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APPROXIMATION OF FIXED POINTS OF A FINITE FAMILY OF MULTIVALUED
LIPSCHITZ PSEUDO-CONTRACTIVE MAPPINGS IN BANACH SPACES

M.S. MINJIBIR AND T.S. MUHAMMAD

ABSTRACT. In this work, approximation of fixed point of finite family of multi-valued Lipschitz pseudo-
contractive mappings is studied in the setting of uniformly convex Banach spaces. Utilizing a result in
[Ofoedu, E. U, Zegeye, H., Iterative algorithm for multi-valued pseudo-contractive mappings in Banach
spaces, J. Math. Anal. Appl., 372 (2010), 68-76.], a sequence {yn} is generated by the implicit scheme:
y1 ∈D, yn = (1−tn)yn−1+tnzn, zn ∈ Tnyn, n= 2,3,4, · · · ,Tn = Tn mod N , where {tn}⊆ (0,1) such that tn →
1 as n → ∞ and Ti, i = 1,2,3, · · · ,N,N ∈N, are multi-valued Lipschitz pseudo-contractive maps defined on
D such that Tix is a proximinal subset of D, D an open, convex and nonempty subset of a real uniformly
convex Banach space. The strong convergence of {yn} to a common fixed point of Ti’s, given existence of
such common fixed point, is shown using the defining properties of uniformly convex spaces. Furthermore,
using {yn} and certain characterization of pseudo-contractive maps, the explicit algorithm x1 ∈ D,

xn+1 = (1−λn)xn +λnwn −λnθn(xn − x1), wn ∈ T xn n = 1,2,3, · · · ,
where wn is chosen appropriately and the parameters λn and θn satisfy certain conditions, is shown to
converge strongly to a fixed point of a multi-valued Lipschitz pseudo-contractive map.

1. INTRODUCTION

The fixed point theory of multivalued mappings has attracted and continues to attract the attention of
many researchers. Part of the reasons, perhaps, is the connection of the theory with many real-world
applications. Apart from the theory of differential inclusions, used in studying differential equations
with discontinuous right-hand sides, which was the initial mainstay of applications, other applications
are found in Game Theory, Optimization Theory, etc. For instance, under some conditions, it has been
shown that in noncooperative static games, the equilibrium points of such games coincide with fixed
points of certain multivalued mappings (see, for example, [6] and [5] for more on these connections).
Additionally, in solving the inclusion problem of the form 0 ∈ Au, which has many applications in solv-
ing partial differential equations, a technique used is to convert the problem into a fixed point problem
of an appropriate multivalued map.

Let E denote a normed linear space and E∗ its dual (this will be assumed throughout the paper, unless
otherwise stated). The generalized duality mapping Jq : E → 2E∗

is defined as

Jq(x) := { f ∈ E∗ : ⟨x, f ⟩= ∥x∥q and ∥ f∥= ∥x∥q−1},q > 1,

where ⟨·, ·⟩ denotes the duality pairing between elements of E and E∗. When q = 2, J2 is called the
normalized duality mapping and is denoted by J, that is,

J(x) = { f ∈ E∗ : ⟨x, f ⟩= ∥x∥2 and ∥ f∥= ∥x∥}.

E is said to be uniformly convex if for any ε ∈ (0,2], there exists δε > 0 such that if x,y ∈ E with

∥x∥= ∥y∥= 1 and ∥x− y∥ ≥ ε , then
∥x+ y∥

2
< 1−δε .
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For a multi-valued mapping T : D(T ) ⊆ E → 2E , an element x ∈ D(T ) is called a fixed point of T if
x ∈ T (x), where D(T ) := {x ∈ E : T x ̸= /0}. A multi-valued mapping T : D(T ) ⊆ E → 2E is called
pseudo-contractive if the inequality

∥x− y∥ ≤ ∥x− y+ t((x−u)− (y− v))∥

holds for all x,y ∈ D(T ), u ∈ T x, v ∈ Ty and for all t > 0. Equivalently (following Kato [10]), a
multivalued mapping T is pseudo-contractive if and only if for all x,y ∈ D(T ), there exists j(x− y) ∈
J(x− y) such that

⟨u− v, j(x− y)⟩ ≤ ∥x− y∥2 ∀ u ∈ T x, v ∈ Ty.

A multi-valued mapping A : D(A)⊆ E → 2E is called accretive if

∥x− y∥ ≤ ∥x− y+ t(u− v)∥ ∀x,y ∈ D(A), u ∈ Ax, v ∈ Ay and for each t > 0.

Following Kato [10], a mapping A : D(A) ⊆ E → 2E is accretive if and only if there exists j(x− y) ∈
J(x− y) such that

⟨u− v, j(x− y)⟩ ≥ 0

for each x,y ∈ D(A),u ∈ Ax ,v ∈ Ay. The Hausdorff distance h on 2E is defined as

h(U,V ) = max
{

sup
u∈U

dist(u,V ),sup
v∈V

dist(v,U)

}
,

where U,V ⊆ E and dist(x,K) := inf{d(x,u) : u ∈ K} for x ∈ E, K ⊆ E. When restricted to C B(E), the
family of nonempty closed and bounded subsets of E, h becomes a metric on C B(E). A multivalued
mapping T : D(T )⊆ E → C B(E) is called Lipschitz if there exists L > 0 such that

h(T x,Ty)≤ L∥x− y∥ ∀ x,y ∈ D(T ).

