 − 5207
22680

f3 − 123667
362880

f4
+ 44423

604800
f5 − 69361

5443200
f6 +

127
113400

f7
)
+ 7297

12960
h2g3

and 4 final methods given respectively as:
yN+4 − yN+3 = h

(
199

777600
fN − 6773

1814400
fN+1 +

22261
604800

fN+2 +
13903
22680

fN+3
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+135053
362880

fN+4 − 12697
604800

fN+5 +
14639

5443200
fN+6 − 23

113400
fN+7

)
+ 2497

12960
h2gN+3,

yN+5 − yN+4 = h
(
− 4337

5443200
fN + 19477

1814400
fN+1 − 54389

604800
fN+2 − 5207

22680
fN+3

+335603
362880

fN+4 +
242873
604800

fN+5 − 97711
5443200

fN+6 +
127

113400
fN+7

)
− 3233

12960
h2gN+3,

yN+6−yN+5 = h
(

13393
5443200

fN − 57173
1814400

fN+1 +
146581
604800

fN+2 +
8233
22680

fN+3

−338707
362880

fN+4 +
608903
604800

fN+5 +
1946639
5443200

fN+6 − 119
16200

fN+7

)
+ 7297

12960
h2gN+3,

yN+7 − yN+6 = h
(
− 73937

5443200
fN + 305077

1814400
fN+1 − 743189

604800
fN+2 − 31457

22680
fN+3

+1320083
362880

fN+4 − 1084327
604800

fN+5 +
7243889
5443200

fN+6 +
32377
113400

fN+7

)
− 33953

12960
h2gN+3.

Example 5: The GCE2BD7 given as:
y4+n − y3+n = h

(
− 3391

29030400
fn +

643
362880

fn+1 − 58703
3628800

fn+2 +
640307
1814400

fn+3

+13903
22680

fn+4 +
101741
1814400

fn+5
1241

145152
fn+6 +

2129
1814400

fn+7 − 2497
29030400

fn+8

)
− 2497

11520
h2gn+4

is used with 3 initial methods obtained by evaluating,

yi − yi−1 = h
8∑

j=0

β
∗(i)
j fj + h2γ

∗(i)
4 g4 ; i = 1, . . . , 3

and 4 final methods obtained by evaluating,

yN+i−yN+i−1 = h
8∑

j=0

β
∗(i)
N+jfN+j+h2γ

∗(i)
N+4gN+4 ; i = 5, . . . , 8

Following the same procedure as in Section 3, the coefficients
{β∗(i), γ∗(i)} are obtained for the additional initial and final methods
of the GCE2BD7. They are readily available in Table 13 for brevity.

Example 6: The GCE2BD8 given as:

yn+4 − yn+3 = h
(
− 69823

958003200
fn +

4969
3991680

fn+1 − 519493
39916800

fn+2 +
6748817
19958400

fn+3

+379571
623700

fn+4 +
1560991
19958400

fn+5 − 42389
2661120

fn+6 +
3119

950400
fn+7 − 153707

319334400
fn+8

+ 263
7484400

fn+9

)
− 90817

380160
h2gn+4

is used with 3 initial methods obtained by evaluating,

yi − yi−1 = h

9∑
j=0

β
∗(i)
j fj + h2γ

∗(i)
4 g4 ; i = 1, . . . , 3

and 5 final methods obtained by evaluating,

yN+i−yN+i−1 = h
9∑

j=0

β
∗(i)
N+jfN+j+h2γ

∗(i)
N+4gN+4 ; i = 5, . . . , 9
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The coefficients {β∗(i), γ∗(i)} of the additional methods associated
with GCE2BD8 are readily available in Table 14.
The main methods (derived from (10)) are implemented as BVMs
efficiently by combining them with their respective additional ini-
tial and final methods (derived from (17) and (18)). They are
combined as simultaneous numerical integrators for the solution of
the specified problem. Practically, the main methods and the ad-
ditional methods are combined as BVMs to give a single matrix of
finite difference equations which simultaneously provides the values
of the solution. Effectively, a modified Newton-Raphson method is
used (see Lambert [31]). The accumulation of error is not signif-
icant on the numerical results so obtained since the solutions are
obtained simultaneously (see [19, 27, 36-38]).

5. NUMERICAL EXAMPLES

In this section we tested extensively the GCE2BD on some stan-
dard stiff problems to illustrate the accuracy and efficiency of the
scheme. All computations were carried out using our written code
in MATLAB R2015a software package.

