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SOME PROPERTIES OF PICTURE FUZZY
MULTIRELATIONS

T. O. SANGODAPO

ABSTRACT. This paper investigates into the examination of picture
fuzzy multirelations as an extension of picture fuzzy relations. We
explore reflexivity, symmetry and transitivity of picture fuzzy mul-
tirelations over picture fuzzy multisets, and derive some associated
properties.

1. INTRODUCTION

The concept of Fuzzy Relation (FR) was a generalisation of classical
relation which was introduced by Zadeh [1]. The notion of Intuitionis-
tic Fuzzy Sets (IFSs) put forward by Atanassov [2] served as the basis
for the work of Bustince and Burillo [3] who introduced Intuitionistic
Fuzzy Relation (IFR). Cuong and Kreinovich [4], introduced the notion
of Picture Fuzzy Relations (PFRs) as a generalisation of fuzzy relations
and intuitionistic fuzzy relations. Phong et al [5] examined some prop-
erties of composition of PFRs and proposed a new approach for med-
ical diagnosis using composition of fuzzy relations. In [6], Dutta and
Saikia studied equivalence picture fuzzy relation and some of its prop-
erties such as equivalence class, intersection and union of equivalence
relations were obtained. Hasan et al [7] defined max-min composition
and min-max composition for picture fuzzy relations and investigated
some of their properties and also discussed an application of picture
fuzzy relations in decision making. In [8], Hasan et al also defined pic-
ture fuzzy relation over picture fuzzy set, numerous properties related
to picture fuzzy relation were established and some operations were dis-
cussed with examples.
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Yagar [9] initiated the idea of Fuzzy Multisets (FMs) as an extension
of fuzzy sets. Shinoj and Sunil [10] introduced the concept of Intuition-
istic Fuzzy Multisets (IFMSs) as an extension of IFSs and FSs. San-
godapo and Feng [11] introduced the notion of Picture Fuzzy Multisets
(PFMSs) as a generalisation of the works in [9] and [10].

In this paper, we contribute to the work of Sangodapo and Kausar
[12] on Picture Fuzzy MultiRelations (PFMRs). We discuss reflexivity,
symmetry and transitivity of picture fuzzy multirelations over picture
fuzzy multisets and obtained some properties associated with them. The
paper is organised as follows; Section 2 is based on basic definitions,
Section 3 discusses reflexivity, symmetric and transitivity of a picture
fuzzy multirelation over a picture fuzzy multiset and some properties
associated with them were obtained.

2. PRELIMINARY

Some basic definitions needed were stated from Zadeh [1], Cuong and
Kreinovich [4], Sangodapo and Feng [11] and Sangodapo and Kausar
[12].
Definition 1: Let Z be a nonempty set. A FR U on Z is a fuzzy set,
defined as

U = {⟨(r1,r2),σU(r1,r2)⟩|(r1,r2) ∈ Z ×Z}
where σU : Z × Z −→ [0,1] denotes the membership function of the
fuzzy relation U, which assigns a degree of relatedness to each pair
(r1,r2). The value of σU(r1,r2) indicates to what extent r1 is related to
r2 according to the fuzzy relation U.
Definition 2: Let X be a universe. A Picture Fuzzy Set (PFS) Z of X is
an object of the form

Z = {⟨r1,σZ(r1),τZ(r1),ηZ(r1))|r1 ∈ X⟩},
such that σZ(r1) ∈ [0,1] is called to as the degree of positive member-
ship, τZ(r1)∈ [0,1] is called degree of neutral membership and ηZ(r1)∈
[0,1] is called degree of negative membership of r1 ∈ X and for all
r1 ∈ X ,

σZ(r1)+ τZ(r1)+ηZ(r1)≤ 1
and the degree of refusal membership of r1 ∈ Z is 1−(σZ(r1)+τZ(r1)+
ηZ(r1)).
Definition 3: Let Z1 and Z2 be two PFSs. Then, the inclusion, equality,
union, intersection and complement are defined as follow:

• Z1 ⊆ Z2 if and only if for all y ∈ X , σZ1(y) ≤ σZ2(y), τZ1(y) ≤
τZ2(y) and ηZ1(y)≥ ηZ2(y).
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• Z1 = Z2 if and only if Z1 ⊆ Z2 and Z2 ⊆ Z1.
• Z1∪Z2 = {(y,σZ1(y)∨σZ2(y),τZ1(y)∧τZ2(y)),ηZ1(y)∧ηZ2(y))| y∈ X}.
• Z1∩Z2 = {(y,σZ1(y)∧σZ2(y),τZ1(y)∧τZ2(y)),ηZ1(y)∨ηZ2(y))| y∈ X}.
• Z1 = {(y,ηZ1(y),τZ1(y),σZ1(y))| y ∈ X}.

