
Journal of the Vol. 36, pp. 55-70, 2017

Nigerian Mathematical Society c©Nigerian Mathematical Society

GLOBAL STABILITY IN THE DEGN-HARRISON MODEL

BENEDETTA LISENA

Dedicated to the memory of Anthony Uyi Afuwape

ABSTRACT. The main goal of this paper is to investigate the
global dynamics of the model proposed by Degn and Harrison to
explain the oscillations in continuous bacterial cultures. We es-
tablish suitable conditions on the parameters ensuring the global
asymptotic stability of the unique equilibrium. The technique
of the invariant rectangles in the phase-space and the Lyapunov
method are used. Our investigation confers a theoretical back-
ground for the numerical and experimental results in [6].
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1. Introduction

The experimental and theoretical studies of ecological and chem-
ical systems are an increasing object of research because of the
importance of such systems in laboratory experiments and in in-
dustrial processes. In this paper we consider the model proposed
by Degn and Harrison [4, 5, 7] for explaining the mechanism lead-
ing to respiratory oscillations in continuous cultures of Klebsiella
aerogenes. From a mathematical point of view, the Degn-Harrison
model yields the following differential equations for the temporal
evolution of the system⎧⎪⎪⎨

⎪⎪⎩
u′ = a− u− u v

1 + k u2

v′ = b− u v

1 + k u2

(1.1)

where u(t) and v(t) represent the dimensionless concentrations of
oxygen and nutrient, respectively. The above model has been ana-
lyzed by Fairen and Velarde [6] using computer aided methods. For
k = 1, ODE system (1.1) possesses striking similarity with regards
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to the occurrence of nonlinear terms in the Lengyel-Epstein system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u′ = a− u− 4u v

1 + u2

v′ = b(u− u v

1 + u2
)

(1.2)

describing the chlorite-iodide-malonic acid (CIMA) chemical reac-
tion [5, 7]. Both systems (1.1) and (1.2) have a unique equilib-
rium solution and produce oscillatory states but the Degn-Harrison
model (1.1) presents a richer dynamics. We are mainly interested
in the issue of the global stability of the constant solution (u∗, v∗)
to (1.1). It is well known that different parameters values in a
model can give rise to very different dynamics, such as equilibrium
stability, oscillatory behavior or bifurcation. Thus, the property of
global asymptotic stability is an important information to exclude
other different dynamics such as the presence of periodic solutions.
Through a systematic mathematical analysis, our investigation con-
fers a theoretical back-ground for the numerical and experimental
results found in [6]. We look at the phase portrait of nonlinear
system (1.1), studying the mathematical properties of its isocline
curves for all ranges of the parameters values. The existence of ap-
propriate invariant rectangles, proved in Sections 3 and 4, becomes
a fundamental tool for the understanding of the system dynamics.
In particular for the existence of periodic solution proved in Corol-
lary 3.1 and for the global stability of (u∗, v∗) obtained in Theorems
4.2 and 4.4. Our results can also contribute to a better investigation
of the Degn-Harrison reaction-diffusion system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
= d1Δu+ a− u− u v

1 + k u2
x ∈ Ω

∂v

∂t
= d2Δv + b− u v

1 + k u2

(1.3)

in a bounded domain Ω in Rn. Recently, in [8, 10], the authors an-
alyze parabolic system (1.3) investigating the stability of the non
constant steady-states, the Hopf bifurcation and the existence of
Turing patterns. However they do not provide further informa-
tions on the corresponding ordinary differential equations system.
Global attractivity results for the unique constant steady state of
the reaction-diffusion Lengyel-Epstein model have been obtained
by Yi, Wei and Shi[12] and Lisena[9]. They construct a suitable
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Lyapunov function by using the monotonicity properties of the iso-
cline curves. The mathematical method developed in [9, 12] cease
to work for system (1.1) without deep modifications. The search
of an invariant region surrounded (u∗, v∗) in which the isoclines are
monotone permits to apply the Lyapunov methods when parame-
ters a, b, k fall into certain ranges. Theorem 4.4 uses this arguments
to demonstrate the global attractivity of (u∗, v∗) if a > 2b. The
inserted Figures (obtained by applying MATHEMATICA) aim to
strengthen our analytical analysis.