Problem 1: Consider the stiff test given by Cash [14]

y′1 = −αy1 − βy2 + (α + β − 1) e−ty1 (0) = 1

y′2 = βy1 − αy2 + (α− β − 1) e−ty2 (0) = 1

In other to make this system homogeneous, an additional variable
y3 is introduced such that:

y′3 = 1 y3 (0) = 0

The eigenvalues of the Jacobian associated with the resulting sys-
tem are −α± iβ, 0 and the required solution is

y1 (t) = y2 (t) = e−t , y3 (t) = t.

This problem is solved using step length k = 5 , step size h = 0.09
, α = 1 and β = 30 and the absolute errors are computed. The
numerical results displayed in Table 3 show that the GCE2BD5 is
more accurate than the conventional E2BD of Cash [14]. Further
comparison in Table 4 shows that even with a large step size our
scheme performs better than the conventional E2BD.

Table 3. Absolute error for Problem 1,
k = 5, h = 0.09, α = 1, β = 30, and Error yi = |yi − y (ti)| , i = 1, 2
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t yi Error in
E2BD-Class1

Error in
E2BD-Class2

Error in
GCE2BD5

4.5 y1
y2

0.1× 10−10

0.1× 10−10
0.1× 10−10

0.1× 10−10
0.6× 10−14

0.8× 10−15

9.0 y1
y2

0.1× 10−12

0.1× 10−12
0.1× 10−12

0.1× 10−12
0.3× 10−16

0.1× 10−16

13.5 y1
y2

0.1× 10−15

0.1× 10−15
0.8× 10−11

0.6× 10−11
0.8× 10−18

0.5× 10−18

18.0 y1
y2

0.1× 10−17

0.1× 10−17
0.1× 10−11

0.1× 10−11
0.1× 10−19

0.2× 10−20

Table 4. Absolute error for Problem 1, h = 0.15, α = 1, β = 30
and Error yi = |yi − y (ti)| , i = 1, 2

t yi Error in
GCE2BD5

Error in
GCE2BD6

Error in
GCE2BD7

Error in
GCE2BD8

4.5 y1
y2

0.2× 10−11

0.4× 10−11
0.1× 10−12

0.2× 10−12
0.9× 10−13

0.2× 10−12
0.4× 10−14

0.3× 10−14

9.0 y1
y2

0.9× 10−14

0.3× 10−13
0.2× 10−14

0.3× 10−14
0.2× 10−14

0.2× 10−15
0.3× 10−16

0.1× 10−15

13.5 y1
y2

0.8× 10−16

0.2× 10−15
0.1× 10−16

0.1× 10−16
0.6× 10−18

0.1× 10−16
0.3× 10−18

0.1× 10−17

18.0 y1
y2

0.7× 10−18

0.2× 10−17
0.2× 10−18

0.2× 10−18
0.2× 10−18

0.2× 10−18
0.5× 10−19

0.1× 10−19

Problem 2: Consider the stiffly nonlinear singularly perturbed
problem which was proposed by Kaps [30] in the range of 0 ≤ t ≤ 10

y′1 = −
(
ϵ−1 + 2

)
y1 + ϵ−1y22, y1 (0) = 1

y′2 = y1 − y2 − y22, y2 (0) = 1

The smaller ϵ is, the more serious the stiffness of the system (see
[3, 4]). Its exact solution is given by

y1 = y22, y2 = e−t

The GCE2BD4 is applied to this problem using ϵ = 10−3 and the
step sizes h = 0.01, 0.05 and the absolute errors |yi − y (ti)| , i =
1, 2 in the interval 0 ≤ t ≤ 10 are compared with the BBDF8
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of Akinfenwa et al. [3] and the method of Wu and Xia [45]. It is
observed that the new method even though it is of order 7 compares
favorably with the BBDF8 of Akinfenwa et. al. [3] of order p = 8
and performs better than the method of Wu and Xia [45] of order
p = 8 with smaller step sizes h = 0.001, 0.002 . N =

(
T−t0
h

)
is

number of integration point. The details of the numerical results are
displayed in Table 5. In Table 6, it is noticed that the GCE2BD4 is
more accurate than the SDGBDF of Nwachukwu and Okor [37] and
the SDGAM of Nwachukwu and Mokwunyei [35] using ϵ = 10−4 ,
k = 4 and h = 0.01.