The map T is called nonexpansive when L = 1. The pseudo-contractive mappings, introduced first by
Browder [2], aside generalizing the nonexpansive mappings, are also closely related to the accretive
mappings, in fact, T is pseudo-contractive if and only if I −T is accretive, I being the identity map of
E. Owing to the intimate connection between accretive mappings and the theory of ordinary and partial
differential equations, the study of pseudo-contractive mappings has continued to attract a great deal

of attention. For instance, in the evolution equation
du
dt

+Au = 0,u(0) = u0 which describes certain
phenomena, the operator A is accretive (see, e.g., [7], Ch. 8). Also, in the study of the more general

evolution equation
du
dt

+A(t)u(t) = f (t,u(t)), t ≥ 0,u(0) = u0, a chief assumption on A is accretivity
(see, e.g., Browder [1]). In fact, even for the initial-value problem for the 2nd-order doubly nonlinear

equation:
d2u
dt2 +A

(
du
dt

)
+Bu = f (t),u(0) = u0,

du
dt

(0) = v0, accretivity of A, among others, is re-

quired to prove existence of a solution (see [16]).

A lot of work can be found in the literature concerning approximation, especially for singlevalued map-
pings. With regard to approximation of fixed points of multivalued mappings, the question of whether
the result of Browder [3] for (single-valued) nonexpansive mappings in Hilbert spaces can be obtained
for multivalued nonexpansive mappings was answered in the negative (see Pietramala [14]). In [13],
Ofoedu and Zegeye were able to extend the work of Morales and Jung [12] (we recall that the work
of Morales and Jung [12] was an extension of the result of Reich [15] from the setting of uniformly
smooth Banach spaces and for nonexpansive mappings to that of reflexive Banach spaces having uni-
formly Gâteuax differentiable norms and for continuous pseudo-contractive mappings) to multi-valued
settings. Ofoedu and Zegeye, precisely, proved the following theorem, which will be used in the sequel.

Theorem 1.1 ([13]). Let D be a nonempty open convex subset of a real Banach space X and T : D →
CB(X) be a continuous (relative to Hausdorff metric) pseudo-contractive mapping satisfying weakly
inward condition and let u ∈ D be fixed. Then for each t ∈ (0,1) there exists yt ∈ D satisfying yt ∈
tTyt +(1− t)u. If, in addition, X is reflexive and has a uniformly Gâteaux differentiable norm such that
every closed convex bounded subset of D has fixed point property for nonexpansive self-mappings, then
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T has a fixed point if and only if {yt} remains bounded as t → 1−. In this case, {yt} converges strongly
to a fixed point of T .

In the same paper [13], Ofoedu and Zegeye obtained the following result.

Theorem 1.2 ([13]). Let X be a reflexive real Banach space having a uniformly Gâteaux differentiable
norm, D be a nonempty, open and convex subset of X , such that every closed, convex, bounded and
nonempty subset of D has the fixed point property for nonexpansive self-mappings. Let T : D → K(D)
be a pseudo-contractive Lipschitz mapping with Lipschitz constant L > 0, where K(D) denotes the
family of all nonempty compact subsets of D, and let u ∈ D be fixed. Let {xn} be a sequence generated
iteratively from arbitrary x0 ∈ D, w0 ∈ T x0 by

(1.1) xn+1 := (1−λn)xn +λnwn −λnθn(xn − x0), wn ∈ T xn.

Suppose that ∥wn −wn−1∥ = dist(wn−1,T xn), n ≥ 1. If F(T ) ̸= /0, then {xn} converges strongly to a
fixed point of T .

Chidume et al. [5] improved the result of Ofoedu and Zegeye [13] above in the class of q-uniformly
smooth Banach spaces, by weakening the Lipschitz assumption to continuity and boundedness on the
mapping and making the choice of wn easier. One notes that the choice of wn in the scheme of Ofoedu
and Zeyege [13] is not arbitrary. For the sigle-valued case, the perturbation of Mann algorithm given
by the explicit algorithm (1.1), which we use in Theorem 3.6 above, has the advantage of giving strong
convergence to fixed point for the class of Lipschitz pseudo-contractive mappings without having to
require λn and θn to be acceptably paired (see, e.g., [7] Chapter 11). Chidume et al. [5] proved the
following theorem.

Theorem 1.3 ([5]). Let X be a q-uniformly smooth real Banach space and D be a nonempty, open and
convex subset of X . Assume that T : D → CB(D) is a multi-valued continuous (with respect to the
Hausdorff metric), bounded and pseudo-contractive mapping with F(T ) ̸= /0. Let {xn} be a sequence
generated iteratively from arbitrary x1 ∈ D by

xn+1 := (1−λn)xn +λnun −λnθn(xn − x1), un ∈ T xn, n ≥ 1.

Then, there exists a real constant γ0>0 such that if λ
q−1
n < γ0θn, ∀n ≥ 1, the sequence {xn} converges

strongly to a fixed point of T , where the sequences {λn}, {θn} satisfy certain conditions.

Following the work of Chidume and Shahzad [9] and that of Zhou and Chang [19], Song [17] con-
structed the following implicit scheme in the setting of uniformly convex Banach spaces.

Theorem 1.4 (see [17]). Suppose K is a nonempty closed convex subset of a uniformly convex Banach
space X and Ti : K → K, i = 1,2,3, ...,N, are Lipschitz pseudo-contractive mappings with Lipschitz
constant L ≥ 0 such that F =

⋂N
i=1 F(Ti) ̸= /0. Let {αn} be a real sequence satisfying the conditions

αn ∈ (0,b]⊆ (0,1) for some b ∈ (0,1). Let {xn} be defined by

xn = αnxn−1 +(1−αn)Tnxn, n ≥ 1, Tn = Tn mod N .

Then, limn→∞ ∥xn − Tixn∥ = 0, ∀ i ∈ I = {1,2,3, ...,N}. In addition, the sequence {xn} converges
strongly to a common fixed point of the mappings {Ti} if and only if {xn} has a strongly convergent
subsequence.