2. Preliminary results

It is convenient to rewrite system (1.1) in the form⎧⎪⎨
⎪⎩
u′ = F (u, v) , t > 0

v′ = G(u, v)

(2.4)

where

F (u, v) = a− u− φk(u) v, G(u, v) = b− φk(u) v (2.5)

and

φk(u) =
u

1 + k u2
.

We consider positive solutions to the model subject to the initial
condition

u(0) = u0 > 0, v(0) = v0 > 0 .

Assuming a > b, (2.1) has in R2
+ the equilibrium

(u∗, v∗), u∗ = a− b, v∗ =
b

φk(u∗)
.

By the linearization technique one can easily obtain sufficient con-
ditions for the stability of (u∗, v∗). The Jacobian matrix evaluated
at (u∗, v∗) has the form

J =

⎛
⎜⎜⎜⎜⎝
−1− b

u∗
1− k(u∗)2

1 + k(u∗)2
−φk(u

∗)

− b

u∗
1− k(u∗)2

1 + k(u∗)2
−φk(u

∗)

⎞
⎟⎟⎟⎟⎠

Since

det J = φk(u
∗) > 0 ,
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Figure 1. Curve a+ (a− b)2(1 + a− 2b) = 0, b < a

the eigenvalues of J have negative real parts if and only if

tr J = −a + (a− b)2(1 + k(a− 2b))

(a− b)(1 + k(a− b)2)
< 0 .

Then (u∗, v∗) is (locally) asymptotically stable if

a + (a− b)2(1 + k(a− 2b)) > 0 , (2.6)

it is instable if

a + (a− b)2(1− k(2b− a)) < 0 .

Note that (2.3) is certainly verified when 2b ≤ a.
In Figure 1, the curve defined by the Cartesian equation

a+ (a− b)2(1 + k(a− 2b)) = 0, a > b

is plotted in the plane a b, with fixed k = 1. It lies between the lines
b = a and b = a

2
. In [10] it has been proved that (u∗, v∗) is a global

attractor in R2
+ if a2k ≤ 1. Therefore, henceforth we suppose

a2k > 1 that is
1√
k
∈ ]0, a[ . (2.7)

Further informations about the dynamics of system (2.1) can be
derived from the detailed analysis of its isoclines. The plot of the
v−isocline

γv : v =
b

φk(u)
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reflects the following properties:

i) limu→0+
b

φk(u)
= +∞ ;

ii)
b

φk(u)
is strictly decreasing in ]0,

1√
k
], is strictly increasing in[

1√
k
, a] ;

iii) The minimum point has coordinates ( 1√
k
, 2b

√
k) .

The graph of the u−isocline

γu : v = fa,k(u), fa,k(u) =
a− u

φk(u)

is less simple because the monotonicity of fa,k is sensitive to differ-
ent values of parameters a, k.

Theorem 2.1. In interval ]0, a] the function fa,k has the following
properties:
i) limu→0+ fa,k(u) = +∞, fa,k(a) = 0 ;
ii) If

a2k ≤ 27 (2.8)

fa,k(u) is strictly decreasing ;
iii) If a2k > 27, fa,k(u) is strictly decreasing in ]0, 1√

k
] and in

[a
2
, a].

In interval ] 1√
k
, a
2
[ there is a local minimum point u1, a local maxi-

mum point u2.
Moreover 3

√
a
k
is a saddle point and u1 < 3

√
a
k
< u2 .

Proof. Since fa,k(u) = ( a
u
− 1)(1 + ku2), i) is obvious.