Table 5. A comparison of methods for Problem 2, using ϵ = 10−3,
Absolute error, Error yi = |yi − y (ti)| , i = 1, 2

Methods t h N Error y1 Error y2
GCE2BD4 1

10
0.05
0.01

20
1000

7.8530×10−13

2.3988×10−23
1.4732×10−13

2.7105×10−19

BBDF8 1
10

0.05
0.01

20
1000

4.5602×10−13

6.6466×10−20
6.2638×10−13

2.3988×10−17

Wu and Xia[45] 1
10

0.002
0.001

500
10000

2.5606× 10−7

5.5468×10−16
8.0150× 10−8

6.0936×10−12

Table 6. A comparison of methods for Problem 2 using ϵ = 10−4 and
h = 0.01, Absolute error, Error yi = |yi − y (ti)| , i = 1, 2
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t yi Error in
SDGBDF5
k = 4

Error in
SDGAM
k = 4

Error in
GCE2BD4
k = 4

2 y1
y2

5.156× 10−12

1.911× 10−11
2.038× 10−13

7.087× 10−13
2.082× 10−17

8.327× 10−17

4 y1
y2

9.571× 10−14

2.613× 10−13
3.518× 10−15

9.594× 10−14
1.572× 10−18

4.510× 10−17

6 y1
y2

1.771× 10−15

3.573× 10−13
6.428× 10−17

1.297× 10−14
1.143× 10−19

2.472× 10−17

8 y1
y2

3.278× 10−17

4.886× 10−14
1.176× 10−18

1.752× 10−15
4.764× 10−21

7.373× 10−18

10 y1
y2

6.065× 10−19

6.680× 10−15
2.150× 10−20

2.368× 10−16
2.399× 10−23

2.711× 10−19

Problem 3: Consider the stiff system giving in Fatunla [22] which
has been solved by Akinfenwa and Jator [2], Akinfenwa et al. [4],
Ismail and Ibrahim [26]

y′1 = −2000y1 + 1000y2 + 1, y1 (0) = 0

y′2 = y1 − y2, y2 (0) = 0

The eigenvalues of the Jacobian are -2000.5 and -0.5. Thus, the
stiffness ratio is 4001. The theoretical solution is

y1 (t) = −4.97× 10−4e−2000.5t − 5.034× 10−4e−0.5t + 0.001

y2 (t) = −2.5× 10−7e−2000.5t − 1.007× 10−3e−0.5t + 0.001

Tables 7 and 8 contain the absolute errors, Error yi = |yi − y (ti)| ,
i = 1, 2 at the end points t = 5 and t = 10 using the GCE2BD5. In
Tables 7, for the purpose of comparison, the system is integrated
with h = 0.0001. It can be seen in Tables 7 that our method is
superior in terms of accuracy to the method of Ismail and Ibrahim
[26] and compares favorably with the CBBDF5 of Akinfenwa et al.
[4] and the ECBBDF5 of Akinfenwa and Jator [2] for the same num-
ber of steps. In Tables 8, for a larger step size h = 0.1, our method
performs excellently compared with the method of Akinfenwa and
Jator [2].

Table 7. Comparison of methods at the end points t = 5 and t = 10,
h = 0.0001 and k = 5 for Problem 3, Error yi = |yi − y(ti)| i = 1, 2
t Ismail- Ibrahim k = 5

Error y1
Error y2

CBBDF5 k = 5
Error y1
Error y2

ECBBDF5 k = 5
Error y1
Error y2

GCE2BD5 k = 5
Error y1
Error y2

5 3.64920 × 10−7

7.670023 × 10−7
2.328953 × 10−7

5.027468× 10−7
2.328953× 10−7

5.027468× 10−7
2.328953× 10−7

5.027468× 10−7

10 2.454035× 10−7

4.942995× 10−7
1.700858 × 10−8

3.705176× 10−8
1.700858× 10−8

3.705176× 10−8
1.699965× 10−8

3.703239× 10−8
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Table 8. Comparison of methods at the end points t = 5 and t = 10,
h = 0.1 and k = 5 for Problem 3 Error yi = |yi − y(ti)| i = 1, 2

h t ECBBDF5 k = 5
Error y1
Error y2

GCE2BD5 k = 5
Error y1
Error y2

0.1 5 3.163426× 10−4

6.610743× 10−7
2.328953× 10−7

5.027469× 10−7

0.1 10 2.005234× 10−4

1.373470× 10−7
1.700858× 10−8

3.705176× 10−8

Problem 4: Consider the classical stiff test which was solved by
D’Ambrosio et al. [17]

y′ = Ay, t ∈ [0, 50]

where A =

[
−a −b
b −a

]
with eigenvalues of A given as {−a+ bi, −a− bi}.
We integrated Problem 4 using the GCE2BD with step lengths k =
6(1)8 and the numerical results are presented in Table 9. In Table
9, our results are compared with those of the following methods:
the MEBDF proposed by Cash [15] as a better version of the EBDF
family of methods and the Perturbed MEBDF (PMEBDF) and the
fully Perturbed MEBDF (FPMEBDF) proposed by D’Ambrosio et.
al. [17] as improved versions of the MEBDF. From Table 9, it is
obvious that our class of methods performs excellently compared
with the methods of Cash [15] and D’Ambrosio et al. [17]. Further
examinations using the GCE2BD were made considering several
cases of {a, b} to investigate the performance of our scheme on stiff
problem whose Jacobian has some large eigenvalues close to the
imaginary axis. The results are given in Figs. 4, 5, 6 and 7. From
our findings (Figs. 4, 5, 6 and 7), it is clear that our scheme is well
suited for stiff system whose Jacobian has some large eigenvalues
near the imaginary axis.

