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STABILITY AND BOUNDEDNESS PROPERTIES OF SOLUTIONS OF CERTAIN SYSTEM
OF THIRD ORDER DELAY DIFFERENTIAL EQUATION

ADETUNJI. A. ADEYANJU

ABSTRACT. This paper is concerned with certain system of third order delay differential equation. By
using a suitable Lyapunov-Krasovskii functional as a tool, we investigate conditions for the stability, as-
ymptotic stability, uniform stability of the trivial solution and uniform ultimate boundedness of all solutions
of the equation considered. The results in this paper in some ways generalize and improve on some results
found in literature.

1. INTRODUCTION

In this paper, we are interested in studying the conditions that guarantee the stability, asymptotic
stability, boundedness and uniform ultimate boundedness of solutions of the following third order delay
differential equation

(1.1) X ′′′+H(X ′)X ′′+G(X)X ′(t − τ)+b(t)X(t − τ) = P(t,X ,X ′,X ′′),

or its equivalent system

(1.2)

X ′ = Y,
Y ′ = Z,
Z′ = −H(Y )Z +b(t)

∫ t
t−τ

Y (s)ds−b(t)X +G(X)
∫ t

t−τ
Z(s)ds

−G(X)Y +P(t,X ,Y,Z)

where τ > 0 is a fixed delay constant, b(t) is a continuously differentiable function of t; X , Y, Z ∈Rn,
G and H are n×n positive definite continuous symmetric matrix functions of the arguments displayed
explicitly, the dots indicate differentiation with respect to t, t ∈ R+ = [0,∞) and P : (R+×Rn ×Rn ×
Rn) → Rn. To ensure the existence and uniqueness of solutions of equation (1.1) or system (1.2), we
assume that the functions G and H are continuous and also satisfy a Lipschitz condition with respect to
their respective arguments.

In about five to six decades now, the study of qualitative behaviour (stability, boundedness, conver-
gence, periodicity among others) of solutions of third order (even second and higher orders) scalar and
vector, linear and non-linear differential equations with or without delay have received considerable at-
tention from many notable researchers (see, [1] - [26]). In many of the papers, the second method of
Lyapunov was used as a technique. To use this method, one needs to construct a suitable scalar function
called Lyapunov functional (or Lyapunov-Krasovskii functional). The function is expected to be posi-
tive semi-definite and its derivative negative semi-definite along the solution path of the equation being
studied. But unfortunately, to construct this function remains a difficult task especially for non-linear
differential equations.

Going through the literature, we found that Omeike [14] used this direct method of Lyapunov to ex-
amine the stability and boundedness of solutions of differential system of third order with variable
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delay, τ(t), of the form

(1.3) X ′′′+AX ′′+BX ′+H(X(t − τ(t))) = P(t),

where A and B are real n× n constant symmetric matrices, 0 ≤ τ(t) ≤ γ , γ is a positive constant, H :
Rn → Rn is a continuous differentiable function with H(0) = 0. Later, Tunc [20] considered a more
general third order delay differential equation of form

(1.4) X ′′′+AX ′′+G(X ′(t − τ(t)))+H(X(t − τ(t))) = F(t,X ,X ′,X ′′),

where τ(t) is a continuous differentiable function, with 0 ≤ τ(t) ≤ τ0, τ0 is a positive constant and A
is an n× n constant symmetric matrix, G,H : Rn → Rn are continuous differentiable functions with
G(0) = 0 = H(0). The author employed the direct method of Lyapunov and proved some interesting
results on the asymptotic stability, uniform stability, boundedness and uniform boundedness of solutions
to Eq. (1.4). The results in [20] generalize those in [14]. Particularly, Eq. (1.4) reduces to Eq. (1.3) on
setting G(X ′(t − τ(t))) = BX ′ and F(t,X ,X ′,X ′′) = P(t) in Eq. (1.4).

Furthermore, using a suitable Lyapunov-Krasovskii functional, the problem of stability and bounded-
ness of solutions of certain third oder vector differential equation with constant delay ( τ1 > 0) given by
(1.5) was considered by Tunc and Mohammed [21].

(1.5) X ′′′+ψ(X ′)X ′′+BX ′(t − τ1)+ cX(t − τ1) = P(t),

where c is a positive constant, B is an n × n constant symmetric matrix, ψ is an n × n continuous
differentiable symmetric matrix function. Equation (1.5) in some ways generalizes and improves on
(1.3) and (1.4). Also, Tunc [23] used this direct method of Lyapunov in establishing some results on
the asymptotic stability, boundedness and ultimate boundedness of solutions of the following vector
differential equation

(1.6) X ′′′+H(X ′)X ′′+G(X ′(t − τ))+ cX(t − τ) = F(t,X ,X ′,X ′′),

where τ > 0 is a fixed delay constant, c is a positive constant, G : Rn →Rn is a continuous differentiable
function with G(0) = 0 and H is an n× n continuous differentiable symmetric matrix function. The
Jacobian matrices of both G and H are assumed to exist, symmetric and continuous. Obviously, Eq.
(1.6) is more general when compared with Eq. (1.5).