To prove ii) and iii) observe that

f ′
a,k(u) = − a

u2
+ka−2ku = − a

u2
+k(a−2u) = a(k− 1

u2
)−2ku (2.9)

so that fa,k(u) is strictly decreasing in ]0, 1√
k
] and in [a

2
, a]. To study

the sign of f ′
a,k(u) in ] 1√

k
, a
2
[, consider f ′′

a,k(u) =
2a
u3−2k and note that

assumption (2.4) implies 1√
k
< 3

√
a
k
. We deduce that f ′′

a,k(u) > 0

in ] 1√
k
, 3
√

a
k
[, f ′′

a,k(u) < 0 in ] 3
√

a
k
, a[, 3

√
a
k
is a maximum point for

f ′
a,k(u) and f ′

a,k(
3
√

a
k
) = ka− 3

3
√
ak2. Under assumption (2.5)

f ′
a,k(u) ≤ f ′

a,k(
3

√
a

k
) ≤ 0

and ii) easily follows.
If a2k > 27, 1√

k
< 3

√
a
k
< a

2
. A comparison between the curves

v = a
u2 and v = k(a− 2u) completes the proof of iii).
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Figure 2.(a)-(d), illustrates nullclines γu and γv for different values
of parameters a, b, k.
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Figure 2. Isoclines: (a) a=4.6, b=2, k=1 (b) a=4.5,
b=2.4, k=1.8 (c) a=10, b=3, k=0.9 (d) a=12, b=9,
k=0.6

3. Invariant region

In this section we will show that ODE system (2.1) has an in-
variant region

R = [u, a]× [2b
√
k, fa,k(u)], u =

bu∗

a(1 + ka2)

in the phase plane which actually attracts all solutions, regardless
of the initial values u0 and v0.
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Theorem 3.1. Let (u(t), v(t)) be any positive solution of (2.1) with
initial conditions (u0, v0) ∈ R. Then

(u(t), v(t)) ∈ R, t > 0 .

Proof. First we check that

u <
1√
k
.

Since b < a we are allowed to write b = t a, 0 < t < 1, so that

b u∗ = t(1− t)a2 ≤ a2

4
, t ∈]0, 1[ .

Consequently

u ≤ a

4(1 + ka2)
=

φk(a)

4
≤ 1

8
√
k
<

1√
k
. (3.10)

By Theorem 2.1, fa,k(u) and b
φk(u)

are strictly decreasing in ]0, u]

(for each k).
As second step let us verify that

b

φk(a)
< fa,k(u) . (3.11)

Observe that, using (3.1),

fa,k(u) = (
a

u
− 1)(1 + ku2) > (4(1 + ka2)− 1)(1 + ku2) > 4ka2 + 3

and
b

φk(a)
=

b

a
(1 + ka2) < 1 + ka2 .

Hence (3.2) easily follows. Previous estimates proves, in particular,
that (u∗, v∗) lies in the interior of R. Taking into account our
investigation in Section 2, we can state that , on the boundary
of R, the vector field (F (u, v), G(u, v)), defined by (2.2), does not
point outwards. Indeed

F (u, v) ≥ 0 and F (a, v) ≤ 0 for 2b
√
k ≤ v ≤ fa,k(u) ,

G(u, 2b
√
k) ≥ 0 and G(u, fa,k(u)) ≤ 0 for u ≤ u ≤ a .

Hence rectangle R is an invariant region and the proof is complete.
�

Theorem 3.2. Let (u(t), v(t)) be any solution of (2.1). Then there
is a constant T > 0, which may depend on u0 and v0, such that

(u(t), v(t)) ∈ R for all t > T .
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Proof. It is obvious that

u′(t) ≤ a− u(t) .

Since all positive solutions of the ODE

x′(t) = a− x(t)

tends to a as t → +∞, by the comparison theorem,

u(t) ≤ a for t sufficiently large .

Analogously, since φk(u) ≤ 1
2
√
k
,

v′(t) ≥ b− v(t)

2
√
k
.

Taking into account that all solutions of the differential equation

y′(t) = b− y(t)

2
√
k

approach 2b
√
k as t → +∞, we get

v(t) ≥ 2b
√
k for t sufficiently large .

