
Journal of the Vol. 41, Issue 2, pp. 143-150, 2022
Nigerian Mathematical Society ©Nigerian Mathematical Society

CONVERGENCE OF SOLUTIONS OF SOME SECOND-ORDER NONLINEAR
DIFFERENTIAL EQUATIONS

M. O. OMEIKE1, K.D. ADULOJU2, AND A.A. ABDURASID3

ABSTRACT. This paper is concerned with the convergence of solutions of the second-order differential
equation

ẍ+ f (x)ẋ+g(x) = e(t,x, ẋ),
where f (x),g(x) and e(t,x, ẋ) are continuous real-valued functions in their arguments. By using the direct
method of Lyapunov and constructing a complete Lyapunov function, sufficient conditions which guarantee
the convergence of solutions are obtained.

1. INTRODUCTION

Consider the second-order nonlinear ordinary differential equation

(1.1) ẍ+ f (x)ẋ+g(x) = e(t,x, ẋ),

where f (x),g(x) and e(t,x, ẋ) are continuous real-valued functions in their arguments, and dots denote
differentiation with respect to t. Solutions of (1.1) exist for any pre-assigned initial data under the above
conditions on f ,g and e. Any two distinct solutions x1(t),x2(t) are said to converge if

(1.2) x2(t)− x1(t)→ 0, ẋ2(t)− ẋ1(t)→ 0

as t → ∞. The convergence property of solutions of nonlinear ordinary differential equations of order
two and higher orders have been a subject of investigation in the literature, and the method of investigat-
ing this property is the direct method of Lyapunov, which also involves the construction of a quadratic
function also known as the Lyapunov function ([1]-[5], [7]-[18]). However, the construction of this func-
tion remains a general problem. Perhaps, a reason behind few literature on the subject of convergence
of solutions in ordinary differential equations. In particular, Ezeilo [7] and Loud [10] have investigated
(1.1) in which f (x) = c > 0 and e(t,x, ẋ) = e(t) for convergence of solutions. Loud [10] showed that if
g′ exists and satisfies

g′ ≥ b > 0 for all x
then all solutions x(t) of

(1.3) ẍ+ cẋ+g(x) = e(t)

which ultimately lie in the range |x| ≤ A are convergent provided that

max
|x|≤A

g′(x)<
1
2

c2.

Ezeilo [7] in his own work showed that all solutions of (1.3) which satisfy |x(t)| ≤ A are convergent
provided

H(A)< c2,

where

H(A) = max
g(ξ2)−g(ξ1)

ξ2 −ξ1
, ξ2 ̸= ξ1
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for every pair of numbers ξ2,ξ1 (ξ2 ̸= ξ1) chosen from the closed interval −A ≤ x ≤ A. Ezeilo [7]
further studied (1.3), and obtained sufficient conditions for convergence of solutions. On the other hand,
Cartwright has investigated (1.1) for convergence of solutions. Cartwright [5] proved that if g′′ exists
and both f and g′ are strictly positive for all x, then all ultimately bounded solutions of (1.1) converge
provided g(0) = 0 and |g′′(x)| is sufficiently small.
Our present investigation is concerned with the convergence of solutions of (1.1). By using the direct
method of Lyapunov, and constructing a complete Lyapunov function (See [6]) we establish sufficient
conditions which guarantee the convergence of solutions of (1.1). Our results show that we do not
require g′ and g′′ for the convergence of solutions of (1.1). To the best our knowledge, study on the
convergence of solutions of (1.1) is scarce in literature.