Motivated by the works of Omeike [14], Tunc [20], Tunc and Mohammed [21] and Tunc [23], we
shall employ the second method of Lyapunov to study certain conditions under which the third order
delay differential equation (1.1) or system (1.2) has a stable trivial solution when P(t,X ,Y,Z) = 0 and
ultimately bounded solutions when P(t,X ,Y,Z) ̸= 0.

Remark It should be noted that Eq. (1.1) generalizes some equations found in the literature. For in-
stance, if in Eq. (1.1), we let b(t)= c, G(X)X ′(t−τ))=G(X ′(t−τ)) and P(t,X ,X ′,X ′′)=F(t,X ,X ′,X ′′),
we obtain Eq. (1.6) studied by Tunc [23]. Also, by taking H(X ′) = ψ(X ′), G(X) = B, b(t) = c and
P(t,X ,X ′,X ′′) = P(t) in Eq.(1.1) we arrive at Eq. (1.5) examined by authors in [21].

2. PRELIMINARY RESULTS

The following definitions, theorems and lemmas obtained from [8], [19] and [24] are needed to es-
tablish our main results.

First, let us consider the general delay differential system

(2.1) x′ = f (xt), xt = x(t +θ),−r ≤ θ < 0, t ≥ 0,

where f : CH → Rn is a continuous mapping, f (0) = 0,

CH := {φ ∈C([−r,0],Rn) : ∥ φ ∥≤ H},
and for H1 < H, there exists L > 0, with | f (φ)| ≤ L when ∥ φ ∥≤ H1 and C =C([−r,0],Rn) denote the
space of continuous vector function from [−r,0] into Rn. We say that V : C →R is a Lyapunov function
on a set G⊂C relative to f if V is continuous on G̃, the closure of G, V ′ is defined on G and V ′ ≤ 0 on G.
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Definition 1 [[8], [24]] A solution φ(t) of Eq. (2.1) defined for t ≥ 0, is said to be Lyapunov stable
if given an ε > 0, there exists a δ > 0 such that any solution ϕ(t) of (2.1) with:

∥ ϕ(0)−φ(0) ∥< δ ,

satisfies
∥ ϕ(t)−φ(t) ∥< ε,

for all t ≥ 0, where ∥ . ∥ stands for the usual Euclidean norm.

If in addition to the definition of stability above, we have:

(2.2) ∥ ϕ(t)−φ(t) ∥→ 0 as t → ∞,

then we say the solution φ(t) is asymptotically stable.

Definition 2 [[8], [24]] A solution φ(t) of Eq. (2.1) is said to be bounded if there exists a β > 0
and a constant M > 0 such that ∥φ(t, t0,x0)∥< M whenever ∥x0∥< β , t ≥ t0.

We will now provide some existing results on stability and boundedness of Eq. (2.1) for complete-
ness sake.

Theorem 2.1[[8], [24]] Suppose that there exists a Lyapunov function V (t,X) defined on 0 ≤ t < ∞, ∥
X ∥< H which satisfies the following conditions:

Theorem 2.2[[8], [24]] If the condition (ii) in Theorem 2.1 is replaced by

a(∥ X ∥)≤V (t,X)≤ b(∥ X ∥),
where a(r) and b(r) are continuous-increasing positive definite function(CIP). Then the zero solution of
Eq. (2.1) is uniformly stable.

Theorem 2.3[[8], [24]] Under the assumptions of the Theorem 2.1, if
(iv) V ′

(2.1)(t,X)≤−c(∥ X ∥),
where c(r) is continuous on [0,ε] and positive definite, and if f (t,X) is bounded, then the zero solution
of Eq. (2.1) is asymptotically stable.

Theorem 2.4[[8], [24]] Under the assumptions of Theorem 2.1, if

V ′
(2.1)(t,X)≤−c(∥ X ∥),

where c(r) is continuous on [0,H] and is positive definite, then the zero solution of Eq. (2.1) is uniformly-
asymptotically stable.

Theorem 2.5[[8], [24]] Suppose that there exist a Lyapunov function V (t,X) defined on I ×Rn which
satisfies the following conditions:

Theorem 2.6[[8], [24]] Suppose that there exist a Lyapunov function V (t,X) defined on 0 ≤ t ≤ R,∥
X ∥≥ R, (where R may be large) which satisfies:

Theorem 2.7[[8], [24]] Under the assumptions of Theorem 2.6, if V ′
(2.1)(t,X) ≤ −c(∥ X ∥), where c(r)

is positive and continuous, then the solutions of Eq. (2.1) are uniformly ultimately bounded.