Previous argument proves that

Q =]0, a]× [2b
√
k,+∞[

is an invariant region. Note that

b

φk(u)
< fa,k(u) if u < u∗ ,

so that we can divide the region Q \R in three parts:

I) (u, v) ∈ Q \ R, 0 < u < u, , v ≤ b
φk(u)

;

II) (u, v) ∈ Q \ R, v ≥ fa,k(u) ;

III) (u, v) ∈ Q \ R, 0 < u < u, , b
φk(u)

< v < fa,k(u) .

The trajectories starting in region I) have both components strictly
increasing then they go into R, at some t, otherwise they get into
region III) after intersecting isocline γv. Similarly, the trajectories
starting in region II) have both components strictly decreasing
then, after intersecting the line v = fa,k(u), they go into R or they
intersect isocline γu and enter into region III). Considering the
direction of the vector field on isoclines γu and γv, we deduce that
the trajectories starting in region III) cannot leave this region till
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they go inside R, for some t. �

Corollary 3.1. Suppose

a + (a− b)2(1− k(2b− a)) < 0 . (3.12)

Then model (2.1) admits at least a periodic solution (
◦
u(t),

◦
v(t))

whose orbit lies in R. The integral average of its first component
satisfies

m[
◦
u] = u∗ .

Moreover

m[φk(
◦
u)

◦
v] = b, m

[
1
◦
v

]
=

m[φk(
◦
u)]

b
.

Proof. Under (3.4) the equilibrium (u∗, v∗) is instable in the at-
tractive invariant rectangle R. Thus, from the Poincaré-Bendixson
theorem (see [2, 3]), it follows that some orbits as limit cycles have

to exist inR. Denoting by (
◦
u(t),

◦
v(t)) one of such periodic solutions

with period τ , the integration of both sides of (2.1) over [0, τ ] leads
to

0 = m[(
◦
u)′] = a−m[

◦
u]−m[φk(

◦
u)

◦
v], 0 = m[(

◦
v)′] = b−m[φk(

◦
u)

◦
v] ,

thus

m[
◦
u] = a− b = u∗ .

Moreover, after dividing both sides of equation (
◦
v)′ = b − φk(

◦
u)

◦
v

by
◦
v(t), one gets

0 = m

[
(
◦
v)′
◦
v

]
= m

[
b
◦
v

]
−m[φk(

◦
u)]

concluding the proof. �

In Figure 3 the orbit of the periodic solution located in [6] (a =
19.4, b = 11, k = 0.5) is plotted in the phase plane. Inside the
trajectories of two solutions starting close to (u∗, v∗). In Figure
4, the orbit passing through (4.6, 42.9) is given for the model with
parameters values a = 10, b = 6, k = 1.5. The numerical simulation
shows that it is the only limit cycle.
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Figure 3. a = 19.4, b = 11 k = 0.5. The periodic
solution found in [6] and the vector field generated
by (2.1)

4. Global attractivity

In the next theorem a certain range of parameters is determined
for which no periodic solution may exist. Obviously we are exclud-
ing the constant solution (u∗, v∗).
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Figure 4. a = 10, b = 6, k = 1.5. The equilibrium
is instable and the plotted trajectories tends to the
orbit of the periodic solution through (4.6, 42.9)
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Theorem 4.1. Let us suppose that

3
3
√
a k2 − a k + 1 > 0 , (4.13)

then, for any b < a, system (2.1) admits no (non constant) periodic
solutions.

Proof. Rewrite system (2.1) in the form⎧⎪⎪⎨
⎪⎪⎩
u′ = φk(u)(fa,k(u)− v) , t > 0

v′ = φk(u)(
b

φk(u)
− v) .

(4.14)

By the Dulac’s criterion, if ∂
∂u
(fa,k(u)− v) + ∂

∂v
( b
φk(u)

− v) does not

change sign in R, then (4.2) has no closed orbits lying entirely in
R (see [3, 11, 1]). Obviously

∂

∂u
(fa,k(u)− v) +

∂

∂v
(

b

φk(u)
− v) = f ′

a,k(u)− 1 .