Table 9. Maximum Absolute error for methods, MEBDF, PMEBDF,
FPMEBDF, GCE2BD applied to Problem 4
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h a b k MEBDF PMEBDF FPMEBDF GCE2BD
0.1
0.05

5
5

25
25

6
6

9.1458e+67
9.8280e−46

1.0827e−10
4.2093e−42

6.4619e−10
3.1724e−51

1.2796e−45
5.7578e−108

0.1
0.05

10
10

25
25

7
7

3.7745e+60
4.2158e−24

2.8380e−08
8.6327e−43

1.8857e−10
1.0682e−41

7.9167e−74
9.1520e−218

0.1
0.05

10
10

15
15

8
8

3.2440e+19
2.1582e−21

2.2573e−10
5.9876e−31

4.7513e−13
6.2765e−38

5.3678e−121
2.1623e−218

Fig. 4. Solution of Problem 4 for
{a = 0, b = 30} using GCE2BD8

with h = 0.01

Fig. 5. Solution of Problem 4 for
{a = 0, b = 100} using GCE2BD8

with h = 0.01

Fig. 6. Solution of Problem 4 for
{a = 1, b = 30} using GCE2BD8

with h = 0.01

Fig. 7. Solution of Problem 4 for
{a = 1, b = 100} using GCE2BD8

with h = 0.01

Problem 5: Consider the linear stiff test solved by [11, 42, 44]

y′1 = −21y1 + 19y2 − 20y3 ; y1 (0) = 1

y′2 = 19y1 − 21y2 + 20y3 ; y2 (0) = 0
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y′3 = 40y1 − 40y2 − 40y3 ; y3 (0) = −1

The theoretical solution is given by:

y1 (t) =
1

2
(e−2t + e−40t(cos (40t) + sin (40t) ))

y2 (t) =
1

2
(e−2t − e−40t(cos (40t) + sin (40t) ))

y3 (t) =
1

2
(2e−40t(sin (40t) − cos (40t) ))

This problem was solved using the GCE2BD of order 6, 9 and
10 (GCE2BD3, GCE2BD6 and GCE2BD7 respectively), the rate
of convergence and number of computational steps

(
N =

(
T−t0
h

))
were also computed. The results are reproduced in Table 10 and
Table 11. From Table 10, our comparison with the results produced
by SDGEBDFs given in Ogunfeyitimi and Ikhile [42], ETR2s and
TOMs given in [11] shows that our scheme performs much better
than those of [11] and [42] for the same order (order 6). In Table 11,
our scheme displays superiority to the ETR2s and TOMs for same
order (order 10). Thus, for this test, our scheme is more efficient
and accurate than the other schemes considered. Although only the
maximum absolute values are presented in Tables 10 and 11, Fig. 8
shows the complete solution for all the values of yi; i = 1 (1) 3 with
N = 180points.

Table 10. A comparison of methods for Problem 5, Error

=Max |y − y (t)| Rate = log2

(
e2h

eh

)
where eh is the maximum

absolute error for h, 0 ≤ t ≤ 1

h N GCE2BD3
(Rate)

h N SDGEBDFs3
(Rate)

TOM
(Rate)

ETR2s

(Rate)
2e-1 5 8.18×10−07

(—)
2e-2 50 3.22× 10−7

(—)
1.55× 10−3

(—)
3.51× 10−3

(—)
1e-1 10 6.09×10−10

(10.4)
1e-2 100 3.79× 10−9

(6.40)
9.77× 10−6

(7.31)
8.62× 10−5

(5.35)
5e-2 20 9.57×10−12

(5.99)
5e-3 200 5.39× 10−11

(6.14)
1.20× 10−7

(6.35)
7.23× 10−7

(6.90)
2.5e-2 40 8.19×10−14

(6.87)
2.5e-3 400 8.89× 10−13

(5.92)
1.85× 10−9

(6.01)
8.86× 10−9

(6.39)

Table 11. A comparison of methods for Problem 5, Error

=Max |y (t)− y| Rate = log2

(
e2h

eh

)
where eh is the maximum

absolute error for h, 0 ≤ t ≤ 1
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h N GCE2BD7
(Rate)

h N TOMs
(Rate)