2. STATEMENT OF MAIN RESULT

It will be assumed throughout what follows that the functions f (x),g(x) and e(t,x, ẋ) are continuous
in their respective arguments. Our first result is as follows:

Theorem 2.1. Suppose that g(0) = 0 and that
(i) there are finite constants ε > 0,a0 > 0,b0 > 0,a > 0,b > 0 such that

(2.1) ε < a ≤ f (x2 − x1)≤ a0

(2.2) b ≤ g(x2)−g(x1)

x2 − x1
≤ b0, x2 ̸= x1;

(ii) there is a finite constant ∆ > 0 satisfying

(2.3) |e(t,x2, ẋ2)− e(t,x1, ẋ1)| ≤ ∆{(x2 − x1)
2 +(ẋ2 − ẋ1)

2}
1
2 .

In addition, let αi,βi (i = 1,2,3) be positive constants such that
3

∑
i=1

αi < 1,
3

∑
i=1

βi < 1, and set

(2.4) A = εα1β1a[b− 1
4

ε(a0 − ε)],

(2.5) B = min
{

εα2β2a[b− 1
4

ε(a0 − ε)],
4
ε

α3β3a[b− 1
4

ε(a0 − ε)]

}
.

Then, there is a finite constant ν > 0 such that if the constant ∆ in (2.3) satisfies ∆ < ν , then any two
distinct solutions x1 = x1(t),x2 = x2(t) of (1.1) for which

(2.6) [g(x2 − x1)−{g(x2)−g(x1)}]2 ≤ A(x2 − x1)
2,

(2.7) [ f (x2 − x1)(ẋ2 − ẋ1)−{ f (x2)ẋ2 − f (x1)ẋ1}]2 ≤ B
{
(x2 − x1)

2 +(ẋ2 − ẋ1)
2}

for all t ≥ t0 (0 < t0 < ∞) necessarily converge.

We shall also show that the theorem itself still holds with (2.3) replaced by the more weaker condition

(2.8) |e(t,x2, ẋ2)− e(t,x1, ẋ1)| ≤ ψ(t){(x2 − x1)
2 +(ẋ2 − ẋ1)

2}
1
2 ,

where for some k such that 0 ≤ k ≤ 2,ψ ≥ 0 is such that

(2.9)
∫

∞

−∞

ψ
k(t)dt < ∞.

Sufficient conditions which guarantee the convergence of all solutions of (1.1) were also obtained.
However, it will be convenient to deal first with Theorem 2.1 in its present form, and then, later (see
§5), to indicate what modifications are necessary to convert our methods to the case in which e(t,x, ẋ)
satisfies (2.8).
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3. PRELIMINARY

Consider

(3.1)
ẋ = y
ẏ = − f (x)y−g(x)+ e(t,x,y),

the equivalent system form of (1.1) obtained by setting ẋ = y. Let (x1(t),y1(t)), (x2(t),y2(t)) be two
distinct solutions of system (3.1) such that

(3.2) [g(x2 − x1)−{g(x2)−g(x1)}]2 ≤ A(x2 − x1)
2

(3.3) [ f (x2 − x1)(y2 − y1)−{ f (x2)y2 − f (x1)y1}]2 ≤ B
{
(x2 − x1)

2 +(y2 − y1)
2}

for all t ≥ t0 (0 < t0 < ∞), where A and B are given by (2.4) and (2.5) respectively. Then, in view of
(1.2), it is enough, in order to prove Theorem 2.1, to show that

(3.4) x2(t)− x1(t)→ 0, y2(t)− y1(t)→ 0

as t → ∞. Our proof of this will rest mainly on the properties of the function V = V (x2 − x1,y2 − y1)
defined thus:

(3.5) 2V = [ε(x2 − x1)+(y2 − y1)]
2 +(y2 − y1)

2 +4
∫ x2−x1

0
g(s)ds,

where ε (0 < ε < 1) is a constant.
Clearly, subject to hypothesis (i) of Theorem 2.1, the function V satisfies

(3.6) D1
{
(x2 − x1)

2 +(y2 − y1)
2}≤V ≤ D2

{
(x2 − x1)

2 +(y2 − y1)
2} ,

where D1 = min{b, 1
2}> 0 and D2 = max{b0 + ε, 1

2 ε +1}> 0 are finite constants.
Next, we want to show that for any two distinct solutions (x1,y1),(x2,y2) of (3.1) such that the inequal-
ities (3.2) and (3.3) (equivalently (2.6), (2.7)) hold, the function V (t) ≡ V (x2(t)− x1(t),y2(t)− y1(t))
satisfies

(3.7) V (t)→ 0 as t → ∞.

