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ON THE STABILITY AND BOUNDEDNESS OF
SOLUTIONS OF CERTAIN KIND OF SECOND
ORDER DELAY DIFFERENTIAL EQUATIONS

D. O. ADAMS, M. O. OMEIKE, I. A. OSINUGA AND B. S. BADMUS

ABSTRACT. In this paper, we study the second order non-
autonomous nonlinear delay differential equation

x′′ + b(t)g(x, x′) + c(t)h(x(t− r))m(x′) = p(t, x, x′)

for asymptotic stability of solutions when p(t, x, x′) = 0 and the
boundedness of solutions when p(t, x, x′) ̸= 0. By using a suit-
able Lyapunov-Krasovskĭı functional with sufficient conditions
we investigate the stability of solutions while the mean value
theorem and the integral method with sufficient conditions are
hereby employed to establish the boundedness of solutions re-
sult. This work improved on some earlier results in the litera-
ture.
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1. INTRODUCTION

Consider the second order non-autonomous nonlinear delay differ-
ential equations of the form

x′′ + b(t)g(x, x′) + c(t)h(x(t− r))m(x′) = p(t, x, x′), (1)

where b, c ∈ C(I,R+), g ∈ C(R2,R), h ∈ C(R,R),m ∈ C(R,R+),
p ∈ C(I × R2,R) are real valued functions which depend on the
arguments displayed explicitly and r is a positive constant. It would
be assumed that solutions of the class of delay differential equations
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being considered exist, b, c, g, h,m, and p are continuous in their
respective arguments (see Rao [15]).
It is interesting to note that stability and boundedness of solu-

tions are fundamental to the theory and applications of differential
equations. While the study of qualitative theory of solutions to non-
linear differential equations with or without delay have attracted
the attention of many researchers and have achieved many results
in this area (see [2], [11], [13], [19]). In these references, the authors
made use of Lyapunov’s direct method to obtain the conditions
which establish the stability and boundedness of solutions. In par-
ticular for delay differential equations, Zhang [20] considered the
retarded Liènard equation

x′′ + f(x)x′ + g(x(t− h)) = 0, (2)

in which h is a nonnegative constant and g, f are continuous with
f(x) > 0 for all x ∈ R. The author obtained conditions for the
boundedness and global asymptotic stability results. In [21], Zhang
examined equation (2) and gave results on the uniform bounded-
ness, uniform ultimate boundedness and oscillation of solutions.
Peng [14] studied the second-order nonlinear system with delay:

x′′(t) + f(x(t), x′(t)) + g(x(t), x′(t))ψ(x(t− τ)) = p(t),

where f ,g,p are continuous functions, ψ is a differentiable function,
τ is a positive constant and gave four theorems on the stability
of zero solution, the boundedness of the solutions, the existence of
the periodic solutions, the existence and uniqueness of the station-
ary oscillation. Besides, in [17], Tunç established some results for
the stability and the boundedness of solutions of non-autonomous
differential equations of second order with a variable deviating ar-
gument of the form:

x′′(t) + f(t, x(t), x′(t))x′(t) + b(t)g(x(t− τ(t)) = q(t),

where τ(t) is variable deviating argument; f , b, g and q are con-
tinuous functions in their arguments on R+ × R2, R, R and R+

respectively, where R+ = [0,∞) .
Also, Ogundare et al. [13] considered the second order nonlinear

differential equations of the form:

x′′ + a(t)f(x, x′) + g(x(t− τ)) = p(t, x, x′),

where a, f , g and p are continuous functions that depend (at most)
only on the arguments displayed explicitly and τ ∈ [0, h] (τ > 0).
The authors obtained results for the global asymptotic stability,
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boundedness and ultimate boundedness of the solutions respec-
tively.
However, in the paper by Athanassov [3], a generalized Lienard

differential equations of the form

x′′ + b(t)f(x, x′) + c(t)g(x)h(x′) = p(t, x, x′), (3)

where b, c, f, g, h, and p are real valued functions which depend at
most on the arguments displayed explicitly was considered. The
Gronwall’s inequality and two forms of second mean value theo-
rem for integrals were used to established the boundedness of all
solutions and their first derivatives.
The motivation for this work comes from the paper by Athanassov