Theorem 2.8(LaSalle’s invariance principle)[[8], [24]]
If V is a Lyapunov function on a set G and xt(φ) is a bounded solution such that xt(φ) ∈ G for t ≥ 0,
then ω(φ) ̸= 0 is contained in the largest invariant subset of E ≡ {ψ ∈ G∗ : V ′(ψ) = 0}, where G∗ is
the closure of set G and ω denote the omega limit set of a solution.
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Lemma 2.1[8] suppose f (0) = 0. Let V be a continuous functional defined on CH =C with V (0) = 0,
and let u(s) be a function, non-negative and continuous for 0 ≤ s < ∞, u(s)→ ∞ as u → ∞ with u(0) = 0.
If for all φ ∈C, U(|φ(0)|)≤V (φ), V (φ)≥ 0, V ′(φ)≤ 0, then the zero solution of x′ = f (xt)is stable.

If we define Z = {φ : V ′(φ) = 0}, then the zero solution of x′ = f (xt) is asymptotically stable, pro-
vided that the largest invariant set in Z is Q = {0}.

Lemma 2.2[19] Let A be a real symmetric n×n-matrix and

δa ≤ λi(A)≤ ∆a, (i = 1,2, ...,n),

where δa and ∆a are constants representing the least and greatest eigenvalues of matrix A.
Then,

δa⟨X ,X⟩ ≤ ⟨AX ,X⟩ ≤ ∆a⟨X ,X⟩.

3. MAIN RESULTS

In this section, we state the basic assumptions of our main results for the Eq. (1.1) or its equivalent
system (1.2).
Assumptions:

Further to the earlier assumptions on G,H,b(t) appearing in (1.1) or (1.2), we assume that there
exist some positive constants ε,α,a0,a1,b0,b1,c0,c1 and a negative constant δ1 such that the following
conditions are satisfied:

(i) the eigenvalues λi(H(Y )) and λi(G(X)) of H(Y ) and G(X) respectively satisfy:

a0 + ε ≤ λi(H(Y ))≤ a1 and b0 ≤ λi(G(X))≤ b1,(i = 1,2,3, ...,n),

(ii)

c0 ≤ b(t)≤ c1, b′(t) =
d
dt

b(t)≤ δ1 =−α,

(iii)

a0b0 − c1 > 0,1−αa0 > 0,ε >
2(b1 −b0)

2

a0b0 − c1
,

(iv)

τ < min
{ K1

2αa0b0(b1 + c1)
;

K2

a0(b1 + c1)+(1+αa0b0 +a0)c1
;

K3

b1 + c1 +(1+αa0b0 +a0)b1

}
,

with

K1 = αa0b0c0 > 0,

K2 =
[
(a0b0 − c1)−2α(a2

0b0 +a−1
0 )

]
> 0,

K3 =
[
ε −2αa0b0c−1

0 (a1 −a0)
2]> 0.

Theorem 3.1. Suppose that conditions (i) - (iv) stated in the assumptions above are satisfied, then the
trivial solution of Eq. (1.1) is uniformly asymptotically stable.

Proof. In proving this theorem, we make use of the following differentiable scalar function V (t) ≡
V (t,X(t),Y (t),Z(t)) given as

2V (t) =a0b(t)⟨X ,X⟩+2a0

∫ 1

0
⟨σH(σY )Y,Y ⟩dσ +2αa0b0

∫ 1

0
⟨σG(σX)X ,X⟩dσ

+b0⟨Y,Y ⟩+ ⟨Z,Z⟩+2αa2
0b0⟨X ,Y ⟩+2αa0b0⟨X ,Z⟩+2a0⟨Y,Z⟩

+2b(t)⟨X ,Y ⟩−αa0b0⟨Y,Y ⟩+2λ

∫ 0

−τ

∫ t

t+s
∥ Y (θ) ∥2 dθds

+2η

∫ 0

−τ

∫ t

t+s
∥ Z(θ) ∥2 dθds,

(3.1)
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where

0 < α < min
{ 1

a0
;

a0

b0
;

b1

a0b0
;

a0b0 − c1

2(a2
0b0 +a−1

0 )
;

εc0

2a0b0(a1 −a0)2

}
,

a1 ̸= a0; η > 0 and λ > 0 are constants whose values will be determined later. The Lyapunov function
defined in (3.1) is similar to the one used in [23].

Obviously, Eq. (3.1) vanishes for X = Y = Z = 0 and it can be shown to be positive definite when
X ̸= 0,Y ̸= 0,Z ̸= 0 as follows. From the basic assumptions on matrix functions H(Y ) and G(X) and
Lemma 2.2., we obtain

a0(a0 + ε) ∥ Y ∥2≤ 2a0

∫ 1

0
⟨σH(σY )Y,Y ⟩dσ ≤ a0a1 ∥ Y ∥2,

and

αa0b2
0 ∥ X ∥2≤ 2αa0b0

∫ 1

0
⟨σG(σX)X ,X⟩dσ ≤ αa0b0b1 ∥ X ∥2 .

