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ON THE LATTICE POINTS OF DILATIONS OF
THE STANDARD 2-SIMPLEX AND THE

GRASSMANNIAN Gr(2,n)

PRAISE ADEYEMO

ABSTRACT. The connection between the combinatorics of the
lattice points of the dilation r∆2 of the standard 2-simplex ∆2

and the cohomology ring of the Grassmmannian Gr(2, r + 2) is
explored. Specifically, two important refinements of the Ehrhart
polynomial L∆2(r) are realized from this connection. One of the
refinements interprets the Poincaré polynomial P(Gr(2, r+2), z)
as the number of lattice points on each of the slicing lines of r∆2

with respect to a fixed weight.
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1. Introduction

Grassmannians are among the well studied algebraic varieties due to
their rich algebraic, combinatorial and geometric structures. Their co-
homology theory, though classical has become one of the central themes
in modern algebraic combinatorics. It is well known that the ring of
the cohomology of the Grassmannian Gr(d, n) of d-subspaces in an n-
dimensional complex vector space is generated by Schubert cycles σλ
indexed by the fitted partitions λ, that is, every partition λ has at most
d parts each of which cannot exceed n−d. The multiplication in this ring
is induced by the homomorphism from the ring of symmetric functions
to the cohomology ring of Grassmannian which sends Schur function sλ
to σλ [3, 7,8,11,13 ]. On the other hand, the standard d-simplex ∆d is
the convex hull of the set {0, e1, . . . , ed} where e′is, 1 ≤ i ≤ d are the
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standard vectors in d and 0 is the origin. That is,

∆d := conv(0, e1, . . . , ed) = {x ∈d: x · ei ≥ 0,

d∑
i=1

x · ei ≤ 1} (1)

and the dilation r∆d, is given by

r∆d = {x ∈d: x · ei ≥ 0,

d∑
i=1

x · ei ≤ r, r ∈} (2)

Lattice points are the points whose coordinates are integers. Counting
the lattice points on r∆d is equivalent to asking for the number of integer
solutions for the inequality

d∑
i=1

x · ei ≤ r (3)

The number of lattice points on any given lattice polytope is well known.
This is central theme of Ehrhart polynomials, [2, 4, 11, 12, 17]. In fact
the number of the lattice points on r∆d is given by

|r∆d ∩d
≥0 | =

(
r + d

d

)
(4)

and its generating function by

P(r∆d, z) =
∞∑
r=0

Arz
r =

1

(1− z)d+1
, where Ar =

(
r + d

d

)
(5)

The main focus of this short paper is the exploration of some remark-
able connections between the lattice points of the dilations r∆2 of the
standard 2-simplex and the Grassmannians Gr(2, 2+r). It is well known
that the multiplicative generators of the cohomology of the Grassman-
nian Gr(d, d + r) are given by the special Schubert cycles σλ, see [3].
These cycles are indexed by one-row partitions λ = (k), 1 ≤ k ≤ r and
they constitute the total Chern class of the quotient bundle Q, that is,

c(Q) = 1 + σ7pt(1) + σ7pt(2) + · · ·+ σ7pt(2)···7pt(1)1×r

We study the monomials identified with the semi standard tableaux of
these one-diagrams for d = 2 and realize a natural graded polynomial
Tr(t) which is indeed a refinement of the Ehrhart polynomial for the
dilation r∆2 using the weight (1, 1).
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Theorem 1.1.

(i.) The size L2(r) of the 2-filling set C2
2,r is

(
r+2
2

)
and the sequence

(L2(r))∞r=0 of cardinalities as r grows is recorded by the gener-
ating function

P (C2
(2,r), z) =

1

(1− z)3

(ii.) More is true, there is a graded counting polynomial of the semi
standard tableaux in C2

2,r given by

T 2
r (t) =

r∑
k=0

(k + 1)tk

that is, a k-box row diagram gives (k+1) semi standard Young
tableaux. This has a generating function

G(t, z) =
z

(1− z)(1− tz)2
.

Theorem 1.2.
There is a bijection between the set C2

2,r and the set r∆2∩2
≥0 of the lattice

points of the dilation r∆2. Furthermore, the triangular polynomial Tr(t)
is precisely the slicing of the dilation r∆2 with lines y+x = c, 0 ≤ c ≤ r.

It turns out that the exponent vectors of the monomials encode some
information about the indexing partitions of the Schubert varieties of
Grassmannian Gr(2, 2 + r) and Grassmannian permutations. This ulti-
mately expresses the Poincaré polynomial of the Grassmannian Gr(2, 2+
r) as another refinement of the Ehrhart polynomial of the dilation r∆2

using the weight (1, 2). The refinement is simply the slicing of r∆2 by
lines x + 2y = m, 0 ≤ m ≤ 2r. This generalizes to higher dimensions
using hyperplanes [1]

Theorem 1.3. Every β-partition λ∗ identified with each of the mono-
mials ta ∈ W r

2 fits into the 2× r rectangle □2×r.

