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FURTHER STABILITY CRITERIA FOR CERTAIN
SECOND-ORDER DELAY DIFFERENTIAL

EQUATIONS WITH MIXED COEFFICIENTS
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ABSTRACT. This work investigates the asymptotic stability of
the trivial solution of the second-order linear delay differential
equation

ẍ(t) = a1ẋ(t) + a2ẋ(t− τ) + b1x(t) + b2x(t− τ),

where τ > 0, a1, a2, b1, b2 are real numbers. By reducing the
equation to a linear second-order ordinary differential equation
with constant coefficients, sufficient conditions which guarantee
the asymptotic stability of the trivial solution are obtained in a
very simple form.
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Abstract. This work investigates the asymptotic stability of
the trivial solution of the second-order linear delay differential
equation

ẍ(t) = a1ẋ(t) + a2ẋ(t− τ) + b1x(t) + b2x(t− τ),

where τ > 0, a1, a2, b1, b2 are real numbers. By reducing the
equation to a linear second-order ordinary differential equation
with constant coefficients, sufficient conditions which guaran-
tee the asymptotic stability of the trivial solution are obtained
in a very simple form.

1. Introduction

Consider the differential equation

ẍ(t) = a1ẋ(t) + a2ẋ(t− τ) + b1x(t) + b2x(t− τ), (1.1)
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where τ > 0, ai, bi (i = 1, 2) are constants, which has applications
in science and technology ([1] - [14]). Equation 1.1 has been a sub-
ject of interest in literature recently. Cahlon and Schmidt [3],[4],
and Yeniceriolu [14] have investigated 1.1 for asymptotic stability
of solutions. Cahlon and Schmidt [3] have studied 1.1 for stabil-
ity of solution using the Pontryagin’s theory of quasi-polynomials,
which is rather long and complicated. In [3], the authors showed
that solutions are not stable if a1a2 ≥ 0 and b1 > 0, b2 > 0, while
in [4], they investigated the asymptotic stability of the trivial so-
lution of 1.1 whenever a1a2 ≥ 0 and b1b2 < 0, and presented some
examples to demonstrate their results. Yeniceriolu [14], also stud-
ied equation 1.1 together with a given initial value for the stability,
asymptotic stability and instability of solutions. In the present pa-
per, we study the stability of solutions of 1.1 by reducing it to an
ordinary differential equation with constant coefficients, and then
deduce stability criteria according to the zeros of the characteristic
polynomial arising from the differential equation. These criteria
are easily determined and are more general than those obtained in
[3],[4] and [14], and we do not necessarily require any algorithm test
[3],[4] nor initial data [9] to obtain them.
To the best of our ability, this approach is scarce in literature to
investigate the stability of solutions of 1.1, and does not require any
knowledge of solution.
This paper is outlined thus: §2 consists of some preliminary stabil-
ity results, §3 contains the main result of the paper, and examples
are presented in §4.

2. PRELIMINARY RESULTS

Consider the linear second-order ordinary differential equation

ÿ(t) + p1ẏ(t) + p2y(t) = 0, (2.1)

where pj (j = 1, 2) are real arbitrary constants. The characteristics
polynomial associated with 2.1 is

λ2 + p1λ+ p2 = 0, (2.2)

obtained by assuming that y = eλt is a solution of 2.1. The eigenval-
ues λj (j = 1, 2) (which are solutions) of 2.2 determine the stability
properties of the solutions of 2.1.

Lemma 2.1. [2]: Suppose the eigenvalues λj (j = 1, 2) of 2.2
satisfy one of the following:
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(i) λ1 < λ2 = 0;
(ii) λ1,2 = ±iµ, µ ∈ R,

then the trivial solution y = 0 of 2.1 is stable.

Lemma 2.2. [2]: If the eigenvalues λj (j = 1, 2) of 2.2 satisfy one
of the following:

(i) λ1 = λ2 < 0;
(ii) λ1 < λ2 < 0;
(iii) λ1,2 = γ ± iµ, γ < 0, µ ∈ R,

then the trivial solution y = 0 of 2.1 is asymptotically stable.