Therefore,

2V (t)≥a0b(t)⟨X ,X⟩+2a0

∫ 1

0
⟨σH(σY )Y,Y ⟩dσ +αa0b2

0⟨X ,X⟩+b0⟨Y,Y ⟩

+ ⟨Z,Z⟩+2αa2
0b0⟨X ,Y ⟩+2αa0b0⟨X ,Z⟩+2a0⟨Y,Z⟩+2b(t)⟨X ,Y ⟩

−αa0b0⟨Y,Y ⟩+2λ

∫ 0

−τ

∫ t

t+s
∥ Y (θ) ∥2 dθds+2η

∫ 0

−τ

∫ t

t+s
∥ Z(θ) ∥2 dθds,

= ∥ αa0b0X +a0Y +Z ∥2 +a0b0 ∥ a
− 1

2
0 b−1

0 b(t)X +a
− 1

2
0 Y ∥2 −b0 ∥ Y ∥2

+αa0b2
0⟨X ,X⟩− b2(t)

b0
∥ X ∥2 +2a0

∫ 1

0
⟨{σH(σY )− Ia0}Y,Y ⟩dσ

−α
2a2

0b2
0 ∥ X ∥2 −αa0b0 ∥ Y ∥2 +b0⟨Y,Y ⟩+a2

0 ∥ Y ∥2

+a0b(t) ∥ X ∥2 +2η

∫ 0

−τ

∫ t

t+s
∥ Z(θ) ∥2 dθds+2λ

∫ 0

−τ

∫ t

t+s
∥ Y (θ) ∥2 dθds,

≥ ∥ αa0b0X +a0Y +Z ∥2 +a0b0 ∥ a
− 1

2
0 b−1

0 b(t)X +a
− 1

2
0 Y ∥2

+{αa0b2
0(1−αa0)+

c1

b0
(a0b0 − c1)} ∥ X ∥2 +[εa0 +a0(a0 −αb0)] ∥ Y ∥2

+2η

∫ 0

−τ

∫ t

t+s
∥ Z(θ) ∥2 dθds+2λ

∫ 0

−τ

∫ t

t+s
∥ Y (θ) ∥2 dθds,

≥ ∥ αa0b0X +a0Y +Z ∥2 +a0b0 ∥ a
− 1

2
0 b−1

0 b(t)X +a
− 1

2
0 Y ∥2

+{αa0b2
0(1−αa0)+

c1

b0
(a0b0 − c1)} ∥ X ∥2 +[εa0 +a0(a0 −αb0)] ∥ Y ∥2 .

Thus, it is obvious from the above that we can find some positive constants K4,K5,K6 such that

2V (t)≥ K4 ∥ X ∥2 +K5 ∥ Y ∥2 +K6 ∥ Z ∥2 .

By letting
K7 = min{K4;K5;K6},

we have

(3.2) 2V (t)≥ K7{∥ X ∥2 + ∥ Y ∥2 + ∥ Z ∥2}.

Hence, the function V (t) is positive definite at all points (X ,Y,Z) and zero only at point X =Y = Z = 0.
In addition, V (t) = 0 if and only if ∥ X(t) ∥2 + ∥ Y (t) ∥2 + ∥ Z(t) ∥2= 0 and V (t) > 0 if and only if
∥ X(t) ∥2 + ∥ Y (t) ∥2 + ∥ Z(t) ∥2 ̸= 0. It follows then that

(3.3) V (t)→+∞ as ∥ X(t) ∥2 + ∥ Y (t) ∥2 + ∥ Z(t) ∥2→ ∞.
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Also,

2V (t)≤a0b(t)⟨X ,X⟩+2a0

∫ 1

0
⟨σH(σY )Y,Y ⟩dσ +αa0b0b1⟨X ,X⟩+b0⟨Y,Y ⟩

+ ⟨Z,Z⟩+2αa2
0b0⟨X ,Y ⟩+2αa0b0⟨X ,Z⟩+2a0⟨Y,Z⟩+2b(t)⟨X ,Y ⟩

−αa0b0⟨Y,Y ⟩+2λ

∫ 0

−τ

∫ t

t+s
∥ Y (θ) ∥2 dθds+2η

∫ 0

−τ

∫ t

t+s
∥ Z(θ) ∥2 dθds,

= ∥ αa0b0X +a0Y +Z ∥2 +a0b0 ∥ a
− 1

2
0 b−1

0 b(t)X +a
− 1

2
0 Y ∥2 −b0 ∥ Y ∥2 +b0 ∥ Y ∥2

+αa0b0b1 ∥ X ∥2 −b2(t)
b0

∥ X ∥2 +2a0

∫ 1

0
⟨{σH(σY )− Ia0}Y,Y ⟩dσ +a0 ∥ Y ∥2

−α
2a2

0b2
0 ∥ X ∥2 −αa0b0 ∥ Y ∥2 +a0b(t) ∥ X ∥2 +2η

∫ 0

−τ

∫ t

t+s
∥ Z(θ) ∥2 dθds

+2λ

∫ 0

−τ

∫ t

t+s
∥ Y (θ) ∥2 dθds+a2

0 ∥ Y ∥2,

≤ ∥ αa0b0X +a0Y +Z ∥2 +a0b0 ∥ a
− 1

2
0 b−1

0 b(t)X +a
− 1

2
0 Y ∥2

+{αa0b0(b1 −αa0b0)+
1
b0

(a0b0c1 − c2
0)} ∥ X ∥2

+a0(a1 −αb0) ∥ Y ∥2 +2η

∫ 0

−τ

∫ t

t+s
∥ Z(θ) ∥2 dθds

+2λ

∫ 0

−τ

∫ t

t+s
∥ Y (θ) ∥2 dθds,

clearly, a0b0c1 − c2
0 > 0 since a0b0 − c1 > 0.