This consequently implies (3.4) since V (t) is positive definite. To arrive at (3.7), we first prove the
following:

Lemma 3.1. Let the conditions of Theorem 2.1 hold and let (x1(t),y1(t)), (x2(t),y2(t)) be any two
distinct solutions of (3.1) such that

(3.8) [g(x2 − x1)−{g(x2)−g(x1)}]2 ≤ A(x2 − x1)
2

(3.9) [ f (x2 − x1)(y2 − y1)−{ f (x2)y2 − f (x1)y1}]2 ≤ B
{
(x2 − x1)

2 +(y2 − y1)
2}

for all t ≥ t0 (0 < t0 < ∞), where A and B are given by (2.4) and (2.5) respectively. Then there exists
constants ν > 0,D3 > 0 such that if the constant ∆ in (2.3) satisfies ∆ < ν , then the function V (t) ≡
V (x2(t)− x1(t),y2(t)− y1(t)) satisfies

(3.10) V̇ (t)+D3V (t)≤ 0

for all t ≥ t0.

Proof. The proof of Lemma 3.1 rests on the function V (t) ≡ V (x2(t)− x1(t),y2(t)− y1(t)) (in (3.5))
defined for any two distinct solutions (x1(t),y1(t)), (x2(t),y2(t)) of (3.1). On differentiating V with
respect to t and using the system

(3.11)
ẋ2 − ẋ1 = y2 − y1

ẏ2 − ẏ1 = −{ f (x2)y2 − f (x1)y1}−{g(x2)−g(x1)}+θ ,
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where θ = e(t,x2,y2)− e(t,x1,y1), we have, after further simplification that

(3.12)

V̇ (t) = −ε {g(x2)−g(x1)}(x2 − x1)− f (x2 − x1)(y2 − y1)
2 −U

+ε(x2 − x1)G(x2,y2,x1,y1)+2(y2 − y1)G(x2,y2,x1,y1)

+2(x2 − x1)H(x2,x1)+{ε(x2 − x1)+2(y2 − y1)}θ ,

where
U = { f (x2 − x1)− ε}(y2 − y1)

2 + ε { f (x2 − x1)− ε}(x2 − x1)(y2 − y1),

H(x2,x1) = g(x2 − x1)−{g(x2)−g(x1)} ,

G(x2,y2,x1,y1) = f (x2 − x1)(y2 − y1)−{ f (x2)y2 − f (x1)y1} ,

(3.13) θ = e(t,x2,y2)− e(t,x1,y1).

Obviously,
ε {g(x2)−g(x1)}(x2 − x1)≥ εb(x2 − x1)

2

by (2.2) and,
f (x2 − x1)(y2 − y1)

2 ≥ a(y2 − y1)
2

by (2.1). We also have that

U = { f (x2 − x1)− ε}
{
(y2 − y1)

2 + ε(x2 − x1)(y2 − y1)
}
.

By completing the square for the quadratic on the right hand side and using (2.1), we obtain

U ≥−ε2

4
(a0 − ε)(x2 − x1)

2 if y2 ̸= y1.

This estimate is always true since U = 0 when y2 = y1.
Substituting various estimates in (3.12) yields

(3.14)

V̇ (t) ≤ −D4(x2 − x1)
2 −D5(y2 − y1)

2 +2(y2 − y1)H(x2,x1)

+{ε(x2 − x1)+2(y2 − y1)}G(x2,y2,x1,y1)

+D6
{
(x2 − x1)

2 +(y2 − y1)
2
} 1

2 |θ |,

where D4 = ε
[
b− 1

4 ε(a0 − ε)
]
> 0,D5 = a > 0,D6 = D

1
2
7 > 0,D7 = max{2ε + ε2,2ε +4}> 0.

