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BARZILAI-BORWEIN-LIKE METHOD FOR SOLVING

LARGE-SCALE NON-LINEAR SYSTEMS OF EQUATIONS

HASSAN MOHAMMAD

ABSTRACT. In this paper, a derivative-free Barzilai-Borwein-
like algorithm is developed for solving large-scale non-linear sys-
tems of equations. The algorithm is based on approximating the
Jacobian matrix in quasi-Newton manner using a scalar multi-
ple of an identity matrix. Under suitable conditions, we show
that the proposed algorithm is locally superlinearly convergent.
Numerical results show that the proposed method is efficient for
large-scale problems (up to 106) variables.
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1. INTRODUCTION

We present an iterative method for solving system of non-linear
equations of the form

F (x) = 0, (1)

where F : Rn → R
n is continuously differentiable function, F =

(f1, f2, ..., fn)
T , fi : R

n → R(i = 1, 2, ..., n). Newton’s method is
the most popular method used to solve (1), it converges locally
with a quadratic rate of convergence [1]. The main drawback of
Newton’s method for large-scale problems is the need of computing
and storing Jacobian matrix and solving system of linear equations
in every iteration. As a remedy of these drawbacks, quasi-Newton
methods have been introduced [2]. These methods are derivative-
free, and enjoys superlinear rate of convergence [3]. For excellent
review of quasi-Newton methods see [4, 5]. A suitable quasi-Newton
method for solving (1) is Broyden method, it is given by

xk+1 = xk − B−1
k F (xk), k = 0, 1, 2, ... (2)
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where matrix Bk is the approximation of the Jacobian matrix in
Newton’s method, such that the quasi-Newton equation

Bk+1(xk+1 − xk) = F (xk+1)− F (xk) (3)

is satisfied for each k. Recently, some modifications of the Broyden
update have been presented (see, for example,[6, 7] and reference
therein). Although, qausi-Newton methods have increased the effi-
ciency of Newton’s method, still the requirement of storing a matrix
is needed for these methods, which in turn makes them unsuitable
for large-scale problems.
Waziri et al. [8] proposed an alternative approximation for the

Newton step via diagonal updating (DBLM). The main anticipation
behind their approach is to reduce the computational cost of com-
puting Jacobian matrices when solving non-linear system of equa-
tions using Newton’s method. The convergence of the proposed
DBLM algorithm was proven to be linear and numerical experi-
ments given in the paper shows the efficiency of the method com-
pared to the existing ones like classical Newton’s method, Broyden
method and fixed Newton method. They consider

xk+1 = xk −QkF (xk), (4)

where matrix Qk is a diagonal matrix approximating the inverse
Jacobian matrix. And Qk+1 = Qk+Uk, Uk is also a diagonal matrix
acting as a corrector such that the weak quasi Newton equation

vTk (Qk+1)vk = vTk (xk+1 − xk) (5)

is satisfied for each k, where vk = F (xk+1)− F (xk).
Barzilai and Borwein (BB) [9] presented a two-point step size

gradient methods for problem of minimizing strictly convex two
dimensional quadratic function

min f(x) =
1

2
xTAx− bTx,

where A ∈ R
2×2 is a real symmetric positive definite matrix and

b ∈ R
2 is constant. A remark was given in the paper that the

presented algorithms are applicable to the solution of (1). Raydan
[10], established a convergence result of the BB method for mini-
mizing a strictly convex quadratic function of any number of vari-
ables. Based on the non-monotone line search techniques presented
by Grippo et. al [11], Raydan [12] extended the BB method to
solve large-scale unconstrained minimization problem. La Cruz and
Raydan [13], presented a nonmonotone BB method to solve large-
scale non-linear systems of equations. A global convergence result
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was obtained based on the variation of Grippo’s non-monotone line
search strategy which requires the computation of the first deriv-
ative. Motivated by the idea of La Cruz and Raydan, La Cruz
et. al, [14], presented a globally convergent derivative-free BB al-
gorithm using a combination of the Grippo’s and Li-Fukushima’s
[15] line search strategies. Some modifications of BB method for
solving unconstrained optimization can be found in [16, 17, 18], and
reference therein. Nevertheless, because of its simplicity, efficiency
and extremely low memory requirements, BB method interested
many researchers. Applying it to solve non-linear systems of equa-
tions with a Jacobian that is not necessarily symmetric is a good
research study.
Being a matrix-free approach, BB algorithm is capable of solving

large scale unconstrained optimization problems. Motivated by the
work of La Cruz et. al [14], in this paper we proposed a locally
superlinearly BB-like method for solving large-scale non-linear sys-
tems of equations.
The remaining part of this paper is organized as follows. In sec-

tion 2 we described the proposed method and its algorithm. The
local superlinear convergence is established in section 3 and numer-
ical results are reported in section 4. Throughout the paper ‖.‖
stands for the Euclidean norm.