Then, for some positive constants K8,K9,K10 we have from the above that

2V (t)≤ K8 ∥ X ∥2 +K9 ∥ Y ∥2 +K10 ∥ Z ∥2 .

Letting K11 = max{K8;K9;K10} we obtain

(3.4) 2V (t)≤ K11{∥ X ∥2 + ∥ Y ∥2 + ∥ Z ∥2}.

On combining inequalities (3.2) and (3.4), we get

(3.5) K7{∥ X ∥2 + ∥ Y ∥2 + ∥ Z ∥2} ≤ 2V (t)≤ K11{∥ X ∥2 + ∥ Y ∥2 + ∥ Z ∥2}.

Given that (X ,Y,Z) = (X(t),Y (t),Z(t)) is any solution of system (1.2). Differentiating the Lyapunov-
Krasovskii function V (t) =V (X(t),Y (t),Z(t)) defined by (3.1) with respect to t along the trajectory of
system (1.2), we get

V ′(t) =−αa0b0b(t)⟨X ,X⟩−⟨Z,G(X)Y ⟩−a0⟨Y,G(X)Y ⟩+αa2
0b0⟨Y,Y ⟩

−αa0b0⟨X ,H(Y )Z⟩+αa2
0b0⟨X ,Z⟩−⟨Z,H(Y )Z⟩+a0⟨Z,Z⟩

+b0⟨Y,Z⟩+ ⟨Z,b(t)
∫ t

t−τ

Y (s)ds⟩+ ⟨Z,G(X)
∫ t

t−τ

Z(s)ds⟩

+αa0b0⟨X ,G(X)
∫ t

t−τ

Z(s)ds⟩+αa0b0⟨X ,b(t)
∫ t

t−τ

Y (s)ds⟩

+a0⟨Y,G(X)
∫ t

t−τ

Z(s)ds⟩+b(t)⟨Y,Y ⟩+a0⟨Y,b(t)
∫ t

t−τ

Y (s)ds⟩

+λτ ∥ Y ∥2 +ητ ∥ Z ∥2 −λ

∫ t

t−τ

∥ Y (θ) ∥2 dθ −η

∫ t

t−τ

∥ Z(θ) ∥2 dθ

+
1
2

a0b′(t)⟨X ,X⟩+b′(t)⟨X ,Y ⟩+ ⟨αa0b0X +a0Y +Z,P(t,X ,Y,Z)⟩.

(3.6)
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Setting P(t,X ,Y,Z) = 0, we obtain

V ′(t) =−αa0b0b(t)⟨X ,X⟩−⟨Z,G(X)Y ⟩−a0⟨Y,G(X)Y ⟩+αa2
0b0⟨Y,Y ⟩

−αa0b0⟨X ,H(Y )Z⟩+αa2
0b0⟨X ,Z⟩−⟨Z,H(Y )Z⟩+a0⟨Z,Z⟩

+b0⟨Y,Z⟩+ ⟨Z,b(t)
∫ t

t−τ

Y (s)ds⟩+ ⟨Z,G(X)
∫ t

t−τ

Z(s)ds⟩

+αa0b0⟨X ,G(X)
∫ t

t−τ

Z(s)ds⟩+αa0b0⟨X ,b(t)
∫ t

t−τ

Y (s)ds⟩

+a0⟨Y,G(X)
∫ t

t−τ

Z(s)ds⟩+b(t)⟨Y,Y ⟩+a0⟨Y,b(t)
∫ t

t−τ

Y (s)ds⟩

+λτ ∥ Y ∥2 +ητ ∥ Z ∥2 −λ

∫ t

t−τ

∥ Y (θ) ∥2 dθ

−η

∫ t

t−τ

∥ Z(θ) ∥2 dθ +
1
2

a0b′(t)⟨X ,X⟩+b′(t)⟨X ,Y ⟩.