ETR2s

(Rate)
1.25e-1 8 7.719e− 04

(—)
2e-2 50 1.523e− 04

(—)
2.866e− 04
(—)

6.25e-2 16 5.242e− 08
(13.85)

1e-2 100 2.504e− 07
(9.25)

2.013e− 06
(7.15)

3.125e-2 32 8.825e− 14
(19.18)

5e-3 200 7.490e− 11
(11.70)

2.208e− 09
(9.83)

1.5625e-2 64 2.082e− 17
(12.05)

2.5e-3 400 3.009e− 14
(11.28)

1.004e− 12
(11.10)

Fig. 8. Solution of Problem 5 using GCE2BD6 with N = 180

Problem 6: Consider the classical linear stiff system (Fatunla [22],
Yakubu and Markus [46])

y′ =


−10 −100 0 0 0 0
−100 −10 0 0 0 0
0 0 −4 0 0 0
0 0 0 −1 0 0
0 0 0 0 −0.5 0
0 0 0 0 0 −0.1

 y,

yi (0) = 1, i = 1 (1) 6

The eigenvalues of the Jacobian are λ1,2 = −10 ± 100i, λ3 = −4,
λ4 = −1, λ5 = −0.5 and λ6 = −0.1. This problem is particu-
larly troublesome for most stiff systems due to the eigenvalues near
the imaginary axis (see, [22]). We integrated this problem using
GCE2BD8 and compared our results with Method(3.4)
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given in [46]. The comparison is presented in Table 12. Although
only the first four components of the computed solutions are consid-
ered in Table 12, the graphical plots are displayed in Fig. 9 for all
the values of yi; i = 1 (1) 6 with number of integration points (N) =
100. From Table 12, it is obvious that our scheme performs better
and it is much accurate than the method in [46].

Table 12. Absolute Error for Problem 6 using h = 0.01

t yi Method (3.4) in [46]
Order p = 14

GCE2BD8
Order p = 11

5 y1
y2
y3
y4

2.22044604925031 × 10−16

1.74166236988071 × 10−15

3.33066907387547 × 10−16

2.22044604925031 × 10−16

1.608442239844966× 10−23

1.605539145513942× 10−23

9.305781891221561× 10−24

6.071532165918825× 10−17

50 y1
y2
y3
y4

1.66533453693773 × 10−15

8.24340595784179 × 10−15

2.55351295663786 × 10−15

3.77475828372553 × 10−15

4.505288687121358× 10−218

2.067926191149865× 10−218

9.172920294489976× 10−100

3.749826979123097× 10−35

250 y1
y2
y3
y4

5.86336534880161 × 10−16

4.18068357710411 × 10−16

3.63598040564739 × 10−15

5.10702591327572 × 10−15

4.940656458412465× 10−324

6.916919041777452× 10−323

4.940656458412465× 10−323

3.760035257753905× 10−120

500 y1
y2
y3
y4

8.73121562029733 × 10−18

4.43167638003450 × 10−18

8.15320033709099 × 10−16

1.66533453693773 × 10−16

458459520888726× 10−323

9.881312916824931× 10−324

4.940656458412465× 10−323

3.054171332054006× 10−228

Fig. 9. Solution of Problem 6 using GCE2BD6 with N = 100
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Problem 7: Chemistry stiff test suggested by Gear [23] which was
also solved by Cash [14]

y′1 = −0.013y1 − 1000y1y3 ; y1 (0) = 1

y′2 = −2500y2y3 ; y2 (0) = 1

y′3 = −0.013y1 − 1000y1y3 − 2500y2y3 ; y3 (0) = 0

This problem was integrated using the newly constructed meth-
ods within the range [0, 10] and the efficiency curves obtained are
compared with the ODE15s code of MATLAB in Fig. 10 where
nfe = number of function evaluation and Tol = tolerance. It can
be observed from the figure (Fig. 10) that for a large tolerance level(
Tol = 10−3

)
the scheme produced solutions as accurate as those

of ODE15s code of MATLAB.