It is our purpose in this paper to obtain a multivalued version of Theorem 1.4 and use it to prove the
convergence of an explicit scheme to a fixed point of a multivalued Lipschitz pseudo-contracive mapping
in uniformly convex Banach spaces.

2. PRELIMINARIES

A subset A of E is called proximinal if for each x ∈ E there exists u ∈ A such that

||x−u||= dist(x,A).

Examples of proximinal sets are nonempty, closed and convex subsets of a Hilbert space. We denote by
P(A) the family of all proximinal and bounded subsets of A.
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Lemma 2.1 ([13]). Let D be a nonempty open convex subset of a real Banach space E and T :
D → C B(E) be a continuous (relative to the Hausdorff metric) pseudo-contractive mapping satisfying
weakly inward condition and let u ∈ D be fixed. Then for each t ∈ (0,1) there exists yt ∈ D satisfying
yt ∈ tTyt +(1− t)u.

Lemma 2.2. (See, e.g., [12]) Let J be the normalized duality mapping on E. Then, for any x,y ∈ E, the
following inequality holds:

||x+ y||2 ≤ ||x||2 +2⟨y, j(x+ y)⟩, ∀ j(x+ y) ∈ J(x+ y).

We shall also need the following lemma.

Lemma 2.3. ([11]) Let {αn}, {λn} and {γn} be sequences of nonnegative numbers satisfying the con-
ditions: limn→∞ αn = 0, limn→∞

γn
αn

= 0 and ∑
∞
n=1 αn = ∞. Suppose the recursive inequality

λ
2
n+1 ≤ λ

2
n −αnψ(λn+1)+ γn, n = 1,2,3, ...

is satisfied, where ψ : [0,∞) → [0,∞) is a strictly increasing function such that it is positive on (0,∞)
and ψ(0) = 0. Then λn → 0 as n → ∞.

Lemma 2.4. See, e.g., [18] Let {an} be a sequence of real numbers satisfying the condition that for
some positive integer N, akN+ j → p j as k → ∞, j = 0,1,2, · · · ,N −1. Then {an} converges if and only
if an+1 −an → 0 as n → ∞.

3. MAIN RESULTS

We first use Lemma 2.1 (due to Ofoedu and Zegeye) to obtain the following lemma which is a multi-
valued analogue of Lemma 2.1(i) of [4] which will be used in the main results.

Lemma 3.1. Let E be a Banach space and D ⊆ E be nonempty open and convex. Let Ti : D →
C B(D), i = 1,2,3, ...,N, be continuous pseudo-contractive mappings such that F =

⋂N
i=1 F(Ti) ̸= /0.

Let {tn}∞
n=1 ⊆ (0,1) and {yn}∞

n=1 be a sequence defined by{
y0 ∈ D,
yn = (1− tn)yn−1 + tnzn, zn ∈ Tnyn, n ≥ 1, Tn = Tn mod N .

Then, limn→∞ ∥yn − p∥ exists for each p ∈ F.

Proof. Using Lemma 2.1 above, given yn−1, taking t = tn, u = yn−1, and T = Tn, we obtain yn =
(1− tn)yn−1 + tnzn for some zn ∈ Tnyn. Let p ∈ F . Then, using the definition of yn above, Lemma
2.1 and definition of the duality mapping, we obtain the following inequality

∥yn − p∥2 = ⟨tnzn +(1− tn)yn−1 − p, j(yn − p)⟩
= (1− tn)⟨yn−1 − p, j(yn − p)⟩+ tn⟨zn − p, j(yn − p)⟩

≤ (1− tn)∥yn−1 − p∥∥yn − p∥+ tn∥yn − p∥2.

It follows that, for all p ∈ F ,
∥yn − p∥ ≤ ∥yn−1 − p∥ ∀n ≥ 1.

Thus,
lim
n→∞

∥yn − p∥ exists for each p ∈ F.

□

Theorem 3.2. Let E be a uniformly convex Banach space and D ⊆ E be nonempty, open and convex.
Let Ti : D → P(D), i = 1,2,3, ...,N, be multi-valued Lipschitz pseudo-contractive mappings such that
F =

⋂N
i=1 F(Ti) ̸= /0. Let {yn} be a sequence defined by

(3.1)
{

y1 ∈ D
yn = (1− tn)yn−1 + tnzn, zn ∈ Tnyn, n ≥ 2, Tn = Tn mod N ,

where {tn}∞
n=1 ⊆ (0,1) such that tn → 1 as n → ∞. Suppose that Ti(p) = {p}, ∀ p ∈ F . Then,

limn→∞ dist(yn,Tlyn) = 0, ∀ l ∈ {1,2,3, ...,N}.
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Proof. Let p ∈ F . By Lemma 3.1, limn→∞ ∥yn − p∥ exists. This implies that {yn} is bounded and since
tn → 1, it follows that {zn} is bounded. Also for y ∈ Tlyn,

∥yn − y∥ ≤ ∥yn − p∥+∥p− y∥
= ∥yn − p∥+dist(y,Tl p)

≤ ∥yn − p∥+ max
w∈Tlyn

dist(w,Tl p)

≤ ∥yn − p∥+h(Tlyn,Tl p)

≤ (1+L)∥yn − p∥.

Thus, infy∈Tlyn ∥yn−y∥≤ (1+L)∥yn− p∥ for all l ∈{1,2,3, ...,N}, where L :=max{Li : i= 1,2,3, ...,N}
and Li is a Lipschitz constant of Ti, i = 1,2,3, ...,N. Hence, for all l ∈ {1,2,3, ...,N},

dist(yn,Tlyn)≤ (1+L)∥yn − p∥ ∀ n ∈ N.