In Theorem 2.1 we saw that

f ′
a,k(u) = − a

u2
+ k a− 2k u

and f ′
a,k(u) ≤ 0 for a2k ≤ 27. Moreover, if a2k > 27, it is enough

to prove

f ′
a,k(

3

√
a

k
)− 1 < 0

to provide inequality f ′
a,k(u)− 1 < 0. The equality

f ′
a,k(

3

√
a

k
)− 1 = −3

3
√
a k2 + k a− 1

concludes the proof. �

Next Theorems 4.2 and 4.4 are the main results of this paper.

Theorem 4.2. Assume that condition (4.1) is satisfied, then (u∗, v∗)
is globally asymptotically stable in R2

+.

Proof. Firstly let us prove that, under condition (4.1), (u∗, v∗)
is asymptotically stable. By the results in Section 2, it is enough
to demonstrate that inequality (2.3) holds. We may assume

a

2
< b < a
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because the validity of (2.3) is evident for b ≤ a
2
. Introduce the

function

g(x) =
a

(a− x)2
− (2x− a)k + 1 . (4.15)

We are going to prove that, under assumption (4.1),

g(x) > 0,
a

2
< x < a . (4.16)

It easy to check that

g(
a

2
) =

4

a
+ 1 > 0, lim

x→a−
g(x) = +∞ ,

and

g′(x) =
2a

(a− x)3
− 2k

is strictly positive if and only if x > a − 3
√

a
k
. When a2k ≤ 8, it

turns out a− 3
√

a
k
≤ a

2
so that g(x) is strictly increasing in interval

]a
2
, a[. As a consequence

g(x) > g(
a

2
) > 0,

a

2
< x < a .

Let us consider the case a2k > 8. The point a− 3
√

a
k
is a minimum

for g(x),

g(a− 3

√
a

k
) = 3

3
√
a k2 − a k + 1

therefore, using (4.1),

g(x) ≥ g(a− 3

√
a

k
) > 0,

a

2
< x < a .

and (4.4) is proved. It implies that a + (a − b)2(1 − (2b − a)k) >
0 for each b ∈]a

2
, a[. From the first step of the proof, (u∗, v∗) is

asymptotically stable in R, by Theorems 3.1 and 3.2 R is invariant
and attractive, by Theorem 4.1 no periodic solutions exist in R2

+.
Applying the Poincaré-Bendixson theorem, for any positive solution
(u(t), v(t)) to system (2.1), we get

lim
t→+∞

|u(t)− u∗| = 0 = lim
t→+∞

|v(t)− v∗|

and the global stability is proved. �

Arguing as in the previous theorem, we can obtain a new criterion of
global stability for the equilibrium of the Lengyel-Epstein system.
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Theorem 4.3. Let

a− 3 3
√
a < b , (4.17)

then (α, 1 + α2), α = a
5
, is globally asymptotically stable as equilib-

rium of system (1.2).

Proof. The rectangle R =]0, a[×]0, 1 + a2[ is an invariant, at-
tractive region for model (1.2)(see [9]) and (α, 1+α2) is the unique
constant solution of (1.2). It is locally asymptotically stabe under
the condition 3α2 − 5 < (α b) [9]. Notice that

a− 3 3
√
a ≥ 3α2 − 5

α
=

3a2 − 125

5a
.

System (1.2) can be written in the form⎧⎪⎨
⎪⎩
u′ = φ(u)(fa(u)− 4v) , t > 0

v′ = φ(u)(b (1 + u2)− b v) ,

where φ(u) = u
1+u2 , fa(u) =

a−u
φ(u)

. By the Dulac’s criterion, if

∂

∂u
(fa(u)− 4v) +

∂

∂v
(b(1 + u2)− bv) < 0 in R

then (1.2) has no nonconstant periodic solution in R. It is obvious
that

∂

∂u
(fa(u)−4v)+

∂

∂v
(b(1+u2)−bv) = f ′

a(u)−b = − a

u2
+a−2u−b .