2. DESCRIPTION OF THE METHOD

We begin by describing the BB method for unconstrained mini-
mization problem

min
x∈Rn

f(x), (6)

where f : Rn → R. It is iteratively defined by

xk+1 = xk − σkg(xk), k = 0, 1, 2, ... (7)

where g(xk) = ∇f(xk) and the scalar σk is given by

either σk =
sTk−1sk−1

sTk−1yk−1

(8)

or σk =
sTk−1yk−1

yTk−1yk−1

, (9)

where sk−1 = xk−xk−1, and yk−1 = g(xk)−g(xk−1), k = 1, 2, 3, . . ..
If F : Rn → R

n is the gradient of some continuously differentiable
function f : R

n → R then Eq. (1) is the first order necessary
optimality condition of the unconstrained optimization problem (6).
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Our aim is to solve problems of type Eq. (1), hence we choose to
approximate the inverse Broyden matrix B−1

k of Eq. (2) by σkI,
where I is the identity matrix, then we obtain the new iterative
process

xk+1 = xk − σkF (xk). (10)

To obtain the parameter σk, let us consider a second order Taylor
expansion of the residual F (xk−1) about the iterate xk:

F (xk−1) � F (xk)− F ′(xk)sk−1

which implies

F ′(xk)sk−1 � F (xk)− F (xk−1).

Using Bk as the approximation of the Jacobian matrix F ′(xk),
we have the quasi-Newton condition

Bksk−1 = ŷk−1, (11)

where ŷk−1 = F (xk)− F (xk−1).
Multiplying sTk−1 to both sides of (11) and imposing a scalar

approximation on Bk, say Bk � αkI, where I is an n × n identity
matrix, we have

αk =
sTk−1ŷk−1

sTk−1sk−1
.
Thus, if sTk−1ŷk−1 �= 0, then σk = α−1

k is well-defined so that it
can be used in (10) to solve (1).
We now present the BB-like algorithm.

Algorithm (BB-like Algorithm)

Step 0 Given x0 ∈ D ⊂ R
n, stopping tolerance ε > 0, σmin, σmax >

0. Set σ0 = 1.
For k = 0,

Step 1 Compute ‖F (x0)‖, if ‖F (x0)‖ ≤ ε, stop.
Step 2 Compute x1 = x0 − σ0F (x0)

For k ≥ 1
Step 3 Compute

σk = min

{
max

{
sTk−1sk−1

sTk−1ŷk−1

, σmin

}
, σmax

}
(12)

where sk−1 = xk − xk−1 and ŷk−1 = F (xk)− F (xk−1)
Step 4 Compute xk+1 = xk − σkF (xk)
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Step 5 Compute ‖F (xk)‖, if ‖F (xk)‖ ≤ ε, stop.
Step 6 Set k = k + 1 and goto Step 3.

Remark

1. The reasons behind computing σk using (12) in Step 3 are
i. to avoid very small or large value of σk, which may
cause unwanted uphill or downhill step respectively;

ii. to ensure that the sequence {σk} is uniformly bounded
for each k. It is clear that σk ≤ σmax ∀k.

3. CONVERGENCE ANALYSIS

In this section we present the local superlinear convergence of our
proposed Barzilai-Borwein-like method for large-scale non-linear
systems of equations. The following results will be useful in proving
the main theorems of this section.
We consider an iteration of the form

xk+1 = G(xk), (13)

where G is a fixed-point map.
Definition 1:[19] Let Λ ⊂ R

n and H : Λ → R
m be a map. Then

H is Lipschitz continuous on Λ with Lipschitz constant γ if

‖H(x)−H(y)‖ ≤ γ‖x− y‖, ∀x, y ∈ Λ. (14)

Definition 2:[19] Let Λ ⊂ R
n. G : Λ → R

n is a contraction
mapping on Λ if G is Lipschitz continuous on Λ with Lipschitz
constant γ < 1.
Definition 3:[q-superlinearly Convergence][19] Let {xk} ⊂ R

n

and x∗ ∈ R
n. Then

xk → x∗ q-superlinearly if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.