Lemma 2.3. [2]: The trivial solution y = 0 of 2.1 is not stable or
unstable if the eigenvalues λj (j = 1, 2) of 2.2 satisfy one of the
following:

(i) λ1 > λ2 > 0;
(ii) λ1 > λ2 = 0;
(iii) λ1 < 0 < λ2;
(iv) λ1 = λ2 > 0;
(v) λ1,2 = γ ± iµ, γ > 0, µ ∈ R.

In the next section, we state and prove a result which ensures
that the trivial solution of 2.1 is asymptotically stable.

3. MAIN RESULT

The main result of this paper is the following theorem.

Theorem 3.1. : Let τ > 0, ai, bi (i = 1, 2) be arbitrary real con-
stants satisfying:

(i)
b1 + b2
1 + τa2

< 0,

(ii)
a1 + a2 − τb2

1 + τa2
< 0, where 1 + τa2 ̸= 0.

Then, the trivial solution of equation (1.1) is asymptotically stable.

Proof. Let us rewrite1.1 as

ẍ(t) = (a1+ a2)ẋ(t)+ (b1+ b2)x(t)− a2

∫ t

t−τ

ẍ(s)ds− b2

∫ t

t−τ

ẋ(s)ds,

where

x(t− τ) = x(t)−
∫ t

t−τ

ẋ(s)ds and ẋ(t− τ) = ẋ(t)−
∫ t

t−τ

ẍ(s)ds
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have been substituted accordingly in equation 1.1. By some rear-
rangements, we obtain∫ t

t−τ

[a2ẍ(s) + b2ẋ(s)] ds = (a1 + a2)ẋ(t) + (b1 + b2)x(t)− ẍ(t).

Simplifying further, we obtain∫ t

t−τ

[a2ẍ(s) + b2ẋ(s)] ds =

∫ t

t−τ

1

τ
[(a1 + a2)ẋ(t) + (b1 + b2)x(t)− ẍ(t)] ds.

Thus,

(1 + τa2)ẍ(t)− (a1 + a2 − τb2)ẋ(t)− (b1 + b2)x(t) = 0.

Dividing the last equation by 1 + τa2 ̸= 0, we obtain

ẍ(t)−
(
a1 + a2 − τb2

1 + τa2

)
ẋ(t)−

(
b1 + b2
1 + τa2

)
x(t) = 0, (3.1)

where 1 + τa2 ̸= 0.
This implies that the problem of investigating the stability proper-
ties of the equation 1.1 is equivalent to investigating the stability
properties of equation 3.1.
Suppose x(t) = eλt for t ∈ R, is a solution of 3.1, we see that λ is a
root (zero) of the characteristic polynomial

λ2 −
(
a1 + a2 − τb2

1 + τa2

)
λ−

(
b1 + b2
1 + τa2

)
= 0, 1 + τa2 ̸= 0. (3.2)

The zeros of 3.2 are given by

λ1,2 =
1

2


(
a1 + a2 − τb2

1 + τa2

)
±

√(
a1 + a2 − τb2

1 + τa2

)2

+ 4

(
b1 + b2
1 + τa2

) ,

where 1 + τa2 ̸= 0.
Obviously, λ1,2 possess negative real part if conditions (i) and (ii)
of Theorem 3.1 are satisfied. Hence the trivial solution of 1.1 (or
equivalently 3.1) is asymptotically stable. □

REMARKS

(1) If condition (ii) of Theorem3.1 is replaced with
a1 + a2 − τb2

1 + τa2
=

0, then λ1,2 have no real roots. Then, following Lemma2.1
the trivial solution of 1.1 (or equivalently 3.1) is stable.

(2) If condition (i) of Theorem3.1 is replaced with
b1 + b2
1 + τa2

= 0,

then the zeros of 3.2 are given by λ1 < 0 and λ2 = 0.
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Then, following Lemma2.1 the trivial solution of 1.1 (or
equivalently 3.1) is stable.