This we can re-write as

(3.7) V ′(t) =V ′
1(t)+V ′

2(t),

where

V ′
1(t) =−αa0b0b(t)⟨X ,X⟩−⟨Z,G(X)Y ⟩−a0⟨Y,G(X)Y ⟩+αa2

0b0⟨Y,Y ⟩

−αa0b0⟨X ,H(Y )Z⟩+αa2
0b0⟨X ,Z⟩−⟨Z,H(Y )Z⟩+a0⟨Z,Z⟩+b0⟨Y,Z⟩

+
1
2

a0b′(t)⟨X ,X⟩+b′(t)⟨X ,Y ⟩+b(t)⟨Y,Y ⟩,

and

V ′
2(t) = ⟨Z,b(t)

∫ t

t−τ

Y (s)ds⟩+ ⟨Z,G(X)
∫ t

t−τ

Z(s)ds⟩+αa0b0⟨X ,G(X)
∫ t

t−τ

Z(s)ds⟩

+αa0b0⟨X ,b(t)
∫ t

t−τ

Y (s)ds⟩+a0⟨Y,G(X)
∫ t

t−τ

Z(s)ds⟩+a0⟨Y,b(t)
∫ t

t−τ

Y (s)ds⟩

+λτ ∥ Y ∥2 +ητ ∥ Z ∥2 −λ

∫ t

t−τ

∥ Y (θ) ∥2 dθ −η

∫ t

t−τ

∥ Z(θ) ∥2 dθ .

From the definition of V ′
1(t), we have the following

1
2

a0b′(t)⟨X ,X⟩+b′(t)⟨X ,Y ⟩= 1
2

b′(t) ∥ a
1
2
0 X +a

− 1
2

0 Y ∥2 −b′(t)
a0

∥ Y ∥2;

− 1
2

αa0b0b(t)⟨X ,X⟩−αa0b0⟨X ,H(Y )Z⟩+αa2
0b0⟨X ,Z⟩

=−1
2

αa0b0 ∥ b
1
2 (t)X +b−

1
2 (t)(H(Y )− Ia0)Z ∥2 +

αa0b0

b(t)
∥ (H(Y )− Ia0)Z ∥2;

and

−1
2
⟨Z,(H(Y )−a0I)Z⟩−⟨Z,(G(X)−b0I)Y ⟩=− 1

2
∥ (H(Y )−a0I)

1
2 Z +(H(Y )−a0I)−

1
2 (G(X)−b0I)Y ∥2

+ ∥ (H(Y )−a0I)−
1
2 (G(X)−b0I)Y ∥2 .
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From the above estimates and condition (i) of the theorem, we obtain

V ′
1(t)≤−1

2
αa0b0c0 ∥ X ∥2 −{a0b0 − c1 −αa2

0b0} ∥ Y ∥2 −1
2
⟨{H(Y )− Ia0}Z,Z⟩

+
1
2

b′(t) ∥ a
1
2
0 X +a

− 1
2

0 Y ∥2 −b′(t)
a0

∥ Y ∥2

− 1
2

αa0b0 ∥ b
1
2 (t)X +b−

1
2 (t)(H(Y )− Ia0)Z ∥2 +

αa0b0

b(t)
∥ (H(Y )− Ia0)Z ∥2

− 1
2
∥ (H(Y )−a0I)

1
2 Z +(H(Y )−a0I)−

1
2 (G(X)− Ib0)Y ∥2 +

(G(X)− Ib0)
2

(H(Y )−a0I)
∥ Y ∥2,

and under the assumptions of Theorem 3.1, we have

V ′
1(t)≤−1

2
αa0b0c0 ∥ X ∥2 −{a0b0 − c1 −αa2

0b0} ∥ Y ∥2 +
(b1 −b0)

2

ε
∥ Y ∥2

− 1
2
⟨{H(Y )− Ia0}Z,Z⟩− δ1

a0
∥ Y ∥2 +

αa0b0

c0
∥ (H(Y )− Ia0)Z ∥2 .

(3.8)

Similarly, from the definition of V ′
2(t), we have the following.

⟨Z(t),G(X)
∫ t

t−τ

Z(s)ds⟩ ≤∥ Z(t) ∥∥ G(X) ∥
∫ t

t−τ

∥ Z(s) ∥ ds,

≤ b1 ∥ Z(t) ∥
∫ t

t−τ

∥ Z(s) ∥ ds,

≤ b1

2

∫ t

t−τ

{∥ Z(t) ∥2 + ∥ Z(s) ∥2}ds,

=
1
2

b1τ ∥ Z(t) ∥2 +
1
2

b1

∫ t

t−τ

∥ Z(s) ∥2 ds.

In a similar way, we have the following

αa0b0⟨X(t),G(X)
∫ t

t−τ

Z(s)ds⟩ ≤ 1
2

αa0b0b1τ ∥ X(t) ∥2 +
1
2

αa0b0b1

∫ t

t−τ

∥ Z(s) ∥2 ds;

⟨Z(t),b(t)
∫ t

t−τ

Y (s)ds⟩ ≤ 1
2

c1τ ∥ Z(t) ∥2 +
1
2

c1

∫ t

t−τ

∥ Y (s) ∥2 ds;

a0⟨Y (t),G(X)
∫ t

t−τ

Z(s)ds⟩ ≤ 1
2

a0b1τ ∥ Y (t) ∥2 +
1
2

a0b1

∫ t

t−τ

∥ Z(s) ∥2 ds;

αa0b0⟨X(t),b(t)
∫ t

t−τ

Y (s)ds⟩ ≤ 1
2

αa0b0c1τ ∥ X(t) ∥2 +
1
2

αa0b0c1

∫ t

t−τ

∥ Y (s) ∥2 ds;

and lastly,

a0⟨Y (t),b(t)
∫ t

t−τ

Y (s)ds⟩ ≤ 1
2

a0c1τ ∥ Y (t) ∥2 +
1
2

a0c1

∫ t

t−τ

∥ Y (s) ∥2 ds.