Lemma 1:[19] Let G : Λ → R
n be a contraction mapping on open

and convex set Λ such that G(x) ∈ Λ, ∀x ∈ Λ. Then G has a unique
fixed point x∗ ∈ Λ and the iteration defined by (13) converges to
x∗ for all x0 ∈ Λ.
Lemma 2:[1] Let F : Rn → R

n be continuously differentiable in the
open convex set D ⊂ R

n, x ∈ D, and let F ′ be Lipschitz continuous
at x in the neighborhood D with Lipschitz constant γ. Then for
any x+ p ∈ D,

‖F (x+ p)− F (x)− F ′(x)p‖ ≤ γ

2
‖p‖2.
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Given the Euclidean norm ‖.‖, let Bδ(x0) = {x ∈ R
n : ‖x−x0‖ <

δ} be the open neighborhood of radius δ around x0. In Theorem 1
and 2 below, we prove the convergence and the rate of convergence
of our scheme respectively.
Theorem 1: Let F : D ⊂ R

n → R
n be continuously differentiable

in an open convex set D ⊂ R
n. Suppose that ∃x∗ ∈ R

n and δ > 0,
such that Bδ(x

∗) ⊂ D, F (x∗) = 0. Then for all x0 ∈ Bδ(x
∗), the

sequence {xk} generated by (10) is well-define and converges to x∗.
Proof: Let x0 ∈ Bδ(x

∗). Define a contraction map G : D ⊂ R
n →

R
n by

G(xk) = xk+1.

Then x∗ is a fixed point of G.
For k = 0, 1, 2, ..., let xk ∈ D.

‖G(xk)− x∗‖ = ‖G(xk)−G(x∗)‖
≤ γ‖xk − x∗‖
= γ‖G(xk−1)−G(x∗)‖
≤ γ2‖xk−1 − x∗‖
= . . .

≤ . . .

= . . .

≤ γk+1‖x0 − x∗‖.
So,

‖G(xk)− x∗‖ ≤ γk+1δ

≤ δ, since γ < 1.

Thus, G(xk) ∈ Bδ(x
∗) ⊂ D. Hence, for any point xk ∈ D, xk+1 =

G(xk) ∈ D meaning that (10) is well-define.
All the hypothesis of Lemma 1 are now satisfied, so the sequence

{xk} defined by (10) converges to a unique fixed point x∗ of G for
any x0 ∈ Bδ(x

∗).
Theorem 2: Let F : D ⊂ R

n → R
n be continuously differentiable

in an open convex set D ⊂ R
n. Suppose that ∃x∗ ∈ R

n and δ > 0,
such that Bδ(x

∗) ⊂ D, F (x∗) = 0. Let F ′ be a contraction mapping
on D. If ‖I − σkF

′(x∗)‖ < γk and ∃β > 0 such that |σk| < β,
for each k = 0, 1, 2, ..., then the sequence {xk} generated by (10)
converges superlinearly to x∗.
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Proof: Let β > 0. From (10) we have,

xk+1 − x∗ = xk − x∗ − σk(F (xk)− F (x∗))

= xk − x∗ − σk(F
′(x∗)(xk − x∗)− F ′(x∗)(xk − x∗)

+ F (xk)− F (x∗))

= (I − σkF
′(x∗))(xk − x∗)− σk(−F ′(x∗)(xk − x∗)

+ F (xk)− F (x∗)).

Then, using the theorem hypothesis and Lemma 2, we obtain

‖xk+1 − x∗‖ ≤ ‖I − σkF
′(x∗)‖‖(xk − x∗)‖

+ ‖σk(−F ′(x∗)(xk − x∗) + F (xk)− F (x∗))‖
≤ γk‖xk − x ∗ ‖+ βγ

2
‖xk − x∗‖2.

Dividing through by ‖xk−x∗‖, and taking limit as k tends to infinity
yields,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ lim

k→∞
γk +

βγ

2
lim
k→∞

‖xk − x∗‖.

Since by Theorem 1 {xk} converges to x∗, limk→∞ ‖xk − x∗‖ = 0,
this proves that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.