Let us prove that

f ′
a(u) < b, u ∈]0, a[ .

It easy to see that f ′
a(u) attains its maximum value at u = 3

√
a and

f ′
a(

3
√
a) = a− 3 3

√
a .

Thus, under (4.5),

f ′
a(u) ≤ f ′

a(
3
√
a) < b .

An application of the Poincaré-Bendixson theorem gives the state-
ment. �

Theorem 4.4. Suppose that 3
3
√
a k2 − a k + 1 ≤ 0 and

b ≤ a

4

(
4 + a2 k

1 + a2 k

)
. (4.18)

Then (u∗, v∗) is globally attractive in R2
+.
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Proof. From the arguments in Theorem 4.1, we deduce that our
first assumption ensures that a2 k > 27. This inequality guarantees
that 4+a2 k

1+a2 k
< 4

3
. Consequently, using (4.6)

b <
a

3
and u∗ = a− b >

2

3
a .

Notice that

fa,k(
a

2
) = 1 + k

a2

4
so that inequality (4.6) gives

b

φk(a)
≤ fa,k(

a

2
) .

Let

T =
[a
2
, a
]
×
[
2b
√
k, fa,k(

a

2
)
]
⊂ R .

Previous arguments ensures that, on the boundary of T , the vector
field (F,G), defined by (2.2), does not point outwards, so that T is
an invariant region. In rectangle T isocline γu is strictly decreasing,
isocline γv is strictly increasing and they intersect in (u∗, v∗) ∈
T . Taking advantage of such monotone properties, we are able to
employ the Lyapunov method. Once again rewrite system (2.1) in
the form⎧⎪⎪⎨

⎪⎪⎩
u′ = φk(u)[(fa,k(u)− fa,k(u

∗))− (v − v∗)]

v′ = φk(u)

[
(

b

φk(u)
− b

φk(u∗)
)− (v − v∗)

]
.

(4.19)

Consider the following Lyapunov function

V (u, v) =

∫ u

u∗

(
b

φk(s)
− b

φk(u∗)

)
ds+

(v − v∗)2

2
.

Let (u(t), v(t) be a solution of (4.7) in T for t ≥ 0 and put V (t) =
V (u(t), v(t)). Then

V ′(t) =
(

b

φk(u)
− b

φk(u∗)

)
u′ + (v − v∗) v′

= φk(u)

[(
b

φk(u)
− b

φk(u∗)

)
(fa,k(u)− fa,k(u

∗))− (v − v∗)2
]
.

Since(
b

φk(u)
− b

φk(u∗)

)
< 0, (fa,k(u)− fa,k(u

∗)) > 0 for u < u∗
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b

φk(u)
− b

φk(u∗)

)
> 0, (fa,k(u)− fa,k(u

∗)) < 0 for u > u∗ ,

it turns out that the derivative of V (u, v) along trajectories of (4.7)
on T is negative and V ′(t) = 0 only on the equilibrium solution
(u∗, v∗). Thus, for all initial values (u0, v0) ∈ T , the solution of
(4.7) converges, as t → +∞, to (u∗, v∗). At this point we can state
that no periodic solution can exist in R. Indeed by contradiction,

assume (
◦
u(t),

◦
v(t)) be a periodic solution in R. Corollary 3.1 yields

m[
◦
u] = u∗ hence, a time value t̄ > 0 there exists such that

(
◦
u(t̄),

◦
v(t̄)) ∈ T .

Obviously this last property cannot hold. Arguing as in Theorem
4.2, we conclude that (u∗, v∗) is globally attractive in R2

+. �

The next Figure shows in rectangle T the equilibrium (u∗, v∗) and
the direction of the vectorial field generated by (2.1), taking a =
7.6, b = 2, k = 0.6. For the same parameters values, in Figure 6,
some trajectories starting in T are plotted.

4 4.5 5 5.5 6 6.5 7 7.5
3

4
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Figure 5. a = 7.6, b = 2, k = 0.6 The vector
field in T . The filled point denotes (u∗, v∗).
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