On putting these estimates in V ′
2(t) we obtain

V ′
2(t)≤

1
2

αa0b0τ{b1 + c1} ∥ X(t) ∥2

+
1
2

a0{b1 + c1}τ ∥ Y (t) ∥2 +
1
2
{b1 + c1}τ ∥ Z(t) ∥2

+λτ ∥ Y (t) ∥2 +ητ ∥ Z(t) ∥2 −1
2
{2λ − c1 −a0c1(αb0 +1)}

∫ t

t−τ

∥ Y (s) ∥2 ds

− 1
2
{2η −b1 −a0b1(αb0 +1)}

∫ t

t−τ

∥ Z(s) ∥2 ds.
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By taking λ = 1
2 (1+αa0b0 +a0)c1 and η = 1

2 (1+αa0b0 +a0)b1, we have

V ′
2(t)≤

1
2

αa0b0τ{b1 + c1} ∥ X(t) ∥2

+
1
2

a0{b1 + c1}τ ∥ Y (t) ∥2 +
1
2
{b1 + c1}τ ∥ Z(t) ∥2

+
1
2
(1+αa0b0 +a0)c1τ ∥ Y (t) ∥2 +

1
2
(1+αa0b0 +a0)b1τ ∥ Z(t) ∥2 .

(3.9)

Combining (3.8) and (3.9) and noting that δ =−α, we have,

V ′(t)≤− 1
2

αa0b0

{
c0 −2τ(b1 + c1)

}
∥ X ∥2

− 1
2

{(
2a0b0 −2c1 −2αa2

0b0 −
2α

a0
− 2(b1 −b0)

2

ε

)
− [(a0(b1 + c1)+(1+αa0b0 +a0)c1)]τ

}
∥ Y ∥2

− 1
2

{[
(H(Y )− Ia0)−2αa0b0c−1

0 (H(Y )− Ia0)
2)
]

− [b1 + c1 +(1+αa0b0 +a0)b1]τ
}
∥ Z ∥2

≤− 1
2

αa0b0

{
c0 −2τ(b1 + c1)

}
∥ X ∥2

− 1
2

{[
(a0b0 − c1)−2α(a2

0b0 +a−1
0 )

]
+
[
ε −2(a0b0 − c1)

−1(b1 −b0)
2])

− [(a0(b1 + c1)+(1+αa0b0 +a0)c1)]τ
}
∥ Y ∥2

− 1
2

{[
ε −2αa0b0c−1

0 (a1 −a0)
2]− [

b1 + c1 +(1+αa0b0 +a0)b1
]
τ

}
∥ Z ∥2

≤− 1
2

{
αa0b0c0 −2αa0b0τ(b1 + c1)

}
∥ X ∥2

− 1
2

{[
(a0b0 − c1)−2α(a2

0b0 +a−1
0 )

]
−
[
(a0(b1 + c1)+(1+αa0b0 +a0)c1)

]
τ

}
∥ Y ∥2

− 1
2

{[
ε −2αa0b0c−1

0 (a1 −a0)
2]− [

b1 + c1 +(1+αa0b0 +a0)b1
]
τ

}
∥ Z ∥2 .

Taking

K1 = αa0b0c0 > 0,

K2 =
[
(a0b0 − c1)−2α(a2

0b0 +a−1
0 )

]
> 0,

K3 =
[
ε −2αa0b0c−1

0 (a1 −a0)
2]> 0.

Then,

V ′(t)≤− 1
2
[K1 −2αa0b0(b1 + c1)τ] ∥ X ∥2

− 1
2
[K2 −{(a0(b1 + c1)+(1+αa0b0 +a0)c1)}τ] ∥ Y ∥2

− 1
2
[K3 −{b1 + c1 +(1+αa0b0 +a0)b1}τ] ∥ Z ∥2 .

Let

τ < min
{ K1

2αa0b0(b1 + c1)
;

K2

(a0(b1 + c1)+(1+αa0b0 +a0)c1)
;

K3

b1 + c1 +(1+αa0b0 +a0)b1

}
.
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It is possible to find some positive constants, K4,K5,K6 such that

V ′(t)≤−K4 ∥ X(t) ∥2 −K5 ∥ Y (t) ∥2 −K6 ∥ Z(t) ∥2,

≤−K7{∥ X(t) ∥2 + ∥ Y (t) ∥2 + ∥ Z(t) ∥2} ≤ 0,
(3.10)

where

K7 = min{K4;K5;K6}.