4. NUMERICAL RESULTS

In this section we compare the performance of the proposed BB-
like method (BBLM) with that of a matrix-free method named
Diagonal Broyden-like method (DBLM) [8]. We used ten test func-
tions of five instances of dimension n = 100, 1000, 10000, 100000,
1000000. [14]. This makes a total of fifty problems. In Table 1
we present results on the following information: the number of it-
erations (Iter) needed to converge to an approximate solution, the
CPU time (in seconds) and the norm of the function at the approxi-
mate solution ‖F (x)‖. Efficiency comparisons were made using the
performance profile introduced by Dolan and More [20]. A failure is
reported (denoted by ’-’) if any of the following situations occur dur-
ing the iteration process; The number of iterations and/or the CPU
time (in second) reaches 1000, but no xk satisfying ‖F (xk)‖ ≤ 10−8

is obtained. We implemented the two methods (DBLM and BBLM)
using MATLAB R2010a and tic- toc command is used for reporting
the CPU time. All computations were carried out on a PC with
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Intel COREi3 processor with 4GB of RAM and CPU 2.30GHz.
The test functions F (x) = (f1(x), f2(x), ..., fn(x))

Tare listed as
follows:
Problem 1 Exponential function 1 [14]

f1(x) = ex1−1 − 1,

fi(x) = i(exi−1 − xi), i = 2, 3, ..., n.

Initial guess x0 = (0.5, 0.5, ..., 0.5)T

Problem 2 Logarithmic function [14]

fi(x) = ln(xi + 1)− xi

n
, i = 1, 2, 3, ..., n.

Initial guess x0 = (1, 1, ..., 1)T

Problem 3 Linear function-full rank [14]

fi(x) = xi − 2

n

n∑
j=1

xj + 1, i = 1, 2, ..., n.

Initial guess x0 = (100, 100, ..., 100)T

Problem 4 Tridiagonal exponential problem [21]

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), i = 2, 3, ..., n− 1.

fn(x) = xn − ecos(h(xn−1+xn)),

h = 1/(n+ 1).

Initial guess x0 = (1.5, 1.5, ..., 1.5)T

Problem 5 Tridiagonal system [22]

f1(x) = 4(x1 − x2
2),

fi(x) = 8xi(x
2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1), i = 2, 3, ..., n− 1.

fn(x) = 8xn(x
2
n − xn−1)− 2(1− xn).

Initial guess x0 = (12, 12, ..., 12)T

Problem 6 Broyden Tridiagonal system [23]

f1(x) = (3− 0.5x1)x1 − 2x2 + 1,

fi(x) = (3− 0.5xi)xi − xi−1 − 2xi+1 + 1, i = 2, 3, ..., n− 1.

fn(x) = (3− 0.5xn)xn − xn−1 + 1.
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Initial guess x0 = (−1.25,−1.25, ...,−1.25)T

Problem 7 Trigonometric system [24]

fi(x) = 5− (l + 1)(1− cosxi)− sin xi −
5l+5∑

j=5l+1

cosxj , i = 1, 2, ..., n.

l = div(i− 1, 5).

Initial guess x0 = (1/n, 1/n, ..., 1/n)T

Problem 8 Trigonometric function [14]

fi(x) = 2

(
n + i(1− cosxi)− sin xi −

n∑
j=1

cos xj

)
(2 sin xi − cosxi),

i = 1, 2, ..., n.

Initial guess x0 =
(

101
100n

, 101
100n

, ..., 101
100n

)T
Problem 9 [8]

fi(x) = ln(xi) cos(1− (1 + xTx)2)−1)e1−(1+xT x)2)−1

, i = 1, 2, ..., n.

Initial guess x0 = (2.5, 2.5, ..., 2.5)T

Problem 10 [7]

fi(x) = (cos(xi)− 1)2 − 1, i = 1, 2, 3, ..., n.

Initial guess x0 = (1, 1, ..., 1)T

The numerical results of the performance of DBLM and BBLM
relative to number of iterations (Iter) and CPU time (Time) in
Table 1, are interpreted in Figure 1 and Figure 2 respectively. In
Figure 1 BBLM solve more than 70% while DBLM solves around
20% of the problems with a lower number of iterations. From Figure
2 it is easy to see that BBLM is more competitive than DBLM since
it solve about 80% of the problems within shorter time. In short,
BBLM solves and wins 58% and DBLM solves and wins 28% of the
total tested problems.