Definition 4: Let Z1 and Z2 be nonempty sets. Then, a picture fuzzy
relation (PFR) U is a PFS over Z1 ×Z2, defined as

U = {⟨(r1,r2),σU(r1,r2),τU(r1,r2),ηU(r1,r2)⟩|(r1,r2) ∈ Z1 ×Z2}

with σU : Z1 ×Z2 → [0,1], τU : Z1 ×Z2 → [0,1], ηU : Z1 ×Z2 → [0,1],
such that 0≤ σU(r1,r2)+τU(r1,r2)+ηU(r1,r2)≤ 1 for every (r1,r2)∈
Z1 ×Z2.
Definition 5: Let U be a PFR between Z1 and Z2. The inverse relation
of U, U−1 between Z2 and Z1 is defined as

σU−1(r2,r1)=σU(r1,r2),τU−1(r2,r1)= τU(r1,r2),ηU−1(r2,r1)=ηU(r1,r2),

∀ (r1,r2) ∈ (Z1 ×Z2).
Definition 6:Let U and V be two PFRs between Z1 and Z2. Then,

• U ≤V ⇔ (σU(r1,r2)≤σV (r1,r2)),(τU(r1,r2)≤ τV (r1,r2)) and (ηU(r1,r2)≥
ηV (r1,r2))

• U∪V = {((r1,r2),σU(r1,r2)∨σV (r1,r2),τU(r1,r2)∧τV (r1,r2),ηU(r1,r2)∧
ηV (r1,r2))|(r1,r2) ∈ Z1 ×Z2}

• U∩V = {((r1,r2),σU(r1,r2)∧σV (r1,r2),τU(r1,r2)∧τV (r1,r2),ηU(r1,r2)∨
ηV (r1,r2))|(r1,r2) ∈ Z1 ×Z2}

• Uc = {((r1,r2),ηU(r1,r2),τU(r1,r2),σU(r1,r2))|(r1,r2) ∈ Z1×
Z2}

for every (r1,r2) ∈ (Z1 ×Z2).
Definition 7: Let Y be a nonempty set. A PFMS Z in Y is charac-
terised by three functions namely positive membership count function
pmc, neutral membership count function nemc and negative member-
ship count function nmc such that pmc : Y → W , nemc : Y → W and
nmc : Y → W , respectively, where W is the set of all crisp multisets
drawn from [0,1]. Thus, for any r ∈ Y , pmc is the crisp multiset from
[0,1] whose positive membership sequence is defined by (σ1

Z(r),σ
2
Z(r), · · · ,σn

Z(r))
such that σ1

Z(r)≥ σ2
Z(r)≥ ·· · ≥ σn

Z(r), nemc is the crisp multiset from
[0,1] whose neutral membership sequence is defined by (τ1

Z(r),τ
2
Z(r), · · · ,τn

Z(r))
and nmc is the crisp multiset from [0,1] whose negative membership se-
quence is defined by (η1

Z(r),η
2
Z(r), · · · ,ηn

Z(r)), these can be either de-
creasing or increasing functions satisfying 0 ≤ σ k

Z(r)+τk
Z(r)+ηk

Z(r)≤
1 ∀r ∈ Y, k = 1,2, · · · ,n.



340 T. O. SANGODAPO

Thus, Z is represented by

Z = {⟨r,σ k
Z(r),τ

k
Z(r),η

k
Z(r)⟩|r ∈ Y}

k = 1,2, · · · ,n.
Definition 8: Let

Z1 = {⟨r,σ k
Z1
(r),τk

Z1
(r)),ηk

Z1
(r)⟩| r ∈ Y}

and
Z2 = {⟨r,σ k

Z2
(r)),τk

Z2
(r),ηk

Z2
(r))⟩| r ∈ Y}

be two PFMSs drawn from Y . Then,
• Z1 ⊆ Z2, ⇔ (σ k

Z1
(r)≤ σ k

Z2
(r)), (τk

Z1
(r)≤ τk

Z2
(r)) and (ηk

Z1
(r)≥

ηk
Z2
(r)); k = 1,2, · · · ,n, r ∈ Y .

• Z1 = Z2, ⇔ Z1 ⊆ Z2 and Z2 ⊆ Z1.
• Z1∪Z2 = {(r,(σ k

Z1
(r)∨σ k

Z2
(r)),(τk

Z1
(r)∧τk

Z2
(r)),(ηk

Z1
(r)∧ηk

Z2
(r)))| r ∈ Y}, k=

1,2, · · · ,n.
• Z1∩Z2 = {(r,(σ k

Z1
(r)∧σ k

Z2
(r))(τk

Z1
(r)∧τk

Z2
(r)), (ηk

Z1
(r)∨ηk

Z2
(r)))| r ∈ Y}, k=

1,2, · · · ,n.
• Z′

1 = {(r,ηk
Z1
(r),τk

Z1
(r),σ k

Z1
(e))| r ∈ Y}, k = 1,2, · · · ,n.