Therefore, if ∥yn− p∥→ 0 as n → ∞, the conclusion holds. We now assume that ∥yn− p∥↛ 0 as n → ∞.
Then, ∥yn − p∥ → σ > 0 as n → ∞ . We first show that limn→∞ ∥yn − yn−1∥ = 0. For contradiction,
suppose ∥yn − yn−1∥↛ 0 as n → ∞. Then, for any n0 ∈ N fixed, we have∥∥∥∥ yn − yn−1

∥yn0 − p∥

∥∥∥∥↛ 0 as n → ∞.

Hence, there exist ε0 ∈ (0,2], a subsequence {ynk} of {yn} such that∥∥∥∥ynk − ynk−1

∥yn0 − p∥

∥∥∥∥=

∥∥∥∥ (ynk − p)
∥yn0 − p∥

−
(ynk−1 − p)
∥yn0 − p∥

∥∥∥∥≥ ε0 for all k.

By uniform convexity of E, there exists δε0 > 0 such that

(3.2) ∥(ynk − p)+(ynk−1 − p)∥ ≤ 2(1−δε0)∥yn0 − p∥ ∀k large enough.

We note that as {∥yn − p∥} is monotone decreasing, ∥ynk − p∥ ≤ ∥yn0 − p∥ for all k large enough. It

then follows that
∥∥∥ ynk−p
∥yn0−p∥

∥∥∥≤ 1 for all k large enough. Now, using inequality (3.2) we have

⟨(ynk − p)+(ynk−1 − p), j(ynk − p)⟩ ≤ ∥(ynk − p)+(ynk−1 − p)∥∥ynk − p∥
≤ 2(1−δε0)∥yn0 − p∥∥ynk − p∥

which implies that

⟨ynk−1 − p, j(ynk − p)⟩ ≤ 2(1−δε0)∥yn0 − p∥∥ynk
− p∥−∥ynk − p∥2.

Using the last inequality and pseudo-contractiveness of the mappings we get

∥ynk − p∥2 = ⟨ynk − p, j(ynk − p)⟩
= ⟨(1− tnk)ynk−1 + tnk

znk − p, j(ynk − p)⟩
= (1− tnk)⟨ynk−1 − p, j(ynk − p)⟩+ tnk⟨znk − p, j(ynk − p)⟩

≤ 2(1− tnk)(1−δε0)∥yn0 − p∥∥ynk − p∥− (1− tnk)∥ynk − p∥2

+ tnk∥ynk − p∥2

from which we obtain the following inequality

2(1− tnk)∥ynk − p∥2 ≤ 2(1− tnk)(1−δε0)∥yn0 − p∥∥ynk − p∥− tnk∥ynk − p∥2

≤ 2(1− tnk)(1−δε0)∥yn0 − p∥∥ynk − p∥.

Therefore, ∥ynk − p∥ ≤ (1− δε0)∥yn0 − p∥ for k large enough. Taking limit as k → ∞, we get σ ≤
(1−δε0)∥yn0 − p∥. Since n0 was arbitrary, we have

σ ≤ (1−δε0) inf
n∈N

∥yn − p∥= (1−δε0) lim
n→∞

∥yn − p∥= (1−δε0)σ < σ ,
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a contradiction. Therefore, limn→∞ ∥yn − yn−1∥= 0. Hence,

∥yn+i − yn∥ ≤ ∥yn+i − yn+i−1 + yn+i−1 −+...− yn+1 + yn+1 − yn∥
≤ ∥yn+i − yn+i−1∥+∥yn+i−1 − yn+i−2∥+ ...+∥yn+1 − yn∥→ 0

as n → ∞ for all i ∈ {1,2,3, ...,N}. Thus,

lim
n→∞

∥yn+i − yn∥= 0, ∀ i ∈ {1,2,3, ...,N}.

Using the recursive formula (3.1), limn→∞ ∥yn − yn−1∥= 0 and the fact that tn → 1, we obtain

lim
n→∞

∥yn − zn∥= 0.

Therefore, for zi
n ∈ Tn+iyn such that dist(zn+i,Tn+iyn) = ∥zi

n − zn+i∥ (zi
n exists since Tjx ∈ P(D) for all

j), we obtain

∥yn − zi
n∥ ≤ ∥yn − yn+i∥+∥yn+i − zn+i∥+∥zn+i − zi

n∥
= ∥yn − yn+i∥+∥yn+i − zn+i∥+dist(zn+i,Tn+iyn)

≤ ∥yn − yn+i∥+∥yn+i − zn+i∥+ sup
v∈Tn+iyn+i

dist(v,Tn+iyn)

≤ ∥yn − yn+i∥+∥yn+i − zn+i∥+h(Tn+iyn,Tn+iyn+i)

≤ (1+L)∥yn − yn+i∥+∥yn+i − zn+i∥→ 0 as n → ∞.

Thus,

(3.3) lim
n→∞

∥yn − zi
n∥= 0, ∀ i ∈ {1,2,3, ...,N}.

For any l ∈ {1,2,3, ...,N} fixed, setting nk = kN,k = 1,2,3, · · · , it follows that

zl
nk
∈ Tnk+lynk = TkN+lynk = Tlynk .

Using (3.3),
dist(ynk ,Tlynk)→ 0 as k → ∞ ∀ l ∈ {1,2,3, ...,N}.