So far, from inequalities (3.2), (3.10) and (3.5), (3.10) the trivial solution of Eq. (1.1) is stable and
uniformly stable respectively.

Now, let us consider a set defined by

W ≡ {(X ,Y,Z) : V ′(X ,Y,Z) = 0}.

By applying the well-known LaSalle’s invariance principle (see, Theorem 2.8), we note that (X ,Y,Z) ∈
W implies that X = Y = Z = 0, i.e, (X ,Y,Z) = (0,0,0). This fact shows that the largest invariant set
contained in W is (0,0,0) ∈W . Now, by Lemma 2.1 and Theorems 2.1 - 2.4, the trivial solution of the
equation (1.1) is uniformly asymptotically stable. □

The following is our theorem on uniform ultimate boundedness of solutions of Eq. (1.1) when
P(X ,X ′,X ′′) ̸= 0.

Theorem 3.2. Suppose that all the conditions of Theorem 3.1 hold and in addition, there exist a positive
constant δ2 such that

(3.11) P(X ,X ′,X ′′)≤ δ2 for all t ≥ 0,

then all the solutions of Eq. (1.1) are uniform-ultimately bounded provided that

τ < min
{ K1

2αa0b0(b1 + c1)
;

K2

(a0(b1 + c1)+(1+αa0b0 +a0)c1)
;

K3

b1 + c1 +(1+αa0b0 +a0)b1

}
.

with,

K1 = αa0b0c0 > 0,

K2 =
[
(a0b0 − c1)−2α(a2

0b0 +a−1
0 )

]
> 0,

K3 =
[
ε −2αa0b0c−1

0 (a1 −a0)
2]> 0.
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Proof. The starting point in the proof of this theorem is the inequality (3.6) since estimates (3.5) is still
valid. From (3.6), we have

V ′(t) =−αa0b0b(t)⟨X ,X⟩−⟨Z,G(X)Y ⟩−a0⟨Y,G(X)Y ⟩+αa2
0b0⟨Y,Y ⟩

−αa0b0⟨X ,H(Y )Z⟩+αa2
0b0⟨X ,Z⟩−⟨Z,H(Y )Z⟩+a0⟨Z,Z⟩

+b0⟨Y,Z⟩+ ⟨Z,b(t)
∫ t

t−τ

Y (s)ds⟩+ ⟨Z,G(X)
∫ t

t−τ

Z(s)ds⟩

+αa0b0⟨X ,G(X)
∫ t

t−τ

Z(s)ds⟩+αa0b0⟨X ,b(t)
∫ t

t−τ

Y (s)ds⟩

+a0⟨Y,G(X)
∫ t

t−τ

Z(s)ds⟩+b(t)⟨Y,Y ⟩+a0⟨Y,b(t)
∫ t

t−τ

Y (s)ds⟩

+λτ ∥ Y ∥2 +ητ ∥ Z ∥2 −λ

∫ t

t−τ

∥ Y (θ) ∥2 dθ −η

∫ t

t−τ

∥ Z(θ) ∥2 dθ

+
1
2

a0b′(t)⟨X ,X⟩+b′(t)⟨X ,Y ⟩+ ⟨αa0b0X +a0Y +Z,P(t,X ,Y,Z)⟩,

≤− 1
2

{
αa0b0c0 −2αa0b0τ(b1 + c1)

}
∥ X ∥2

− 1
2

{[
(a0b0 − c1)−2α(a2

0b0 +a−1
0 )

]
−
[
(a0(b1 + c1)+(1+αa0b0 +a0)c1)

]
τ

}
∥ Y ∥2

− 1
2

{[
ε −2αa0b0c−1

0 (a1 −a0)
2]− [

b1 + c1 +(1+αa0b0 +a0)b1
]
τ

}
∥ Z ∥2

+(αa0b0 ∥ X ∥+a0 ∥ Y ∥+ ∥ Z ∥) ∥ P(t,X ,Y,Z) ∥ .

By letting K7 ≤ min{K4;K5;K6} and δ3 = max{αa0b0;a0,1}, we obtain

V ′(t)≤−K7{∥ X(t) ∥2 + ∥ Y (t) ∥2 + ∥ Z(t) ∥2}+δ2δ3(∥ X ∥+ ∥ Y ∥+ ∥ Z ∥).

The remaining part of the proof can be obtained by following the same procedure as highlighted in
Afuwape [4] and Meng [10]. Therefore, we omit this part of the proof. □

4. CONCLUSION

We have studied in this paper, some qualitative properties of solutions to a certain third order delay
differential equation by employing Lyapunov-Krasovskii approach. Sufficient conditions for the stabil-
ity, asymptotic stability, uniform stability and uniform ultimate boundedness of solutions to the systems
of equations considered were given. The results contained in this paper complement and improve on the
existing results found in the literature.
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