Definition 9: Let Z be a nonempty set. Then, a picture fuzzy multirela-
tion (PFMR) U on Z is PFMS defined by

U = {⟨(r1,r2),σ
k
U(r1,r2),τ

k
U(r1,r2),η

k
U(r1,r2)⟩|(r1,r2) ∈ Z ×Z}

where k= 1,2, · · · ,β (β is the cardinality of the PFMS Z) σ k
Z(r),τ

k
Z(r),η

k
Z(r) :

Y →W, and W is the set of all crisp multisets drawn from [0,1].
Definition 10: Let Y be a nonempty set and Z1 and Z2 be PFMS in Y
with positive membership σ k

Z1
(r) and σ k

Z2
(r), neutral membership τk

Z1
(r)

and τk
Z2
(r) and negative membership ηk

Z1
(r) and ηk

Z2
(r) such that

σ
k
Z1
(r),σ k

Z2
(r),τk

Z1
(r),τk

Z2
(r),ηk

Z1
(r),ηk

Z2
(r) : Y →W

and W is the set of all crisp multisets drawn from [0,1]. Then, the Carte-
sian product of Z1 and Z2, Z1 ×Z2 is the PFMS in Y ×Y defined by

σ
k
Z1×Z2

(r1,r2) =
∧
{σ

k
Z1
(r1),σ

k
Z2
(r2)},

τ
k
Z1×Z2

(r1,r2) =
∧
{τ

k
Z1
(r1),τ

k
Z2
(r2)}

and
η

k
Z1×Z2

(r1,r2) =
∨
{η

k
Z1
(r1),η

k
Z2
(r2)}

∀r1,r2 ∈Y, k = 1,2, · · · ,β (β is the cardinality of the PFMS Z1 and Z2).
Definition 11: Let U be a PFMS(Y ×Y ),U ⊆ Z1×Z2. Then, U is called
a PFMR from Z1 to Z2 if for all (r1,r2) ∈ Y ×Y,

σ
k
U(r1,r2)≤σ

k
Z1×Z2

(r1,r2), τ
k
U(r1,r2)≤ τ

k
Z1×Z2

(r1,r2), η
k
U(r1,r2)≥η

k
Z1×Z2

(r1,r2),
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with 0 ≤ σ k
U(r1,r2)+ τk

U(r1,r2)+ηk
U(r1,r2)≤ 1.

In particular, if Z1 = Z2, then U is called a PFMR on Z1.
Definition 12: Let U,V ∈ PFMR(Z1 × Z2). Then, U ⊆ V if for ev-
ery r1,r2 ∈ Y (σ k

U(r1,r2) ≤ σ k
V (r1,r2)), (τk

U(r1,r2) ≤ τk
V (r1,r2)) and

(ηk
U(r1,r2) ≥ ηk

V (r1,r2)); k = 1,2, · · · ,n. If U ⊆ V and V ⊆ U, then
U =V.
Definition 13: Let U,V ∈ PFMR(Z1 × Z2). Then, U ∪V is a PFMR
from Z1 to Z2 such that

σ
k
U∪V (r1,r2) =

∨
{σ

k
U(r1,r2),σ

k
V (r1,r2)},

τ
k
U∪V (r1,r2) =

∧
{τ

k
U(r1,r2),τ

k
V (r1,r2)}

and
η

k
U∪V (r1,r2) =

∧
{η

k
U(r1,r2),η

k
V (r1,r2)}

k = 1,2, · · · ,n.
Definition 14: Let U,V ∈ PFMR(Z1 × Z2). Then, U ∩V is a PFMR
from Z1 to Z2 such that

σ
k
U∩V (r1,r2) =

∧
{σ

k
U(r1,r2),σ

k
V (r1,r2)},

τ
k
U∩V (r1,r2) =

∧
{τ

k
U(r1,r2),τ

k
V (r1,r2)}

and
η

k
U∩V (r1,r2) =

∨
{η

k
U(r1,r2),η

k
V (r1,r2)}

k = 1,2, · · · ,n.
Definition 15: Let U ∈ PFMR(Z1 × Z2) and V ∈ PFMR(Z2 × Z3).
Then, the composite relation V ◦U is a PFMR between Z1 and Z3 de-
fined by

V ◦U = {⟨(r1,r3),σ
k
V◦U(r1,r3),τ

k
V◦U(r1,r3),η

k
V◦U(r1,r3)⟩|(r1,r3)∈Z1×Z3}

where ∀ (r1,r3) ∈ Z1 ×Z3 and ∀ r2 ∈ Z2, its positive membership, neu-
tral membership and negative membership functions are defined by

σ
k
V◦U(r1,r3) =

∨
r2∈V

{σ
k
U(r1,r2)∧σ

k
V (r2,r3)},

τ
k
V◦U(r1,r3) =

∧
r2∈V

{τ
k
U(r1,r2)∧ τ

k
V (r2,r3)}

and
η

k
V◦U(r1,r3) =

∧
r2∈V

{η
k
U(r1,r2)∨η

k
V (r2,r3)},

respectively.
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3. PICTURE FUZZY MULTIRELATIONS OVER PICTURE
FUZZY MULTISETS

Definition 16: Let U ∈ PFMR(Z ×Z). Then, R is called Reflexive if

σ
k
U(r,r) = 1, τ

k
U(r,r) = 0, and η

k
U(r,r) = 0.

k = 1,2, · · · ,β (β is the cardinality of Z) for all r ∈ Z.
Proposition 1: Let U ∈ PFMR(Z ×Z) be reflexive. Then,

1. U−1 is reflexive if and only if U =U−1

2. U ∨V is reflexive for every V ∈ PFMR(Z ×Z).
3. U ∧V is reflexive if and only if V ∈ PFMR(Z ×Z) is reflexive.

Proof:
1. Since U is reflexive, thus for every r ∈ Z;

σ
k
U(r,r) = 1, τ

k
U(r,r) = 0, and η

k
U(r,r) = 0.