For j ∈ N∪{0} fixed, let u ∈ Tlynk+ j such that ∥u− zl
nk
∥= dist(zl

nk
,Tlynk+ j). Then,∣∣∣∥ynk+ j −u∥−∥ynk − zl

nk
∥
∣∣∣≤ ∥ynk+ j − ynk∥+∥u− zl

nk
∥

= ∥ynk+ j − ynk∥+dist(zl
nk
,Tlynk+ j)

≤ ∥ynk+ j − ynk∥+h(Tlynk ,Tlynk+ j)

≤ (1+L)∥ynk+ j − ynk∥→ 0 as k → ∞.

Therefore,

lim
k→∞

(
∥ynk+ j −u∥−∥ynk − zl

nk
∥
)
= 0.

Since limk→∞ ∥ynk − zl
nk
∥= 0, we must have limk→∞ ∥ynk+ j −u∥= 0. Thus,

(3.4) lim
k→∞

dist(ynk+ j,Tlynk+ j) = 0, j ∈ N∪{0}.

We note that for any w ∈ Tlyn+1,v ∈ Tlyn,

∥yn+1 −w∥ ≤ ∥yn+1 − yn∥+∥yn − v∥+∥v−w∥
so that taking infimum over v we obtain

∥yn+1 −w∥ ≤ ∥yn+1 − yn∥+dist(yn,Tlyn)+dist(w,Tlyn)

from which we conclude that

∥yn+1 −w∥ ≤ ∥yn+1 − yn∥+dist(yn,Tlyn)+h(Tlyn+1,Tlyn).

Taking infimum over w gives

dist(yn+1,Tlyn+1)−dist(yn,Tlyn)≤ (1+L)∥yn+1 − yn∥.
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Similar arguments yield

dist(yn,Tlyn)−dist(yn+1,Tlyn+1)≤ (1+L)∥yn+1 − yn∥.

Therefore,

(3.5) |dist(yn+1,Tlyn+1)−dist(yn,Tlyn)| ≤ (1+L)∥yn+1 − yn∥→ 0 as n → ∞

By virtue of (3.4) and (3.5), Lemma 2.4 gives lim
n→∞

dist(yn,Tlyn) = 0, ∀ l ∈ {1,2,3, ...,N}. □

A mapping T : D→C B(D) is called hemicompact if for any sequence {xn} in D such that d(xn,T xn)→
0 as n → ∞, there exists a subsequence {xnk} of {xn} such that xnk → p ∈ D.

Remark 3.3. If D is compact, every multi-valued mapping T : D → C B(D) is hemicompact.

Corollary 3.4. Let E, D, Ti, {yn} and {tn} be as in Theorem 3.2. If Ti0 is hemicompact for some
i0 ∈ {1,2,3, ...,N}, then {yn} converges strongly to a common fixed point of the mappings {Ti}N

i=1.

Proof. From Theorem 3.2, dist(yn,Ti0yn)→ 0 as n → ∞. Hemicompactness of Ti0 guarantees existence
of a subsequence {ynk} of {yn} such that ynk → q ∈ D as k → ∞. Continuity of Ti, i = 1,2,3, ...,N (with
respect to h) implies that Tiynk → Tiq as k → ∞ ∀i ∈ {1,2,3, ...,N}. Now,

dist(q,Tiq)≤ ∥q− ynk∥+dist(ynk ,Tiynk)+h(Tiynk ,Tiq)→ 0 as k → ∞ ∀ i.

Consequently, dist(q,Tiq) = 0 for each i ∈ {1,2,3, ...,N} and this gives q ∈ Tiq (proximinal sets are
closed) for each i ∈ {1,2,3, ...,N}. Thus, q ∈ F . By Lemma 3.1, limn→∞ ∥yn − q∥ exists. Since
limk→∞ ∥ynk −q∥= 0, it follows that limn→∞ ∥yn −q∥= 0. □

Corollary 3.5. Let E, D, Ti, {yn} and {tn} be as in Theorem 3.2. If D is relatively compact, then {yn}
converges strongly to a common fixed point of the mappings {Ti}N

i=1.

Proof. Since D is compact, each Ti is hemicompact and Corollary 3.4 applies. □

3.1. Explicit Algorithm. In this section, we shall use the implicit scheme (3.1) of Theorem 3.2 to prove
strong convergence theorem for an explicit scheme for a multivalued Lipschitz pseudo-contractive map-
ping. Our theorem below, Theorem 3.6, gives an extension of the main result (Theorem 3.1) of [8] for a
singlevalued map, due to Chidume and Zegeye, from the setting of real Banach spaces having uniformly
Gâteaux differentiable norms to that of uniformly convex real Banach spaces and for a multivalued map.

Theorem 3.6. Let D be a nonempty, open and convex subset of a uniformly convex Banach space E and
T : D → P(D) be a multi-valued Lipschitz pseudo-contractive mapping with Lipschitz constant L ≥ 0
such that F = F(T ) ̸= /0 and T (p) = {p} ∀p ∈ F . Let {λn} and {θn} be real sequences in (0,1] such
that

(i) limn→∞ θn = 0, (ii) λn(1+θn)≤ 1, ∑λnθn = ∞, lim
n→∞

λn

θn
= 0 and

(iii) lim
n→∞

(
θn−1

θn
−1)

λnθn
= 0. Let x∗ ∈ F and {xn} be a sequence generated from arbitrary x1 ∈ D by

(3.6) xn+1 = (1−λn)xn +λnwn −λnθn(xn − x1), wn ∈ T xn ∀ n ≥ 1,

where ∥wn −wn−1∥= dist(wn−1,T xn),n ≥ 2.Then, limn→∞ dist(xn,T xn) = 0.