[3] in which we extend equation (3) to a system of delay differential
equation and investigate the stability of all solutions for the case
in which p(t, x, x′) = 0 and the boundedness of all solutions for the
case p(t, x, x′) ̸= 0. We shall employ a suitable Lyapunov Krasovskǐi
functional with sufficient conditions to establish the stability of all
solutions while the mean value theorem and the two forms of second
mean value theorem for integrals with sufficient conditions will be
used to investigate boundedness of solutions respectively.

2. PRELIMINARIES AND RESULT ON STABILITY OF SOLUTIONS

Here, we give some basic information for the general non-autonomous
differential system with delay (see Burton [4], Burton and Markay [5],
Tunç [16], see also Kolmanovskii and Myšhkis [8], Kolmanovskii and
Nosov [9], Krasovskǐi [10] and Yoshizawa [18]).
Consider the general non-autonomous differential system with de-

lay:

x′(t) = f(t, xt), xt(s) = x(t+ s), −r ≤ s ≤ 0, t ≥ 0 ′ = d/dt (4)

where f : [0,∞)× CH → Rn is continuous and takes bounded sets
into bounded sets and f(t, 0) = 0. Here, (C, ∥ · ∥) is the Banach
space of continuous functions ϕ : [−r, 0] → Rn with supremum
norm, r is a non-negative constant, CH is the open H-ball in CH :=
{ϕ ∈ (C[−r, 0],Rn) : ∥ϕ∥ < H}.
Standard existence (see Burton [4]) shows that if ϕ ∈ CH and

t ≥ 0, then there is at least one continuous solution x(t, t0, ϕ) on
[t0, t0+α) satisfying (4) for t > t0, xt(t0, ϕ) = ϕ and α some positive
constant; if there is a closed subset B ⊂ CH such that the solution
remains in B, then α = ∞. In addition, ∥ · ∥ denotes the norm in
Rn with ∥x∥ = max

1≤i≤n
|xi|.
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Definition 2.1[4]. A continuous function W : [0,∞) → [0,∞)
with W (0) = 0, W (s) > 0 if s > 0, and W strictly increasing is a
wedge. Let wedges be denoted by W or Wi, where i is an integer.

Definition 2.2[4]. Let D be an open set in Rn with 0 ∈ D.
A function V : [0,∞) × D → [0,∞) is called positive definite if
V (t, 0) = 0 and if there is a wedge W1 with V (t, x) ≥ W1(|x|), and
is called decrescent if there is a wegde W2 with V (t, x) ≤ W2(|x|).

Definition 2.3[4]. Let f(t, 0) = 0. The zero solution of equation
(4) is:

(i): stable if for each ε > 0 and t1 ≥ t0 there exists δ > 0 such that
[ϕ ∈ C(t1), ∥ϕ∥ < δ, t ≥ t1] implies that |x(t, t1, ϕ)| < ε.

(ii): asymptotically stable if it is stable and if for each t1 ≥ t0
there is an η > 0 such that [ϕ ∈ C(t1), ∥ϕ∥ < η] implies
that x(t, t0, ϕ) → 0 as t→ ∞.

Definition 2.4[4]. Let V (t, ϕ) = V be a continuous functional
defined for t ≥ 0, θ ∈ CH . The derivative of V along solutions of
(4) will be denoted by

.

V and is defined by the following relation:

.

V= lim sup
h→0

V (t+ h, xt+h(t+ ϕ))− V (t, xt(t0, ϕ))

h
,

where x(t0, ϕ) is the solution of (4) with xt0(t0, ϕ) = ϕ.