Now, suppose that U−1 is reflexive, then for every r ∈ Z,

σ
k
U−1(r,r) = 1, τ

k
U−1(r,r) = 0, and η

k
U−1(r,r) = 0.

By inverse definition, we have

σ
k
U−1(r,r) = σ

k
U(r,r),τ

k
U−1(r,r) = τ

k
U(r,r),η

k
U−1(r,r) = η

k
U(r,r).

So, for all r ∈ Z,

σ
k
U(r,r) = 1; τ

k
U(r,r) = 0 and η

k
U(r,r) = 0.

Next, to show that U =U−1,

σ
k
U(r1,r2)=σ

k
U(r2,r1); τ

k
U(r1,r2)= τ

k
U(r2,r1) and η

k
U(r1,r2)=η

k
U(r2,r1).

Using the reflexivity of U and U−1 for all pairs (r1,r2) we have

σ
k
U(r1,r2) = σ

k
U−1(r2,r1) = σ

k
U(r2,r1)

τ
k
U(r1,r2) = τ

k
U−1(r2,r1) = τ

k
U(r2,r1)

and

η
k
U(r1,r2) = η

k
U−1(r2,r1) = η

k
U(r2,r1).

Hence, U =U−1.
Conversely, suppose that U =U−1. Since U is reflexive then for
every r ∈ Z,

σ
k
U(r,r) = 1; τ

k
U(r,r) = 0 and η

k
U(r,r) = 0.

Since U =U−1, we have for all r1,r2 ∈ Z

σ
k
U(r1,r2)=σ

k
U(r2,r1); τ

k
U(r1,r2)= τ

k
U(r2,r1) and η

k
U(r1,r2)=η

k
U(r2,r1).
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Thus, for the U−1, we have

σ
k
U−1(r,r) = σ

k
U(r,r) = 1

τ
k
U−1(r,r) = τ

k
U(r,r) = 0

and
η

k
U−1(r,r) = η

k
U(r,r) = 0.

Therefore, U−1 is reflexive.
2.

σ
k
U∨V (r,r) = σ

k
U(r,r)∨σ

k
V (r,r) = 1∨σ

k
V (r,r) = 1

τ
k
U∨V (r,r) = τ

k
U(r,r)∧ τ

k
V (r,r) = 0∧ τ

k
V (r,r) = 0

η
k
U∨V (r,r) = η

k
U(r,r)∧η

k
V (r,r) = 0∧η

k
V (r,r) = 0.

Hence, U ∨V is reflexive.
3.

σ
k
U∧V (r,r) = σ

k
U(r,r)∧σ

k
V (r,r) = 1∧σ

k
V (r,r) = 1

τ
k
U∧V (r,r) = τ

k
U(r,r)∧ τ

k
V (r,r) = 0∧ τ

k
V (r,r) = 0

η
k
U∧V (r,r) = η

k
U(r,r)∨η

k
V (r,r) = 0∨η

k
V (r,r) = 0.

Hence, U ∧V is reflexive if and only if V is reflexive.
Proposition 2: If U and V are reflexive PFMRs, then (i) U ∪V and (ii)
U ∩V are reflexive PFMRs.
Proof: Since U and V are reflexive, thus for every r ∈ Z;

σ
k
U(r,r) = 1, τ

k
U(r,r) = 0, and η

k
U(r,r) = 0.

σ
k
V (r,r) = 1, τ

k
V (r,r) = 0, and η

k
V (r,r) = 0.

k = 1,2, · · · ,β (β is the cardinality of Z) for all r ∈ Z.
Now,
(i) U ∪V

σ
k
U∪V (r,r) = σ

k
U(r,r)∨σ

k
V (r,r)

= 1∨1
= 1,

τ
k
U∪V (r,r) = τ

k
U(r,r)∧ τ

k
V (r,r)

= 0∧0
= 0,

η
k
U∪V (r,r) = η

k
U(r,r)∧η

k
V (r,r)

= 0∧0
= 0.
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Hence, U ∪V is reflexive.
(ii) U ∩V

σ
k
U∩V (r,r) = σ

k
U(r,r)∧σ

k
V (r,r)

= 1∧1
= 1,

τ
k
U∩V (r,r) = τ

k
U(r,r)∧ τ

k
V (r,r)

= 0∧0
= 0,

η
k
U∩V (r,r) = η

k
U(r,r)∨η

k
V (r,r)

= 0∨0
= 0.

Hence, U ∩V is reflexive.
Definition 17: Let U ∈ PFMR(Z ×Z). Then, U is called Symmetric if

σ
k
U(r1,r2)=σ

k
U(r2,r1), τ

k
U(r1,r2)= τ

k
U(r2,r1), and η

k
U(r1,r2)=η

k
U(r2,r1).

i = 1,2, · · · ,β (β is the cardinality of Z) for all r1,r2 ∈ Z.
Proposition 3: If U is symmetric then U−1 is also symmetric.
Proof: U is symmetric means that

σ
k
U(r1,r2)=σ

k
U(r2,r1), τ

k
U(r1,r2)= τ

k
U(r2,r1), and η

k
U(r1,r2)=η

k
U(r2,r1).