Proof. Since λn
θn

→ 0 as n → ∞, we can find an N0 ∈ N such that λn ≤ dθn ∀n ≥ N0, where d :=
1

2(2+L)( 5
2+L)

. Let x∗ ∈ F(T ) and let r > 0 be sufficiently large such that xN0 ∈ Br(x∗) and x1 ∈ B r
2
(x∗).

Step 1. Here, we prove that the sequence {xn} is bounded. To show this, it suffices to show that xn ∈
B := Br(x∗), ∀n ≥ N0. We now proceed by induction. The choice of r guarantees that xN0 ∈ B := Br(x∗).
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We now assume that xn ∈B for some n≥N0. Suppose, for the sake of contradiction, that xn+1 /∈B. Using
the recursive formula (3.6) and Lemma 2.2 we obtain

||xn+1 − x∗||2 = ||(xn − x∗)−λn((xn −wn)+θn(xn − x1))||2

≤ ||xn − x∗||2 −2λn⟨(xn −wn)+θn(xn − x1), j(xn+1 − x∗)⟩

= ||xn − x∗||2 −2λnθn||xn+1 − x∗||2

+2λn⟨θn(xn+1 − xn)− (xn −wn)+θn(x1 − x∗)

+(xn+1 −wn+1)− (xn+1 −wn+1), j(xn+1 − x∗)⟩.

(3.7)

Since T is pseudo-contractive, we have ⟨xn+1 −wn+1, j(xn+1 − x∗)⟩ ≥ 0 ∀ n ≥ 1. Thus, from (3.7), we
get the following estimates

||xn+1 − x∗||2 ≤ ||xn − x∗||2 −2λnθn||xn+1 − x∗||2

+2λn⟨θn(xn+1 − xn)+θn(x1 − x∗)+(xn+1 − xn)

+(wn −wn+1), j(xn+1 − x∗)⟩(3.8)

≤ ||xn − x∗||2 −2λnθn||xn+1 − x∗||2 +2λn [2||xn+1 − xn||
+dist(wn,T xn+1)+θn||x1 − x∗||] ||xn+1 − x∗||

≤ ||xn − x∗||2 −2λnθn||xn+1 − x∗||2 +2λn [2||xn+1 − xn||
+h(T xn,T xn+1)+θn||x1 − x∗||] ||xn+1 − x∗||

≤ ||xn − x∗||2 −2λnθn||xn+1 − x∗||2 +2λn [θn||x1 − x∗||
+(2+L)||(xn+1 − xn|| ] ||xn+1 − x∗||

≤ ||xn − x∗||2 −2λnθn||xn+1 − x∗||2 +2λn [θn||x1 − x∗||
+(2+L)λn||(xn − x∗+ x∗−wn)+ θn(xn − x∗+ x∗− x1)||]
×||xn+1 − x∗||

≤ ||xn − x∗||2 −2λnθn||xn+1 − x∗||2 +2λn [θn||x1 − x∗||
+(2+L)λn((2+L)||(xn − x∗||+ θn||x1 − x∗||) ]||xn+1 − x∗||

≤ ||xn − x∗||2 −2λnθn||xn+1 − x∗||2

+2λn

[
λn(2+L)

(
5
2
+L

)
r+

θn

2
r
]
||xn+1 − x∗||(3.9)

since xn ∈ B, x1 ∈ B r
2
(x∗) and θn ≤ 1. We now have from (3.9) that

2λnθn||xn+1 − x∗||2 ≤ ||xn − x∗||2 −||xn+1 − x∗||2

+2λn

[
λn(2+L)

(
5
2
+L

)
r+

θn

2
r
]
||xn+1 − x∗||.

Thus, since ||xn+1 − x∗||> r ≥ ||xn − x∗||, we get

θn||xn+1 − x∗|| ≤
[

λn(2+L)
(

5
2
+L

)
r+

θn

2
r
]
.

So, it follows from the last inequality that

||xn+1 − x∗|| ≤
[

λn

θn
(2+L)

(
5
2
+L

)
r+

r
2

]
≤
[

1
2(2+L)( 5

2 +L)

(
2+L

)(
5
2
+L

)
r+

r
2

]
= r

since
λn

θn
≤ 1

2(2+L)( 5
2 +L)

, ∀ n ≥ N0.

This is a contradiction since xn+1 /∈ B. Thus, xn ∈ B for all positive integers n ≥ N0. The sequence {xn}
is therefore bounded.
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Step 2. We prove that ||xn − yn|| → 0 as n → ∞, where {yn} is the sequence obtained from Lemma 3.1
with tn = 1−θn and y0 = x1. Using the recursive formula (3.6) and Lemma 2.2, we have

||xn+1 − yn||2 = ||(xn − yn)−λn((xn −wn)+θn(xn − x1))||2

≤ ||xn − yn||2 −2λn⟨(xn −wn)+θn(xn − x1), j(xn+1 − yn)⟩
= ||xn − yn||2 −2λnθn⟨(xn+1 − yn), j(xn+1 − yn)⟩

+2λn⟨θn(xn+1 − yn)− (xn −wn)−θn(xn − x1), j(xn+1 − yn)⟩
= ||xn − yn||2 −2λnθn||xn+1 − yn||2 +2λn⟨θn(xn+1 − xn)(3.10)

+[θn(x1 − yn)− (yn − zn)]− [(xn+1 −wn+1)− (yn − zn)]

+[(xn+1 −wn+1)− (xn −wn)], j(xn+1 − yn)⟩, wn+1 ∈ T xn+1.

From the pseudo-contractiveness of T , we have for some j(xn+1 − yn) ∈ J(xn+1 − yn) that, ⟨(xn+1 −
wn+1)− (yn − zn), j(xn+1 − yn)⟩ ≥ 0 ∀n ≥ 1.
Also, using the definition of yn we obtain

θn(x1 − yn)− (yn − zn) = 0, zn ∈ Tyn.