4. CONCLUSIONS

We have proposed a derivative-free approach for solving non-linear
systems of equations in which the inverse Jacobian matrix is ap-
proximated using a scalar multiple of identity σk which is obtained
from the quasi-Newton equation. This approach is based on the
well-known Barzilai and Borwein method for unconstrained opti-
mization problems. Due to the simplicity of this approach, our
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Table 1. Numerical comparison for problems 1 to 10

DBLM BBLM

P(n) Iter Time ‖F(x)‖ Iter Time ‖F(x)‖
1(100) - - - 50 0.007461 6.6775× 10−9

1(1000) - - - 90 0.028288 6.4682× 10−9

1(10000) - - - 56 0.132716 2.8983 × 10−10

1(100000) - - - 56 0.883515 1.3339 × 10−10

1(1000000) - - - 44 9.447604 1.4989 × 10−10

2(100) 6 0.004256 3.5178 × 10−11 7 0.001343 9.2766 × 10−13

2(1000) 5 0.004338 7.8063 × 10−11 7 0.005542 1.6344 × 10−12

2(10000) 5 0.027397 5.4546 × 10−10 7 0.029785 4.8845 × 10−12

2(100000) 5 0.197403 1.7603 × 10−10 7 0.157910 1.5307 × 10−11

2(1000000) 5 1.945043 9.1038 × 10−11 7 1.595762 4.8406 × 10−11

3(100) 169 0.040537 8.315 × 10−9 2 0.001112 0
3(1000) - - - 2 0.002127 0
3(10000) - - - 2 0.007579 0
3(100000) - - - 2 0.041075 1.7133 × 10−11

3(1000000) - - - 2 0.503012 0

4(100) 5 0.001270 9.5912 × 10−11 4 0.001516 1.6132 × 10−10

4(1000) 3 0.003427 8.6934 × 10−12 3 0.002656 3.0497 × 10−14

4(10000) 2 0.016084 4.1784 × 10−11 2 0.02767 9.3684 × 10−12

4(100000) 2 0.116230 0 2 0.065398 0
4(1000000) 2 1.412305 0 2 0.825733 0

5(100) - - - - - -
5(1000) - - - - - -
5(10000) - - - - - -
5(100000) - - - - - -
5(1000000) - - - - - -

6(100) - - - 34 0.011190 6.1063× 10−9

6(1000) - - - 35 0.038376 6.9540× 10−9

6(10000) - - - 36 0.111198 7.0494× 10−9

6(100000) - - - 47 0.994749 2.2734× 10−9

6(1000000) - - - 60 18.361573 8.4602× 10−9

7(100) 260 0.127542 7.3902× 10−9 9 0.003651 3.0099 × 10−10

7(1000) - - - 9 0.017774 1.2031× 10−9

7(10000) - - - 9 0.050137 3.9746 × 10−10

7(100000) - - - 9 0.235802 1.9211 × 10−10

7(1000000) - - - 9 2.791206 0

8(100) - - - 16 0.016368 1.3745 × 10−10

8(1000) - - - 20 0.019402 3.1637 × 10−10

8(10000) - - - 24 0.12777 0
8(100000) - - - - - -
8(1000000) - - - - - -

9(100) 7 0.010642 1.3974× 10−9 8 0.004539 1.1323 × 10−13

9(1000) 6 0.007679 8.7338 × 10−10 8 0.007523 3.6513 × 10−13

9(10000) 6 0.074735 4.3898 × 10−11 8 0.064629 1.1546 × 10−12

9(100000) 6 0.327127 2.1065 × 10−13 8 0.242533 3.6513 × 10−12

9(1000000) 6 3.521195 4.4409 × 10−13 8 2.779271 1.1546 × 10−11

10(100) 64 0.026960 6.3805× 10−9 6 0.002842 4.3451× 10−9

10(1000) 203 0.110147 8.9837× 10−9 7 0.005214 1.4043 × 10−14

10(10000) 649 1.985304 9.6267× 10−9 7 0.055379 4.4409 × 10−14

10(100000) - - - 7 0.113214 1.4043 × 10−13

10(1000000) - - - 7 1.120738 4.4409 × 10−13
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Figure 1. Performance profile of DBLM and BBLM
methods with respect to number of iterations for
problem 1-10
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Figure 2. Performance profile of DBLM and BBLM
methods with respect to CPU time for problem 1-10
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proposed method can be used for solving large-scale non-linear sys-
tems.
Under some assumptions, the convergence rate of the new BB-like

method was shown to be superlinear. Numerical results show that
the proposed method is competitive to similar method for large-
scale problems. It is worth mentioning that the convergence results
of the BB-like algorithm presented in this paper is different from
the one given by La Cruz et. al. [14].
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