Also, since U−1 is an inverse relation, then

σ
k
U−1(r1,r2)=σ

k
U(r2,r1), τ

k
U−1(r1,r2)= τ

k
U(r2,r1), and η

k
U−1(r1,r2)=η

k
U(r2,r1).

σ
k
U−1(r1,r2) = σ

k
U(r2,r1) = σ

k
U(r1,r2) = σ

k
U−1(r2,r1),

τ
k
U−1(r1,r2) = τ

k
U(r2,r1) = τ

k
U(r1,r2) = τ

k
U−1(r2,r1)

and
η

k
U−1(r1,r2) = η

k
U(r2,r1) = η

k
U(r1,r2) = η

k
U−1(r2,r1).

Proposition 4: Let U ∈ PFMR(Z × Z). Then, U is symmetric if and
only if U =U−1.
Proof: Suppose that U is symmetric, then

σ
k
U(r1,r2)=σ

k
U(r2,r1), τ

k
U(r1,r2)= τ

k
U(r2,r1), and η

k
U(r1,r2)=η

k
U(r2,r1).

Since U−1 is an inverse relation,

σ
k
U−1(r1,r2)=σ

k
U(r2,r1), τ

k
U−1(r1,r2)= τ

k
U(r2,r1), and η

k
U−1(r1,r2)=η

k
U(r2,r1).

Now,
σ

k
U−1(r1,r2) = σ

k
U(r2,r1) = σ

k
U(r1,r2),

τ
k
U−1(r1,r2) = τ

k
U(r2,r1) = τ

k
U(r1,r2)
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and

η
k
U−1(r1,r2) = η

k
U(r2,r1) = η

k
U(r1,r2).

Therefore, U =U−1.
Conversely, suppose that U =U−1, then

σ
k
U(r1,r2) = σ

k
U−1(r1,r2) = σ

k
U(r2,r1),

τ
k
U(r1,r2) = τ

k
U−1(r1,r2) = τ

k
U(r2,r1)

and

η
k
U(r1,r2) = η

k
U−1(r1,r2) = η

k
U(r2,r1).

Therefore, U is symmetric.
Proposition 5: If U and V are symmetric PFMRs, then U ∩V and U ∪V
are symmetric PFMRs.
Proof: If U and V are symmetric PFMRs, then

σ
k
U(r1,r2)=σ

k
U(r2,r1), τ

k
U(r1,r2)= τ

k
U(r2,r1), and η

k
U(r1,r2)=η

k
U(r2,r1).

and

σ
k
V (r1,r2)=σ

k
V (r2,r1), τ

k
V (r1,r2)= τ

k
V (r2,r1), and η

k
V (r1,r2)=η

k
V (r2,r1).

Now,
• σ k

U∧V (r1,r2)=σ k
U(r1,r2)∧σ k

V (r1,r2)=σ k
U(r2,r1)∧σ k

V (r2,r1)=σ k
U∧V (r2,r1),

τk
U∧V (r1,r2)= τk

U(r1,r2)∧τk
V (r1,r2)= τk

U(r2,r1)∧τk
V (r2,r1)= τk

U∧V (r2,r1)

and ηk
U∧V (r1,r2) = ηk

U(r1,r2)∨ηk
V (r1,r2) = ηk

U(r2,r1)∨ηk
V (r2,r1) =

ηk
U∧V (r2,r1).

Hence, U ∩V is symmetric PFMR.

• σ k
U∨V (r1,r2)=σ k

U(r1,r2)∨σ k
V (r1,r2)=σ k

U(r2,r1)∨σ k
V (r2,r1)=σ k

U∨V (r2,r1),

τk
U∨V (r1,r2)= τk

U(x,y)∧τk
V (r1,r2)= τk

U(r2,r1)∧τk
V (r2,r1)= τk

U∨V (r2,r1)

and ηk
U∨V (r1,r2) = ηk

U(r1,r2)∧ηk
V (r1,r2) = ηk

U(r2,r1)∧ηk
V (r2,r1) =

ηk
U∨V (r2,r1).

Hence, U ∪V is symmetric PFMR.
Remark 1: Note that; U ◦V is not symmetric in general because,

σ
k
U◦V (r1,r3) =

∨
r2

{σ
k
V (r1,r2)∧ (σ k

U(r2,r3)}

=
∨
r2

{σ
k
V (r2,r1)∧ (σ k

U(r3,r2)}

̸= σ
k
U◦V (r3,r1),
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τ
k
U◦V (r1,r3) =

∧
r2

{τ
k
V (r1,r2)∧ (τk

U(r2,r3)}

=
∧
r2

{τ
k
V (r2,r1)∧ (τk

U(r3,r2)}

̸= τ
k
U◦V (r3,r1)

and

η
k
U◦V (r1,r3) =

∧
r2

{η
k
V (r1,r2)∨ (ηk

U(r2,r3)}

=
∧
r2

{η
k
V (r2,r1)∨ (ηk

U(r3,r2)}

̸= η
k
U◦V (r3,r1)