Therefore, from (3.10), we get

||xn+1 − yn||2 ≤ ||xn − yn||2 −2λnθn||xn+1 − yn||2 +2λn⟨θn(xn+1 − xn)

+[(xn+1 −wn+1)− (xn −wn)], j(xn+1 − yn)⟩
≤ ||xn − yn||2 −2λnθn||xn+1 − yn||2 +2λndist(wn,T xn+1)

×||xn+1 − yn||+4λ
2
n ||xn −wn +θn(xn − x1)||||xn+1 − yn||

≤ ||xn − yn||2 −2λnθn||xn+1 − yn||2 +2λnh(T xn,T xn+1)

×||xn+1 − yn||+4λ
2
n ||xn −wn +θn(xn − x1)||||xn+1 − yn||

≤ ||xn − yn||2 −2λnθn||xn+1 − yn||2

+2λn(2+L)||xn+1 − xn||||xn+1 − yn||
≤ ||xn − yn||2 −2λnθn||xn+1 − yn||2

+2λ
2
n (2+L)||xn −wn +θn(xn − x1)||||xn+1 − yn||.(3.11)

Since xn and {yn} are bounded, a real number M > 0 exists such that from (3.11),

(3.12) ||xn+1 − yn||2 ≤ ||xn − yn||2 −2λnθn||xn+1 − yn||2 +2λ
2
n (2+L)M.

Using pseudo-contractiveness of T again, we have

||yn−1 − yn|| ≤ ||yn−1 − yn +
1
θn

((yn−1 − zn−1)− (yn − zn)) ||

= ||yn−1 − yn +

(
θn−1

θn
x1 −

θn−1

θn
yn−1

)
− (x1 − yn)||

≤
(

θn−1

θn
−1

)
(||x1||+ ||yn−1||)

≤
(

θn−1

θn
−1

)
M1, for some M1 > 0.(3.13)

From (3.12) and (3.13), we get

||xn+1 − yn||2 ≤ ||xn − yn−1 ||
2 −2λnθn||xn+1 − yn||2 +M1

(
θn−1

θn
−1

)
+2λ

2
n (2+L)M.

The conditions on {λn} and {θn}, the foregoing inequality and Lemma 2.3 imply xn+1 − yn → 0 as
n → ∞. Thus, from the Lipschitz continuity of T and the fact that λn → 0, it follows that xn − yn → 0 as
n → ∞.
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Step 3. We prove that dist(xn,T xn)→ 0 as n → ∞. Since dist(yn,Tyn)→ 0 as n → ∞ from Theorem 3.2,
we have

dist(xn,T xn)≤ ||xn − yn||+dist(yn,Tyn)+h(Tyn,T xn)

≤ ||xn − yn||+dist(yn,Tyn)+L||xn − yn||
= (1+L)||xn − yn||+dist(yn,Tyn)→ 0 as n → ∞.

□

Remark 3.7. Examples of λn and θn satisfying the conditions (i), (ii) and (iii) of Theorem 3.6 are:
λn := 1

(n+1)a ,θn := 1
(n+1)b , with 0 < b < a and a+b < 1, see, for example, [8].

Corollary 3.8. Let D, E, T , {xn}, {λn} and {θn} be as in Theorem 3.6. Suppose T is hemicompact,
then {xn} converges strongly to a fixed point of T .

Proof. From Theorem 3.6, we get dist(xn,T xn) → 0 as n → ∞. Since T is hemicompact, there exists
a subsequence {xnk} of the sequence {xn} such that xnk → x∗ ∈ D as k → ∞. Now, dist(x∗,T x∗) ≤
||x∗− xnk ||+ dist(xnk ,T xnk)+ h(T xnk ,T x∗)→ 0 as k → ∞. This implies that dist(x∗,T x∗) = 0 and this
gives x∗ ∈ T x∗ = T x∗ which in turn implies that x∗ ∈ F . From Step 2 of the proof of Theorem 3.6,
ynk → x∗ as k → ∞. Since {∥yn − x∗∥} has a limit by Lemma 3.1, it follows that yn → x∗ as n → ∞.
Consequently,

||xn − x∗|| ≤ ||xn − yn||+ ||yn − x∗|| → 0 as n → ∞

which shows that {xn} converges strongly to x∗. □

Corollary 3.9. Let D, E, T , {xn}, {λn} and {θn} be as in Theorem 3.6. If, in addition, D is relatively
compact, then {xn} converges strongly to a fixed point of T .

Proof. Compactness of D makes T hemicompact and Corollary 3.8 applies. □

A mapping T : D → C B(D) is said to satisfy condition (I) if there exists a strictly increasing function
f : [0,∞)→ [0,∞) with f (0) = 0 and f (x)> 0 for all x∈ (0,∞) such that d(x,T (x))≥ f (d(x,F(T )) ∀x∈
D(T ).

Corollary 3.10. Let D, E, T , {xn}, {λn} and {θn} be as in Theorem 3.6, with N = 1 and T1 = T . If T
satisfies condition (I), then {xn} converges strongly to a fixed point of T .

Proof. Let {yn} be the sequence obtained from Lemma 3.1 with tn := 1−θn and y0 = x1. From Theorem
3.6, we have limn→∞ dist(yn,Tyn) = 0. Since T satisfies condition (I), we have limn→∞ f (dist(yn,F)) =
0. Hence, there exists a sequence {pk} ⊆ F and a subsequence {ynk} of {yn} such that

∥ynk − pk∥<
1
2k ∀ k.