Fig. 10. Solution of Problem 7 using GCE2BD8 with
Tol = 10−3, nfe = 33

Table 13. Coefficients and order (p) of the additional initial and final
methods for GCE2BD of order 10 (GCE2BD7)
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i β0 β1 β2 β3 β4 β5 β6 β7 β8 γ4 p
Initial additional methods

1 8044607
29030400

2577233
1814400

−8213297
3628800

2003017
362880

−31457
22680

−5644237
1814400

2317489
3628800

−187249
1814400

48781
5806080

57281
11520

10

2 −175999
29030400

624047
1814400

3914161
3628800

−2215021
1814400

8233
22680

961229
1814400

−375089
3628800

29297
1814400

−37249
29030400

−2125
2304

10

3 4531
5806080

−25999
1814400

1388239
3628800

1816013
1814400

−5207
22680

−60233
362880

107953
3628800

−8017
1814400

9857
29030400

441
1280

10

Final additional methods
5 −2497

29030400
2129

1814400
−1241
145152

101741
1814400

13903
22680

640307
1814400

−58703
3628800

643
362880

−3391
29030400

2497
11520

10

6 9857
29030400

−8017
1814400

107953
3628800

−60233
362880

−5207
22680

1816013
1814400

1388239
3628800

−25999
1814400

4531
5806080

−441
1280

10

7 −37249
29030400

29297
1814400

−375089
3628800

961229
1814400

8233
22680

−2215021
1814400

3914161
3628800

624047
1814400

−175999
29030400

2125
2304

10

8 48781
5806080

−187249
1814400

2317489
3628800

−5644237
1814400

−31457
22680

2003017
362880

−8213297
3628800

2577233
1814400

8044607
29030400

−57281
11520

10

Table 14. Coefficients and order (p) of the additional initial and final
methods for GCE2BD of order 11 (GCE2BD8)

i β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 γ5 p
Initial additional methods

1 36953033
136857600

30049763
19958400

−110748667
39916800

31554307
3991680

−83753
124740

−133495007
19958400

24365993
13305600

−2953513
6652800

4617071
63866880

−8501
1496880

3250433
380160

11

2 −4910527
958003200

6640157
19958400

45748091
39916800

−30647311
19958400

167513
623700

19996639
19958400

−1156451
4435200

135523
2217600

−3102059
319334400

5609
7484400

−530113
380160

11

3 109363
191600640

−235789
19958400

14668229
39916800

21381743
19958400

−26003
124740

−1084243
3991680

864361
13305600

−96329
6652800

710827
319334400

−251
1496880

171137
380160

11

Final additional methods
5 −40321

958003200
12899

19958400
−43007
7983360

824591
19958400

379571
623700

7485217
19958400

−104477
4435200

1721
443520

−23363
45619200

263
7484400

14797
76032

11

6 17783
136857600

−37987
19958400

585083
39916800

−381443
3991680

−26003
124740

17867743
19958400

5558743
13305600

−162263
6652800

170321
63866880

−251
1496880

−90817
380160

11

7 −331777
958003200

97907
19958400

−1433659
39916800

4291439
19958400

167513
623700

−14942111
19958400

12257897
13305600

369617
950400

−661187
45619200

5609
7484400

171137
380160

11

8 35659
27371520

−359539
19958400

5089979
39916800

−14481007
19958400

−83753
124740

7751507
3991680

−4748963
4435200

2394307
2217600

108893077
319334400

−8501
1496880

−530113
380160

11

9 −8691073
958003200

491719
3991680

−33973243
39916800

93431567
19958400

2227571
623700

−218177759
19958400

13451861
2661120

−15749417
6652800

464544043
319334400

2046263
7484400

3250433
380160

11

6. CONCLUDING REMARKS

The generalized Cash-type second derivative extended backward
differentiation formulas (GCE2BD) has been developed and imple-
mented as self-starting BVMs which requires only the initial value
in (1) for the numerical solution of ordinary differential equations.
The proposed class of methods is not only accurate (see Tables 3-
12, Figs. 1, 4-10) but also reduces computational cost with fewer
numbers of step length (k), function evaluations (nfe) and compu-
tational steps (N). Also, because of the single block computation,
the accumulation error is not significant on the numerical results
obtained. The exceptional stability properties (see Fig. 2 and Fig.
3) of our new class of methods makes it suitable for dealing with
standard stiff problems. The GCE2BD displayed better stability
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properties (Ov, (k+1)−v−stable and Av, (k+1)−v−stable for all values
of k ≥ 1) than the conventional E2BD which are only A−stable up-
to k = 5. The numerical results (see Tables 3-12 and Figs. 1, 4-10)
demonstrate its efficiency and good accuracy over other standard
methods in the literature for the integration of stiff systems. Con-
sidering the accuracy of this scheme and the fact that BVMs are
natural candidate for the direct solution of Boundary value Prob-
lems (BVPs) (see, Brugnano and Trigiante [11]), we wish to pro-
pose a direct solution using the GCE2BD for singularly perturbed
and/or stiff BVPs in the future.

REFERENCES

[1] L. Aceto, D. Trigiante, On the A-stable methods in the GBDF class, Nonlinear
Analysis Real World Applications. 3, 9 – 23, 2002.