Example 1: Let

Z1 = {1,4}, Z2 = {2,5} and Z3 = {3,6}.
Define relation on U as

σU(1,2) = 0.7, τU(1,2) = 0.2 and ηU(1,2) = 0.1

and
σU(4,5) = 0.8, τU(4,5) = 0.1 and ηU(4,5) = 0.1

Define relation on V as

σV (2,3) = 0.6, τV (2,3) = 0.3 and ηV (2,3) = 0.1

and
σV (5,6) = 0.5, τV (5,6) = 0.4 and ηV (5,6) = 0.1

Let P =U ◦V. For r1 = 1 and r3 = 3 we have

σP(1,3) =
∨

(σU(1,2)∧σV (2,3)) = 0.7∧0.6 = 0.6,

τP(1,3) =
∧

(τU(1,2)∧ τV (2,3)) = 0.2∧0.3 = 0.2

and
ηP(1,3) =

∧
(ηU(1,2)∨ηV (2,3)) = 0.1∨0.1 = 0.1.

For r1 = 3 and r3 = 1, let P′ =V ◦U. Since there is no direct path from
3 to 1 via U and V, there is a need to check for possible compositions.
Suppose that a possible set for U and V defined backward,

σP′(3,1) = 0 (if no composition exists),

τP′(3,1) = 1 (if no composition exists)
and

ηP′(3,1) = 0 (if no composition exists).
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Thus, σP(1,3) ̸= σP′(3,1), τP(1,3) ̸= τP′(3,1) and ηP(1,3) ̸= ηP′(3,1).
Similarly,

σP(4,6) =
∨

(σU(4,5)∧σV (5,6)) = 0.8∧0.5 = 0.5,

τP(4,6) =
∧

(τU(4,5)∧ τV (5,6)) = 0.1∧0.4 = 0.1

and

ηP(4,6) =
∧

(ηU(4,5)∨ηV (5,6)) = 0.1∨0.1 = 0.1.

Also, there is no direct path from 6 to 4 via U and V,

σP′(6,4) = 0 (if no composition exists),

τP′(6,4) = 1 (if no composition exists)

and

ηP′(6,4) = 0 (if no composition exists).

Thus, σP(4,6) ̸=σP′(6,4), τP(4,6) ̸= τP′(6,4) and ηP(4,6) ̸=ηP′(6,4). Hence,
U ◦V ̸=V ◦U. Therefore, composition of PFMRs is not true in general.
Proposition 6: Given U ∈ PFMR(Z1 ×Z2) and V ∈ PFMR(Z2 ×Z3).
Then, U ◦V is symmetric if and only if U ◦V = V ◦U, for symmetric
relations U and V.
Proof:

σ
k
U◦V (r1,r3) =

∨
r2

{σ
k
V (r1,r2)∧σ

k
U(r2,r3)}

=
∨
r2

{σ
k
V (r2,r1)∧ (σ k

U(r3,r2)}

=
∨
r2

{σ
k
U(r3,r2)∧ (σ k

V (r2,r1)}

= σ
k
U◦V (r3,r1),

τ
k
U◦V (r1,r3) =

∧
r2

{τ
k
V (r1,r2)∧ τ

k
U(r2,r3)}

=
∧
r2

{τ
k
V (r2,r1)∧ (τk

U(r3,r2)}

=
∧
r2

{τ
k
U(r3,r2)∧ (τk

V (r2,r1)}

= τ
k
U◦V (r3,r1)
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and

η
k
U◦V (r1,r3) =

∧
r2

{η
k
V (r1,r2)∨η

k
U(r2,r3)}

=
∧
r2

{η
k
V (r2,r1)∨ (ηk

U(r3,r2)}

=
∧
r2

{η
k
U(r3,r2)∨ (ηk

V (r2,r1)}

= η
k
U◦V (r3,r1)

for every (r1,r3) ∈ Z1 ×Z3 and for every r2 ∈ Z2.
Definition 18: Let U ∈ PFMR(Z ×Z). Then, U is called Transitive if
for every triplet (r1,r2,r3) in Z ×Z ×Z whenever (r1,r2) and (r2,r3) ∈
U with certain degrees of relatedness σ k

U(r1,r2) and σ k
U(r2,r3); τk

U(r1,r2)

and τk
U(r2,r3); ηk

U(r1,r2) and ηk
U(r2,r3) then (r1,r3) ∈U with a degree

of relatedness σ k
U(r1,r3)≥min{σ k

U(r1,r2),σ
k
U(r2,r3)}; τk

U(r1,r3)≤max{τk
U(r1,r2),τ

k
U(r2,r3)};

ηk
U(r1,r3)≤ max{ηk

U(r1,r2),η
k
U(r2,r3)}, respectively.