Now, let us choose some real constants αi > 0,βi > 0 (i = 1,2,3) such that
3

∑
i=1

αi < 1,
3

∑
i=1

βi < 1. The

inequality (3.14) is then rewritten

(3.15)

V̇ (t) ≤ −

(
1−

3

∑
i=1

αi

)
D4(x2 − x1)

2 −

(
1−

3

∑
i=1

βi

)
D5(y2 − y1)

2

−
3

∑
i=1

Ui +D6
{
(x2 − x1)

2 +(y2 − y1)
2} 1

2 |θ |,

where
U1 = α1D4(x2 − x1)

2 +β1D5(y2 − y1)
2 −2(y2 − y1)H(x2,x1),

U2 = α2D4(x2 − x1)
2 +β2D5(y2 − y1)

2 −2(y2 − y1)G(x2,y2,x1,y1),

U3 = β3D5(y2 − y1)
2 +α3D4(x2 − x1)

2 − ε(x2 − x1)G(x2,y2,x1,y1).
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Clearly,

U1 = α1D4(x2 − x1)
2 +β1D5

{
(y2 − y1)−

1
β1D5

H(x2,x1)

}2

− 1
β1D5

H2(x2,x1)

≥ α1D4(x2 − x1)
2 − 1

β1D5
H2(x2,x1).

Hence U1 ≥ 0 provided that
H2(x2,x1)≤ α1β1D4D5(x2 − x1)

2.

Similarly,

U2 = α2D4(x2 − x1)
2 +β2D5

{
(y2 − y1)−

1
β2D5

G(x2,y2,x1,y1)

}2

− 1
β2D5

G2(x2,y2,x1,y1)

≥ α2D4(x2 − x1)
2 − 1

β2D5
G2(x2,y2,x1,y1).

Thus, U2 ≥ 0 provided
G2(x2,y2,x1,y1)≤ α2β2D4D5(x2 − x1)

2.

In the same vein,

U3 = β3D5(y2 − y1)
2 +α3D4

{
(x2 − x1)−

ε

2α3D4
G(x2,y2,x1,y1)

}2

− ε2

α3D4
G2(x2,y2,x1,y1)

≥ β3D5(y2 − y1)
2 − ε2

α3D4
G2(x2,y2,x1,y1).

Therefore, U3 ≥ 0 provided that

G2(x2,y2,x1,y1)≤
4
ε2 α3β3D4D5(y2 − y1)

2.

On combining these estimates with (3.15), we have, in view of (3.13) and (2.3)

V̇ (t)≤−(D8 −D6∆)
{
(x2 − x1)

2 +(y2 − y1)
2}

provided that

(3.16)
H2(x2,x1) ≤ D9(x2 − x1)

2,

G2(x2,y2,x1,y1) ≤ D10
{
(x2 − x1)

2 +(y2 − y1)
2} ,

where D8 = min

{(
1−

3

∑
1=1

αi

)
D4,

(
1−

3

∑
1=1

βi

)
D5

}
> 0, D9 = α1β1D4D5 > 0,

D10 = min
{

α2β2D4D5,
4
ε2 α3β3D4D5

}
> 0, and choose

(3.17) ν =
D8

D6
.