[2] O. A. Akinfenwa, S. N. Jator, Extended Continuous Block Backward Differentia-
tion Formula for Stiff System, Fasciculi Mathematici 2015.
https://doi.org/10.1515/fascmath-2015-0010

[3] O. A. Akinfenwa, S. N. Jator and N. M. Yoa, Eight order backward differentiation
formula with continuous coefficients for stiff ordinary differential equations, Int.
J. Math. Comput. Sci.17(4), 172–176, 2011.

[4] O. A. Akinfenwa, S. N. Jator and N. M. Yao, Continuous block backward differenti-
ation formula for solving Stiff ordinary differential equation, Journal of Computer
and Applied Mathematics with Application, 65, 996-1005, 2013.

[5] P. Amodio and F. Mazzia, Boundary value methods based on Adams-type methods,
Applied Numerical Mathematics 18, 23–35, 1995.

[6] A. O. H. Axelsson and J. G. Verwer, Boundary value techniques for initial value
problems in ordinary differential equations, Math. Comput. 45,153–171, 1985.

[7] T. A. Bickart, W. B. Rubin, Composite multistep methods and stiff stability In:
Willoughby RA (ed) Stiff differential systems. Plenum Press, New York 1974.

[8] L. Brugnano, D. Trigiante, Block Implicit methods for ODEs in: D. Trigiante
(ed.), Recent trends in Numerical Analysis, Nova Science Publ. inc., New York
2001.

[9] L. Brugnano and D. Trigiante, Boundary Value method: the third way between
linear multistep and Runge Kutta methods, Computers Math. Applic. 36 (10),
269 – 284, 1998a.

[10] L. Brugnano and D. Trigiante, Convergence and stability of boundary value meth-
ods for ordinary differential equations, Journal of Computational and Applied
Mathematics 66, 97-109, 1996.

[11] L. Brugnano and D. Trigiante, Solving Differential Problems by Multistep Initial
and Boundary Value Methods, Gordon and Breach Science Publishers, Amsterdam
1998b.

[12] L. Brugnano, Boundary Value Methods for the Numerical Approximation of Or-
dinary Differential Equations, Lecture Notes in Comput. Sci. 1196, 78–89, 1997.

[13] J.R Cash, Review Paper, Efficient Numerical Methods for the Solution of Stiff
Initial-Value Problems and Differential Algebraic Equations, Proceedings: Math-
ematical, Physical and Engineering Sciences459(2032), 797–815, 2003.

[14] J. R. Cash, Second Derivative Extended Backward Differentiation Formulas for
the Numerical Integration of Stiff Systems, SIAM Journal on Numerical Analysis
18, 21-36, 1981.



190 T. OKOR AND G. C. NWACHUKWU

[15] J. R. Cash, The Integration of Stiff IVPs in Ordinary Differential Equations Using
Modified Extended BDF, Computers and Mathematics with Applications 9, 645-
657, 1983.

[16] R.H. Chan, S. T. Lee and H-W. Sun, Boundary value methods for transient solu-
tions of queuing networks with variant vacation policy, Journal of Computational
and Applied Mathematics 236, 3948–3955, 2012.

[17] R. D’Ambrosio, G. Izzo and Z. Jackiewicz, Perturbed MEBDF Methods, Comput-
ers and Mathematics with Applications 63, 851–861, 2012.

[18] G. Dahlquist, A special stability problem for linear multistep methods, BIT 3,
27–43, 1963.

[19] J. O. Ehigie, S. N. Jator, A. B. Sofoluwe and S. A. Okunuga, Boundary value
technique for initial value problems with continuous second derivative multistep
method of Enright, Computational and Applied Mathematics 33(1), 81–93, 2014.

[20] W. H. Enright, Second derivative multistep methods for stiff ordinary differential
equations, SIAM J. Numer. Anal. 11(2), 321–331, 1974.

[21] S. O. Fatunla, Block methods for second order IVPs, Intern. J. Compt. Maths.
41, 55–63, 1991.

[22] S. O. Fatunla, Numerical integrators for stiff and highly oscillatory differential
equations, J. Math. Comput. 34(150), 373–90, 1980.

[23] C. W. Gear, DIFSUB for solution of ordinary differential equations, Comm.
ACM., 14, 185–190, 1971.

[24] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Springer-Verlag, Heidelberg London 1996.

[25] P. Henrici, Discrete Variable Methods in ODE. New York, John Wiley and Sons
1962.

[26] G. A. F. Ismail and I. H. Ibrahim, A new higher order effective P-C Methods for
Stiff systems, Journal of Mathematics and Computers in Simulation 47, 541–552,
1998.