Since the sequence {∥yn − p∥} is monotone non-increasing, we have

∥ynk+1 − pk∥ ≤ ∥ynk − pk∥<
1
2k ∀ k.

Thus,

∥pk+1 − pk∥ ≤ ∥pk+1 − ynk+1∥+∥ynk+1 − pk∥

<
1

2k+1 +
1
2k

<
1

2k−1 .

(3.14)

This shows that {pk} is a Cauchy sequence in D. Hence, pk → q ∈ D. From the fact that pk → q as
n → ∞ and T si Lipschitz, we get

dist(q,T q)≤ ∥q− pk∥+dist(pk,T pk)+h(Ti pk,T q)→ 0 as k → ∞.(3.15)
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This implies that dist(q,T q) = 0. It follows that q ∈ F . Now,

∥ynk −q∥ ≤ ∥ynk − pk∥+∥pk −q∥

<
1
2k +∥pk −q∥→ 0 as k → ∞.

This shows that ynk → q as k → ∞. From Lemma 3.1, limn→∞ ∥yn −q∥ exists. Thus, limk→∞ ∥ynk −q∥=
limn→∞ ∥yn −q∥= 0 and this gives yn → q as n → ∞. The proof is complete by applying Step 2 of the
proof of Theorem 3.6. □

We give an example below where our algorithm is used to approximate a solution of a constrained
minimization problem:

(3.16)
{

min f (x)
x ∈ K ⊆ H,

where f : H → R∪{∞} is a convex function, H a real Hilbert space and K a convex nonempty subset
of H.

Example. Let f : H → R be a convex and Fréchet differentiable function with ∇ f : H → H Lipschitz.
Suppose K is compact, convex and nonempty. Then starting from any x1 ∈ K, the sequence

(3.17) xn+1 = xn −λn∇ f (xn)−λnθn(xn − x1),n = 1,2,3, · · · ,
converges strongly to a solution x∗ of (3.16) given that x∗ is in the interior of K.

Indeed, we note that convexity of f makes ∇ f accretive. Therefore the map T defined T = I −∇ f is
pseudo-contractive. Since ∇ f is Lipschitz, T is also Lipschitz. Moreover, since K is closed and bounded
and f is continuous, then problem (3.16) has a solution x∗ such that ∇ f (x∗) = 0. Therefore T x∗ = x∗,
i.e., T has a fixed point. Compactness of K makes T hemicompact. Thus, by Corollary 3.8, the sequence
{xn} defined by (3.6) converges strongly to a fixed point x∗ of T which gives ∇ f (x∗) = 0 making x∗ a
minimizer of f on K. Now the sequence {xn} given by (3.6) with T = I −∇ f reduces to (3.17).

Acknowledgement. The authors wish to thank the anonymous referees for their suggestions which
improved the paper.

REFERENCES

[1] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc.
of Symposia in pure Math. Vol. XVIII, part 2, 1976.

[2] F.E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull.
Amer. Math. Soc. 73 (1967), 875 - 882.

[3] F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings
in Banach spaces, Arch. Ration. Mech. Anal, 24 (1967), 82 - 90.

[4] R. Chen, Y. Song and H. Zhou, Convergence theorems for implicit iteration process for a finite
family of continuous pseudo-contractive mappings, J. Math. Anal. Appl., 314 (2006), 701 - 709.

[5] C.E. Chidume, C.O. Chidume, N. Djitte and M.S. Minjibir, Iterative algorithm for fixed points
of multi-valued pseudo-contractive mappings in Banach spaces, J. Nonlinear Convex Anal. 15
(2014), 241 - 255.

[6] C. E. Chidume, C. O. Chidume, N. Djitte and M. S. Minjibir, Convergence theorems for fixed
points of multi-valued strictly pseudo-contractive mappings in Hilbert spaces, Abst. Appl. Anal.
Volume 2013, Article ID 629468, doi: 10.1155/2013/629468.

[7] C. Chidume, Geometric Properties of Banach spaces and Nonlinear Iterations, Springer Verlag
Series: Lecture Notes in Mathematics, Vol.1965 (2009), ISBN 978-1-84882-189-7.

[8] C. E. Chidume and H. Zegeye, Approximate fixed point sequences and convergence theorems for
Lipschitz pseudo-contractive maps, Proc. Amer. Math. Soc. 132 (2003), no. 3, 831 - 840.

[9] C.E. Chidume and N. Shahzad, Strong convergence of an implicit iteration process for a finite
family of nonexpansive mappings, Nonlinear Anal., 62 (2005), 1149 - 1156.



162 M.S. MINJIBIR AND T.S. MUHAMMAD

[10] T. Kato, Nonlinear semi groups and evolution equations, J. Math. Soc. Japan 19 (1967), 508 -
520.

[11] C. Moore and B. V. C. Nnoli, Iterative solutions of nonlinear equations involving set-valued
uniformly accretive operators, Comput. Math. Appl. 42 (2001), 131 - 140.

[12] C.H. Morales and J.S. Jung, Convergence of paths for pseudo-contractive mappings in Banach
spaces, Proc. Amer. Math. Soc. 128 (2000), 3411 - 3419.

[13] E. U. Ofoedu and H. Zegeye, Iterative algorithm for multi-valued pseudo-contractive mappings
in Banach spaces, J. Math. Anal. Appl., 372 (2010), 68 - 76.

[14] P. Pietramala, Convergence of approximating fixed points sets for multi-valued nonexpansive map-
pings, Comment. Math. Univ. Carolin. , 32 (1991), 697 - 701.

[15] S. Reich, Strong convergence theorems for resolvents of accretive operators in banach spaces, J.
Math. Anal. Appl., 75 (1980), 287 - 292.
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