The main result for the stability of solutions of the non-autonomous
nonlinear second order delay differential equations is hereby given.
First, we state the equivalent system for equation (1) with p(t, x, x′) =
0 as follows: Let

x′ = y,

y′ = −b(t)g(x(t), y(t))− c(t)h(x(t))m(y(t))

+c(t)m(y(t))

∫ t

t−r

h′(x(s))y(s)ds. (5)

Theorem 2.5. Suppose that b(t) and c(t) are continuously differ-
entiable on [0,∞) and the following conditions are satisfied
(c1) 1 ≤ c(t) ≤ b(t) ≤ Φ, c′(t) ≤ 0, Φ > 0, t ∈ [0,∞);

(c2) h(0) = 0,
h(x)

x
≥ δ0 > 0 (x ̸= 0), and h′(x) ≤ c for all x;



ON THE STABILITY AND BOUNDEDNESS... 53

(c3)
g(x, y)

y
≥ η > 0, (y ̸= 0), for all x, y ∈ R;

(c4)
1

m(y)
≥ ξ (m(y) ̸= 0) for all y ∈ R;

(c5)

∫ ∞

0

|c′(t)|dt <∞, c′(t) → 0 as t→ ∞.

Then the solution x = 0 of (5) is asymptotically stable provided
that

0 < r <
ξη

Φc
.

To prove the Theorem 2.5, we define the Lyapunov functional
V ≡ V (t, xt, yt) as:

V = c(t)

∫ x

0

h(τ)dτ +

∫ y

0

τ/m(τ)dτ + λ

∫ 0

−r

∫ t

t+s

y2(τ)dτds, (6)

where λ is a positive constant to be determined later. We now show
that equation (6) is positive definite, we have

V = c(t)

∫ x

0

h(τ)

τ
τdτ +

∫ y

0

1

m(τ)
τdτ + λ

∫ 0

−r

∫ t

t+s

y2(τ)dτds.

Applying the assumptions (c2) to (c4), we obtain

V ≥ c(t)δ0

∫ x

0

τdτ + ξ

∫ y

0

τdτ + λ

∫ 0

−r

∫ t

t+s

y2(τ)dτds.

Then

V ≥ δ0
x2

2
+ ξ

y2

2
+ λ

∫ 0

−r

∫ t

t+s

y2(τ)dτds,

which shows that the functional is positive definite.

Differentiating V along the equation (5), we have:

V ′ = c′(t)

∫ x

0

h(τ)dτ + c(t)h(x)y + y/m(y) · y′ + λry2 − λ

∫ t

t−r

y2(τ)dτ

= c′(t)

∫ x

0

h(τ)dτ + c(t)h(x)y − b(t)
g(x, y)

m(y)
y − c(t)h(x)y

+c(t)y

∫ t

t−r

h′(x(τ))y(τ)dτ + λry2 − λ

∫ t

t−r

y2(τ)dτ.

In the light of the inequality 2|uv| ≤ u2 + v2, we have

c(t)y

∫ t

t−r

h′(x(τ))y(τ)dτ ≤ Φc

2
ry2 +

Φc

2

∫ t

t−r

y2(τ)dτ.
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So,

V ′ ≤ c′(t)

∫ x

0

h′(τ)dτ − b(t)
g(x, y)

m(y)
y + [

Φc

2
ry2 +

Φc

2

∫ t

t−r

y2(τ)dτ ]

+λry2 − λ

∫ t

t−r

y2(τ)dτ

≤ c′(t)

∫ x

0

h(τ)dτ − 1

m(y)
ηy2 +

1

2
(Φc+ 2λ)ry2 + {1

2
Φc− λ}

∫ t

t−r

y2(τ)dτ.

If we take λ =
1

2
Φc > 0, and by (c4), we have

V ′ ≤ c′(t)

∫ x

0

h(τ)dτ − (ξη − Φcr)y2.

If we choose

0 < r <
ξη

Φc

and there exist a δ > 0 such that

V ′ ≤ c′(t)

∫ x

0

h(τ)dτ − δy2.

Thus, the solutions of system (5) is asymptotically stable. Hence,
Theorem 2.5 is satisfied.