Then, provided ∆ < ν , and if (3.16) holds, there exists a constant D11 > 0 such that

V̇ (t)≤−D11
{
(x2 − x1)

2 +(y2 − y1)
2}



148 M. O. OMEIKE1, K.D. ADULOJU2, AND A.A. ABDURASID3

which by (3.6), implies that

V̇ (t)≤−D12V (t)

for some constant D12 > 0. □

4. COMPLETION OF THE PROOF OF THEOREM 2.1

Let ν > 0 and let t0 (0 < t0 < ∞) be fixed as in Lemma 3.1. From Lemma 3.1, for any two dis-
tinct solutions (x1(t),y1(t)),(x2(t),y2(t)) of (3.1) (satisfying (3.11)) for which (3.8) and (3.9) hold, the
function V (t)≡V (x2(t)− x1(t),y2(t)− y1(t)) satisfies

V̇ (t)+D12V (t)≤ 0

for all t ≥ t0 provided ∆ < ν . Integrating this inequality between t0 and t, yields

V (t)≤V (t0)e−D12(t−t0), t ≥ t0,

which implies

V (t)→ 0 as t → ∞

since V (t0) is bounded and the function V is positive definite. In view of the preceding remarks in §3,
this proves (3.4) and thus the theorem is proved with ν given by (3.17).

5. CASE FOR WHICH e(t,x,y) SATISFIES (2.8)

Let us now turn to the case in §1 in which e(t,x,y) satisfies (2.8). The proof of Theorem 2.1 in this
case follows the lines indicated in §3-§4 except for some minor modifications which we now outline.
Assume that (3.2), (3.3) hold. Then by (3.5), (3.6), (3.12), (3.13) and (3.15), V̇ (t) satisfies

(5.1) V̇ (t)≤−2D13V (t)+D14{V (t)}
1
2 |Φ|,

where

Φ = e(t,x2,y2)− e(t,x1,y1).

Let k2 be any constant in the range 1 ≤ k2 ≤ 2. Then, by proceeding as in [14,§5], using (2.8), it can be
shown that

−D13V (t)+D14{V (t)}
1
2 |Φ| ≤ D15ψ

k2(t)V (t)

for some D15. On combining this with (5.1) yields

(5.2) V̇ (t)+D13V (t)≤ D15ψ
k2(t)V (t)

for all t ≥ t0. A straightforward integration of (5.2) between t0 and t now yields

V (t)exp
[

D13t −D15

∫ t

0
ψ

k2(τ)dτ

]
≤V (t0)exp

[
D13t −D15

∫ t0

0
ψ

k2(τ)dτ

]
,

t ≥ t0, which, in view of (2.9), implies that

V (t)≤ D16V (t0)e−D17(t−t0), t ≥ t0

for some constant D17,0 < D17 < ∞. The proof of the theorem may now be completed by proceeding as
in §4.



CONVERGENCE OF SOLUTIONS OF SOME SECOND-ORDER... 149

6. ULTIMATE BOUNDEDNESS OF SOLUTION

Having established the convergence result, Theorem 2.1, we can now state and prove a result on the
ultimate boundedness of solution of (1.1).

Theorem 6.1. Suppose that g(0) = 0 and that
(i) there are positive constants a0,b0,a,b such that

ε < a ≤ f (x)≤ a0,

b ≤ g(x)
x

≤ b0, x ̸= 0;

(ii) e(t,x,y) satisfies

|e(t,x,y)| ≤ A0 +A1(x2 + y2)
1
2

for all t,x,y, where A0 ≥ 0,A1 ≥ 0 are finite constants. Then, there exists a finite constant µ > 0 such
that if A1 < µ, every solution x(t) of (1.1) ultimately satisfies

x2 + y2 ≤ D,

where D > 0 is a finite constant whose magnitude depends only on constants a0,b0,a,b,A0,A1, as well
as on the functions f and g.

Proof. Obviously, if we choose x1 = y1 = 0 then conditions (i), (ii) of Theorem 2.1 reduce to (i), (ii)
of Theorem 6.1 with A0 = 0. Thus, by Theorem 6.1 subject to the conditions of Theorem 2.1, every
solution x(t) of (3.1) ultimately satisfies

|x(t)| ≤ D18, |y(t)| ≤ D18,

where D18 = D18(a0,b0,a,b,∆)> 0 is a finite constant. □
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