Proposition 7: Let U be a transitive relation. Then U−1 is transitive if
and only if U =U−1.
Proof: Suppose that U−1 is transitive, for every r1,r2,r3 ∈ Z1×Z2×Z3,

σ
k
U−1(r1,r3)≥

∨
r2∈Z2

(
σ

k
U−1(r1,r2)∧σ

k
U−1(r2,r3)

)
,

τ
k
U−1(r1,r3)≤

∧
r2∈Z2

(
τ

k
U−1(r1,r2)∨ τ

k
U−1(r2,r3)

)
and

η
k
U−1(r1,r3)≤

∧
r2∈Z2

(
η

k
U−1(r1,r2)∨η

k
U−1(r2,r3)

)
By inverse definition,

σ
k
U−1(r1,r3)=σ

k
U(r3,r1), τ

k
U−1(r1,r3)=η

k
U(r3,r1),η

k
U−1(r1,r3)=η

k
U(r3,r1)

Substitute these into the transitivity conditions for U−1, we have

σ
k
U(r3,r1)≥

∨
r2∈Z2

(
σ

k
U(r2,r1)∧σ

k
U(r3,r2)

)
,

τ
k
U(r3,r1)≤

∧
r2∈Z2

(
τ

k
U(r2,r1)∨ τ

k
U(r3,r2)

)
and

η
k
U(r3,r1)≤

∧
r2∈Z2

(
η

k
U(r2,r1)∨η

k
U(r3,r2)

)
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Since U is transitive, it means that U is symmetric. Thus,

σ
k
U(r1,r2)=σ

k
U(r2,r1), τ

k
U(r1,r2)= τ

k
U(r2,r1) and η

k
U(r1,r2)=η

k
U(r2,r1)

Hence, U =U−1.
Conversely, suppose that U =U−1. Thus,

σ
k
U(r1,r2)=σ

k
U(r2,r1), τ

k
U(r1,r2)= τ

k
U(r2,r1) and η

k
U(r1,r2)=η

k
U(r2,r1)

Since U is transitive, for every r1,r2,r3 ∈ Z1 ×Z2 ×Z3,

σ
k
U(r1,r3)≥

∨
r2∈Z2

(
σ

k
U(r1,r2)∧σ

k
U(r2,r3)

)
,

τ
k
U(r1,r3)≤

∧
r2∈Z2

(
τ

k
U(r1,r2)∨ τ

k
U(r2,r3)

)
and

η
k
U(r1,r3)≤

∧
r2∈Z2

(
η

k
U(r1,r2)∨η

k
U(r2,r3)

)
Since U =U−1, it means that transitivity conditions for U can be written
in terms of U−1. So,

σ
k
U−1(r1,r3) = σ

k
U(r3,r1)

≥
∨

r2∈Z2

(
σ

k
U(r3,r2)∧σ

k
U(r2,r1)

)
=

∨
r2∈Z2

(
σ

k
U−1(r1,r2)∧σ

k
U−1(r2,r3)

)
τ

k
U−1(r1,r3) = τ

k
U(r3,r1)

≤
∧

r2∈Z2

(
τ

k
U(r3,r2)∨ τ

k
U(r2,r1)

)
=

∧
r2∈Z2

(
τ

k
U−1(r1,r2)∨ τ

k
U−1(r2,r3)

)
η

k
U−1(r1,r3) = η

k
U(r3,r1)

≤
∧

r2∈Z2

(
η

k
U(r3,r2)∨η

k
U(r2,r1)

)
=

∧
r2∈Z2

(
η

k
U−1(r1,r2)∨η

k
U−1(r2,r3)

)
Hence, U−1 is transitive.
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Proposition 8:
Proof: First to show that U ∩V is transitive for transitive U and V

σ
k
U∩V (r1,r2) = min{σ

k
U(r1,r2),σ

k
U(r1,r2)},

τ
k
U∩V (r1,r2) = max{τ

k
U(r1,r2),τ

k
U(r1,r2)}

and
η

k
U∩V (r1,r2) = max{η

k
U(r1,r2),η

k
U(r1,r2)}.

For σ k
U∩V (r1,r3),

σ
k
U∩V (r1,r3) = min{σ

k
U(r1,r2),σ

k
U(r2,r3)}.

Since U and V are transitive, we have,

σ
k
U(r1,r3)≥ min

(
σ

k
U(r1,r2),σ

k
U(r2,r3)

)
and

σ
k
V (r1,r3)≥ min

(
σ

k
V (r1,r2),σ

k
V (r2,r3)

)
Thus,

min
(

σ
k
U(r1,r3),σ

k
V (r1,r3)

)
≥ min

[
min

(
σ

k
U(r1,r2),σ

k
U(r2,r3)

)
,min

(
σ

k
V (r1,r2),σ

k
V (r2,r3)

)]
since

min
(

σ
k
U∩V (r1,r2),σ

k
U∩V (r2,r3)

)
=min

[
min

(
σ

k
U(r1,r2),σ

k
V (r1,r2)

)
,min

(
σ

k
U(r2,r3),σ

k
V (r2,r3)

)]
we have

σ
k
U∩V (r1,r3)≥ min

(
σ

k
U∩V (r1,r2),σ

k
U∩V (r2,r3)

)
For τk

U∩V (r1,r3),

τk
U∩V (r1,r3) =max{τk

U(r1,r2),τ
k
U(r2,r3)}. Since U and V are transitive,

we have,
τ

k
U(r1,r3)≤ max

(
τ

k
U(r1,r2),τ

k
U(r2,r3)