Remark 2.6. From equation (1), if h(x(t − r)) = h(x), where
t > r, r > 0 and p(t, x, x′) ̸= 0, this become similar to the equation
(3) considered by Athanasov [3].

3. FURTHER PRELIMINARIES AND RESULT ON THE
BOUNDEDNESS OF SOLUTIONS

Firstly, we denote R the real line, by R+ and I the intervals (0,∞)
and [0,∞) respectively. The |.| is an absolute value, C(A,R) denote the
set of R-valued continuous function defined on the set A. While L1(A)
denotes the set of Lebesque integrable functions on A.
We state the following lemmas and theorem. The following are two

forms of second mean value theorem for integrals. For example, one can
refer to Hildebrandt [7] and Athanassov [3].
Lemma 3.1. If u ∈ L1[α, β] and v is a positive, bounded and nonin-
creasing function [α, β], then there is a number δ ∈ [α, β] such that∫ β

α
u(s)v(s)ds = v(α+ 0)

∫ δ

α
u(s)ds.



ON THE STABILITY AND BOUNDEDNESS... 55

Lemma 3.2. If u ∈ L1[α, β] and v is a positive, bounded and nonde-
creasing function [α, β], then there is a number δ ∈ [α, β] such that

∫ β

α
u(s)v(s)ds = v(β − 0)

∫ β

δ
u(s)ds.

Theorem 3.3. (Mean Value Theorem [6]). Let [α, β] be a closed,
bounded interval, i.e., −∞ < α < β < ∞. Let f : [α, β] → R be
continuous and let f ′ exist on (α, β). Then there exists a number θ ∈
(α, β) such that

f(β)− f(α) = f ′(θ)(β − α)

(see also Afuwape [1] and Meng [12]).

We now investigate the boundedness of solutions for the non-autonomous
nonlinear delay differential equation (1).

Theorem 3.4. We hereby consider the following basic conditions for
the boundedness of solutions result, we have
(c1) g(x, x

′)x′ > 0 for all (x, x′) ∈ R2, x′ ̸= 0;

(c2) H(x) → ∞ as |x| → ∞, where H(x) =

∫ x

0
h(τ)dτ ≥ 0;

(c3) M(x′) → ∞ as |x′| → ∞, where M(x′) =

∫ x′

0

τ

m(τ)
dτ ;

(c4) h(x(t− r)) = h(x(t))− rh′(x(t))x′(t), t > r, r > 0 and x ∈ R;

(c5) there exist the function (x′(t))2 ∈ L2(I) and positive constants
β2 and T such that 0 < |h′(x(t))|(x′(t))2 ≤ β2, |h′(x(t))| ≤ T.

(c6) There is a nonnegative function e(t) ∈ L1(I) such that
|p(t, x, y)y| ≤ e(t)m(x′) for all (t, x, x′) ∈ I × R2;

Then any solution x(t) of (7) is bounded. If c(t) is non-decreasing on I
and is bounded above on I, then x′(t) is also bounded.

Proof. Now, with the concept of mean value theorem we apply (c4)
where appropriate, such that equation (1) in which p(t, x, x′) ̸= 0 is
equivalent to the following: let x′ = y, then

y′ + b(t)g(x, y) + c(t)m(y)[h(x(t))− rh′(x(t))y(t)] = p(t, x, y). (7)
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Multiplying (7) by y(t)/[c(t)m(y(t))], and integrating both sides from
0 to t, we obtain∫ t

0
y(τ)y′(τ)/[c(τ)m(y(τ))]dτ +

∫ t

0
b(τ)g(x(τ), y(τ))y(τ)/[c(τ)m(y(τ))]dτ

+

∫ t

0
h(x(τ))y(τ)dτ − r

∫ t

0
h′(x(τ))(y(τ))2dτ

=

∫ t

0
p(τ, x(τ), y(τ))y(τ)/[c(τ)m(y(τ))]dτ.