[27] S. N. Jator and J. Li, Boundary Value Methods via a Multistep Method with
Variable Coefficients for Second order initial and boundary value problems, Inter-
national Journal of Pure and Applied Mathematics 50(3), 403–420, 2009.

[28] S. N. Jator and R. K. Sahi, Boundary value technique for initial value Problems
based on Adams-type second derivative methods, International Journal of Mathe-
matical Education in Science and Technology 41(6), 819–826, 2010.

[29] X. Jia-Xiang and K. Jiao-Xun, A class of DBDF methods with the derivative
modifying term, J. Comput. Math. 6(1), 7–13, 1988.

[30] P. Kaps, Rosenbrock-Type Methods, in Numerical Methods for Stiff Initial Value
Problems, G. Dahlquist, R. Jeltsch (eds). Inst. fur Geometric und Praktische
Mathematik der RWTH Aachen, Germany 1981.

[31] J. D. Lambert, Computational methods in ordinary differential equations, Wiley,
New York 1973.

[32] J. D. Lambert, Numerical methods for ordinary differential system: the initial
value problems, John Wiley and Sons, Chichester 1991.

[33] O.I. Longe and A.O. Adeniran, Boundary value Technique for Initial Value Prob-
lems with continuous Third Derivative Multistep Method of Enright British Journa
of Mathematics and Computer Science, 17(5), 1–10, 2016.

[34] F.F. Ngwane and S. N. Jator, A Family of Trigonometrically Fitted Enright Second
Derivative Methods for Stiff and Oscillatory Initial Value, Journal of Applied
Mathematics 2015. http://dx.doi.org/10.1155/2015/343295

[35] G.C. Nwachukwu and N.E. Mokwunyei, Generalized, Adams-Type Second Deriva-
tive Methods for Stiff Systems of ODEs, IAENG International Journal of Applied
Mathematics 48(4), 4–14 2018.



GENERALIZED CASH-TYPE EXTENDED BACKWARD... 191

[36] G.C. Nwachukwu and T. Okor, Extended Generalized Adams-Type Second Deriv-
ative Boundary Value Methods, IAENG International Journal of Applied Mathe-
matics 49(4), 595–604, 2019.

[37] G.C. Nwachukwu and T. Okor, Second Derivative Generalized Backward Differ-
entiation Formulae for Solving Stiff Problems, IAENG International Journal of
Applied Mathematics 48(1), 1–15, 2018.

[38] G. C. Nwachukwu and T. Okor, Third Derivative Generalized Backward Differen-
tiation Formulas for Stiff Systems, Transactions of Nigerian Association of Math-
ematical Physics 5, 39–50, 2017.

[39] G.C. Nwachukwu, M.N.O. Ikhile and J. Osaghae, On some boundary value meth-
ods for stiff IVPs in ODEs, Afrika Matematika 29(5-6), 731-752, 2018.

[40] N. Obrechkoff, Neue Quadraturformeln. Abh Preuss Akad Wiss, Math Nat Kl4
1940.

[41] M.O. Olayiwola, Application of Variational Iteration Method to Linear and Non-
Linear Stiff Differential Equations, Nig. J. Math. Appl. 27, 28-41, 2018.

[42] S.E. Ogunfeyitimi and M.N.O. Ikhile, Generalized Second Derivative Linear Mul-
tistep Methods Based on the Methods of Enright, Int. J. Appl. Comput. Math.
2020. https://doi.org/10.1007/s40819-020-00827-0

[43] S.E. Ogunfeyitimi and M.N.O. Ikhile, Second derivative generalized extended back-
ward differentiation formulas for stiff problems, J. Korean Soc. Ind. Appl. Math.
23, 179–202 2019.

[44] M.O. Ogunniran, Y. Haruna, R. B. Adeniyi and M.O. Olayiwola, Optimized three-
step hybrid block method for stiff problems in ordinary differential equations, CU-
JSE 17(2), 80-95, 2020.

[45] X.Y. Wu and J.L. Xia, Two low accuracy methods for stiff systems, Applied math-
ematics and computation 123(2), 141-153, 2001.

[46] D.G. Yakubu and S. Markus, The efficiency of second derivative multistep methods
for the numerical integration of stiff systems, Journal of the Nigerian mathematical
Society 2016.
http://dx.doi.org/10.1016/j.jnnms.2016.02.002

ADVANCE RESEARCH LABORATORY, DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF BENIN, BENIN CITY, NIGERIA.
E-mail address: freetega1@gmail.com

ADVANCE RESEARCH LABORATORY, DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF BENIN, BENIN CITY, NIGERIA.
E-mail addresses: grace.nwachukwu@uniben.edu