)
and

τ
k
V (r1,r3)≤ max

(
τ

k
V (r1,r2),τ

k
V (r2,r3)

)
Thus,

max
(

τ
k
U(r1,r3),τ

k
V (r1,r3)

)
≤ max

[
max

(
τ

k
U(r1,r2),τ

k
U(r2,r3)

)
,max

(
τ

k
V (r1,r2),τ

k
V (r2,r3)

)]
since

max
(

τ
k
U∩V (r1,r2),τ

k
U∩V (r2,r3)

)
=max

[
max

(
τ

k
U(r1,r2),τ

k
V (r1,r2)

)
,max

(
τ

k
U(r2,r3),τ

k
V (r2,r3)

)]
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we have

τ
k
U∩V (r1,r3)≤ max

(
τ

k
U∩V (r1,r2),τ

k
U∩V (r2,r3)

)
For ηk

U∩V (r1,r3),

ηk
U∩V (r1,r3) = max{ηk

U(r1,r2),η
k
U(r2,r3)}. Since U and V are transi-

tive, we have,

η
k
U(r1,r3)≤ max

(
η

k
U(r1,r2),η

k
U(r2,r3)

)
and

η
k
V (r1,r3)≤ max

(
η

k
V (r1,r2),η

k
V (r2,r3)

)
Thus,

max
(

η
k
U(r1,r3),η

k
V (r1,r3)

)
≤ max

[
max

(
η

k
U(r1,r2),η

k
U(r2,r3)

)
,max

(
η

k
V (r1,r2),η

k
V (r2,r3)

)]
since

max
(

η
k
U∩V (r1,r2),η

k
U∩V (r2,r3)

)
=max

[
max

(
η

k
U(r1,r2),η

k
V (r1,r2)

)
,max

(
η

k
U(r2,r3),η

k
V (r2,r3)

)]
we have

η
k
U∩V (r1,r3)≤ max

(
η

k
U∩V (r1,r2),η

k
U∩V (r2,r3)

)
Next to show that U ∪V not transitive for transitive U and V . This will
be done by counter example.
Let Z = {1,2,3}.
Define relation U as

σU(1,2) = 0.9, τU(1,2) = 0.1 and ηU(1,2) = 0.0,

σU(2,3) = 0.8, τU(2,3) = 0.1 and ηU(2,3) = 0.1
σU(1,3) = 0.7, τU(1,3) = 0.2 and ηU(1,3) = 0.1

Also, define relation V as

σV (1,2) = 0.7, τV (1,2) = 0.2 and ηV (1,2) = 0.1,

σV (2,3) = 0.6, τV (2,3) = 0.3 and ηV (2,3) = 0.1
σV (1,3) = 0.5, τV (1,3) = 0.4 and ηV (1,3) = 0.1

For U,
σU(1,3) = 0.7 ≥ min{0.9,0.8}= 0.8,
τU(1,3) = 0.2 ≤ max{0.1,0.1}= 0.1

and
ηU(1,3) = 0.2 ≤ max{0.0,0.1}= 0.1.

For V,
σV (1,3) = 0.5 ≥ min{0.7,0.6}= 0.6,
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τV (1,3) = 0.4 ≤ max{0.2,0.3}= 0.3

and
ηU(1,3) = 0.1 ≤ max{0.1,0.1}= 0.1.

Now, for U ∪V,

σU∪V (1,2) = max{0.9,0.7}= 0.9,

τU∪V (1,2) = min{0.1,0.2}= 0.1

and
ηU∪V (1,2) = min{0.0,0.1}= 0.0

σU∪V (2,3) = max{0.8,0.6}= 0.8,

τU∪V (2,3) = min{0.1,0.3}= 0.1

and
ηU∪V (2,3) = min{0.1,0.1}= 0.1

σU∪V (1,3) = max{0.7,0.5}= 0.7,

τU∪V (1,3) = min{0.2,0.4}= 0.2

and
ηU∪V (1,3) = min{0.1,0.1}= 0.1

So, checking transitivity for U ∪V ;

σU∪V (1,3)= 0.7 ̸=min{σU∪V (1,2),σU∪V (2,3)}=min{0.9,0.8}= 0.8.

Since 0.7 < 0.8, i.e

σU∪V (1,3) ̸= min{σU∪V (1,2),σU∪V (2,3)}

which implies that σU∪V (1,3) does not satisfy the transitivity condition.
Similarly τU∪V (1,3) and τU∪V (1,3) satisfy not the transitivity condi-
tion.
Therefore, U ∪V not transitive.
Remark 2: A PFMR R is said to be Picture Fuzzy Multi Equivalence
Relation (PFMER) if it satisfies reflexive, symmetric and transitive.
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4. CONCLUDING REMARKS

In this paper, it has been established that the Picture Fuzzy MultiRela-
tions (PFMR) are extension of the Picture Fuzzy Relations (PFR). Re-
flexivity, symmetric and transitivity of picture fuzzy multirelations over
picture fuzzy multisets were introduced and some properties associated
with them were obtained.
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