Since the integral in the second term on the left is nonnegative and by
(c1), we have as follows∫ t

0
y(τ)y′(τ)/[c(τ)m(y(τ))]dτ +

∫ t

0
h(x(τ))y(τ)dτ

≤
∫ t

0
|p(τ, x(τ), y(τ))y(τ)|/[c(τ)m(y(τ))]dτ + r

∫ t

0
|h′(x(τ))|(y(τ))2dτ.

By Lemma 3.1, it follows that there is δ ∈ [0, t] such that

1

c(0)

∫ δ

0
y(τ)/m(y(τ))

dy(τ)

dτ
dτ +

∫ t

0
h(x(τ))

dx(τ)

dτ
dτ

≤ 1

c(0)

∫ δ

0
|p(τ, x(τ), y(τ))y(τ)|/m(y(τ))dτ + r

∫ t

0
|h′(x(τ))|(y(τ))2dτ.

Applying (c2), (c3), (c5) and (c6) then

1

c(0)
[M(y(δ))−M(y(0))] +H(x(t))−H(x(0)) ≤ 1

c(0)

∫ ∞

0
e(τ)dτ + rβ2.

Now by (c3) and the assumption on c(t) such that c(t) is non-decreasing
on I lead to the estimate

H(x(t)) ≤ H(x(t)) +
1

c(0)
M(y(δ))

≤ H(x(0)) + rβ2 +
1

c(0)
[M(y(0)) +

∫ ∞

0
e(τ)dτ ].

The right side of the last inequality is a constant independent of t, say
K, therefore (c2) implies that x(t) is bounded on I.
We now suppose that c(t) ≤ c0 on I. Multiply on both sides of (7) by

y(t)/m(y(t)) and integrating from 0 to t, we obtain∫ t

0
y(τ)y′(τ)/m(y(τ))dτ +

∫ t

0
b(τ)g(x(τ), y(τ))y(τ)/m(y(τ))dτ

+

∫ t

0
c(τ)h(x(τ))y(τ)dτ ≤

∫ t

0
|p(τ, x(τ), y(τ))y(τ)|/m(x′(τ))dτ

+r

∫ t

0
c(τ)|h′(x(τ))|(y(τ))2dτ.
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The integral in the second term on the left is nonnegative and by Lemma
3.2 there exists δ ∈ [0, t] such that∫ t

0
y(τ)/m(y(τ))

dy(τ)

dτ
dτ + c(t)

∫ t

δ
h(x(τ))

dx(τ)

dτ
dτ

≤
∫ t

0
|p(τ, x(τ), y(τ))y(τ)|/m(y(τ))dτ + rc(t)

∫ t

δ
|h′(x(τ))|(y(τ))2dτ.

Applying (c2) - (c5), then

M(y(t))−M(y(0)) + c(t)[H(x(t))−H(x(δ))] ≤
∫ ∞

0
e(τ)dτ + rβ2.

Since c(t)H(x(t)) is nonnegative on I, so we have

M(y(t)) ≤ M(y(t) + c(t)H(x(t))

≤ M(y(0)) + c(t)H(x(δ)) +

∫ ∞

0
e(τ)dτ + rβ2

≤ M(y(0)) + c0K + rβ2 +

∫ ∞

0
e(τ)dτ = L,

a constant independent of t. Hence, (c3) implies that y(t) is bounded
on I.

Remark 3.5. From equation (1), if h(x(t − r)) = h(x), where t >
r, r > 0, this reduces to the one considered by Athanasov [3]. Interest-
ingly, Theorem 3.4 shows a significant improvement to that of Theorem
1 considered by Athanassov [3].

4. CONCLUSION

This work investigated the asymptotic stability of solutions for the
equation (1) for which p(t, x, x′) = 0 by using a suitable Lyapunov-
Krasovskĭı functional. In addition, we employed the concept of mean
value theorem (specifically, the chain rule) and the two forms of mean
value theorem for integrals in which the case p(t, x, x′) ̸= 0 to establish
our result on the boundedness of solutions.
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