(3) If a1a2 ≥ 0 and b1 > 0, b2 > 0, then either a1 ≤ 0, a2 ≤
0, b1 > 0, b2 > 0 or a1 ≥ 0, a2 ≥ 0, b1 > 0, b2 > 0. In either
case conditions (i) and (ii) of Theorem3.1 are not satisfied.
Hence the trivial solution of 1.1 (or equivalently 3.1) is not
stable. This corroborates results obtained by Cahlon and
Schmidt in [3].

(4) Obviously, conditions (i) and (ii) of Theorem3.1 are easy to
apply to examples presented in [4] and [14]. We do not need
any algorithm test nor initial data to obtain our results.

4. EXAMPLES

Here, we present the following examples which are also found in
[4] and [14].

Example 4.1. Consider

ẍ(t) = 0.3ẋ(t) + 0.6ẋ(t− 1)− 11x(t) + x(t− 1), (4.1)

where we deduce that

a1 = 0.3, a2 = 0.6, b1 = −11, b2 = 1, τ = 1, a1a2 = 0.18 > 0, b1b2 = −11 < 0,

b1 + b2
1 + τa2

= −6.25 < 0

and
a1 + a2 − τb2

1 + τa2
= −0.0625 < 0. Following equation 3.1, we

obtain
ẍ(t) + 0.0625ẋ(t) + 6.25x(t) = 0,

with solution

x(t) = e−0.03125t (C1 cos 2.4998046799t+ C2 sin 2.4998046799t) ,

C1, C2 are real constants. Hence the trivial solution of 4.1 is asymp-
totically stable since all hypotheses of Theorem3.1 are satisfied. See
Figure 1.

Example 4.2. Consider

ẍ(t) = 0.6ẋ(t) + 0.3ẋ(t− 1)− 2x(t) + x(t− 1), (4.2)

where we deduce that

a1 = 0.6, a2 = 0.3, b1 = −2, b2 = 1, τ = 1, a1a2 = 0.18 > 0, b1b2 = −2 < 0,

b1 + b2
1 + τa2

= −0.769 < 0
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and
a1 + a2 − τb2

1 + τa2
= −0.0769 < 0. Following equation 3.1, we ob-

tain
ẍ(t) + 0.0769ẋ(t) + 0.769x(t) = 0,

with solution

x(t) = e−0.0384615385t (C1 cos 0.87621488t+ C2 sin 0.87621488t) ,

C1, C2 are real constants. All the conditions of Theorem 3.1 are
satisfied, hence the trivial solution of 4.2 is asymptotically stable.
See Figure 2.

Example 4.3. Consider

ẍ(t) = 2ẋ(t− 1)− 3x(t) + x(t− 1), (4.3)

where we deduce that

a1 = 0, a2 = 2, b1 = −3, b2 = 1, τ = 1, a1a2 = 0, b1b2 = −3 < 0,

b1 + b2
1 + τa2

= −0.667 < 0,

and
a1 + a2 − τb2

1 + τa2
= 0.3333 > 0. Following equation 3.1, we get

ẍ(t) + 0.3333ẋ(t) + 0.667x(t) = 0,

with solution

x(t) = e0.1666667t (C1 cos 0.799305253t+ C2 sin 0.799305253t) ,

C1, C2 are real constants. Clearly, condition (ii) of Theorem 3.1 is
not satisfied. Therefore, the trivial solution of 4.3 is not stable. See
Figure 3.

Example 4.4. Consider

ẍ(t) = ẋ(t− 1)− 3x(t) + x(t− 1), (4.4)

where we deduce that

a1 = 0, a2 = 1, b1 = −3, b2 = 1, τ = 1, a1a2 = 0, b1b2 = −3 < 0,

b1+b2
1+τa2

= −1 < 0 and
a1 + a2 − τb2

1 + τa2
= 0. Following equation 3.1, we

obtain
ẍ(t) + x(t) = 0,

with solution
x(t) = C1 cos t+ C2 sin t,

C1, C2 are real constants. The trivial solution of 4.4 is stable. See
Figure 4.
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Example 4.5. Consider

ẍ(t) = −4ẋ(t) +
1

e
ẋ(t− 1

2
)− 3x(t) +

1

e
x(t− 1

2
), (4.5)

where we deduce that

a1 = −4, a2 =
1

e
, b1 = −3, b2 =

1

e
, τ =

1

2
, a1a2 = −4

e
< 0, b1b2 = −3

e
< 0,

b1+b2
1+τa2

= −2.3786 < 0 and and
a1 + a2 − τb2

1 + τa2
= −3.2232 < 0.

Following equation 3.1, we obtain

ẍ(t) + 3.2232ẋ(t) + 2.3786x(t) = 0,

with solution

x(t) = C1e
−2.8304628117t + C2e

−0.3927251709t,

C1, C2 are real constants. Obviously, the trivial solution of 4.5 is
asymptotically stable.See Figure 5.

Example 4.6. Consider

ẍ(t) = −e

2
ẋ(t)− 1

2
ẋ(t− 1) + x(t)− x(t− 1), (4.6)

where we deduce that

a1 = −e

2
, a2 = −1

2
, b1 = 1, b2 = −1, τ = 1, a1a2 =

e

4
> 0, b1b2 = −1 < 0,

b1 + b2
1 + τa2

= 0

and
a1 + a2 − τb2

1 + τa2
= 1− e < 0. Following equation 3.1, we obtain

ẍ(t) + (1− e)ẋ(t) = 0,

with solution
x(t) = C1 + C2e

−1.7182881825t,

C1, C2 are real constants. The trivial solution of 4.6 is stable.See
Figure 6.

Example 4.7. Consider

ẍ(t) = 3ẋ(t)− ẋ(t− π

2
)− 2x(t) + x(t− π

2
), (4.7)

where we deduce that

na1 = 3, a2 = −1, b1 = −2, b2 = 1, τ =
π

2
, a1a2 = −3 < 0, b1b2 = −2 < 0,

b1+b2
1+τa2

= 0.9339 > 0 and
a1 + a2 − τb2

1 + τa2
= −0.7519 < 0. Following

equation 3.1, we obtain

ẍ(t) + 0.7519ẋ(t)− 09339x(t) = 0,
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with solution

x(t) = C1e
t + C2e

−1.751938394t,

C1, C2 are real constants. The trivial solution of 4.7 is not stable.
See Figure 7.

Example 4.8. Consider

ẍ(t) + aẋ(t) + bx(t− τ) = 0, (4.8)

where a, b, τ are positive real numbers. Following §3, equation 4.8
reduces to

ẍ+ (a− τb)ẋ+ bx = 0,

whose trivial solution (equivalently 4.8) is asymptotically stable
provided a−τb > 0. This corroborates results obtained in ([1],Example
4.2.7.,page 253).

Example 4.9. Consider

ẋ(t) = a0x(t) + a1x(t− τ), (4.9)

where τ > 0, a0, a1 are real constants. Following §3, equation 4.9
reduces to

ẋ(t)−
(
a0 + a1
1 + a1τ

)
x(t) = 0,

with solution

x(t) = e

(
a0+a1
1+a1τ

)
t
, 1 + a1τ ̸= 0. (4.10)

The trivial solution of equation 4.9 is asymptotically stable provided
a0 + a1 < 0 and 1 + a1τ > 0. This corroborates results obtained
in ([5],Example 2.4.3.,page 58). We can also deduce from 4.10 that
solutions of 4.9 are asymptotically stable provided a0 + a1 > 0 and
1 + a1τ < 0.
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Figure 1

Figure 2
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Figure 3

Figure 4
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Figure 5

Figure 6
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Figure 7
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