Corollary 1.4. The set of β-partitions λ∗ identified with monomials in
W r

2 index the Schubert varieties in the Grassmannian Gr(2, 2 + r).

Theorem 1.5. Let λ∗ be the β-partition identified with the monomial
ta ∈ W r

2 then the length ℓ(w(λ∗)) of the Grassmannian permutation
w(λ∗) is the weight wa of the exponent vector a ∈ r∆2∩2

≥0.

Theorem 1.6. Let P h
r∆2

(z) be the weighted polynomial of the lattice
points of the dilation r∆2 . Then the Poincaré polynomial P (Gr(2, 2 +
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r), t) of the Grassmannian Gr(2, 2+r) coincides with the weighted poly-
nomial P h

r∆2
(z).

In Section 2, we review some cohomology of Grassmannian as it affects
our discussion and describe the first refinement by constructing the 2-
filling set C2

2,r and give some of its properties. The set consists of all semi
standard tableaux identifies with one-row Young diagrams. The size of
this set is given in terms of a polynomial. A generating function for
these polynomial is constructed as r grows. The bijection between the
2-filling set C2

2,r and lattice points r∆2∩2
≥0 is established. In Section 3 we

identify the monomials associated with semi standard Young tableaux
of C2

2,r as Grassmannians and construct two important partitions from
each of their exponent vectors. This leads to our second refinement of
the Ehrhart polynomial L∆2(r) of the standard 2-simplex ∆2. This is
precisely the Poincaré polynomial of the Grassmannian Gr(2, 2 + r).

2. The Cohomology of the Grassmannian Gr(2,n)

A flag F• is a nested sequence of vector subspaces

F• := ({0} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm)

of n. The flag F• is said to be complete if the chain is maximal, that is,
dimFi = i and m = n. The set of complete flags in n is called the full flag

variety Fℓn() and its dimension is n(n−1)
2 . The Grassmannian Gr(2, n)

is the special case of the flag variety being the set of all 2-dimensional
subspaces in n and its dimension is 2(n− 2). There is a forgetful map

π : Fℓn() −→ Gr(2, n) (6)

from the full flag variety Fℓn() to the Grassmannian Gr(2, n) with
π−1(Xλ(F•)) = Xw(λ)(F•), where Xλ(F•) is a Schubert variety in the
Grassmannian Gr(2, n) defined as the closure of a certain Schubert cell.
The partition λ is called fitted in the sense that it has at most length
2 and each part cannot exceed n− 2. The permutation w(λ) identified
with the partition λ is given by

wi = i+ λ3−i, 1 ≤ i ≤ 2 and wj < wj+1, 3 ≤ j ≤ n. (7)

The projection π induces a monomorphism π∗ at the level of cohomology.

π∗ : H∗(Gr(2, n), ) −→ H∗(Fℓn(), ) (8)

which takes cycle σλ to the cycle σw(λ). The cohomology ring of the
Grassmannian Gr(2, n) is generated by the Schubert cycles σλ. These
are Poincaré dual of the fundamental classes in the homology of Schubert
varieties. The Gr(2, n) admits many important vector bundles. There is
a universal short exact sequence: 0 −→ S −→n ×Gr(2, n) −→ Q −→ 0
of bundles on Gr(2, n) which makes it easy to compute the Chern class
c(Q) of the quotient bundle Q on the Grassmannian Gr(2, n). Recall
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that Q is a globally generated vector bundle of rank n − 2 and all its
global sections are from the trivial bundle n×Gr(2, n). The total Chern
class is the sum over all the one-row partitions inside the rectangle
□2×n−2. That is,

c(Q) = 1 + σ7pt(1) + σ7pt(2) + · · ·+ σ7pt(2)···7pt(1)1×r
(9)

It turns out that the set of all one-row Young diagrams indexing the mul-
tiplicative generators of the cohomology of the Grassmannian Gr(2, n)
are deeply connected with the lattice points of r∆2 . This becomes ev-
ident in what follows. Let C(2,r) denote the set of all one row Young
diagrams whose number of boxes cannot exceed r with the empty set ∅.
That is,

C(2,r) = {□1×d : 1 ≤ d ≤ r} ∪ ∅. (10)

The members of C(2,4) are:

ϕ, , , , ,

The filling of the boxes of the row diagrams in C2,r using numbers from
the set [2] = {1, 2} is semi standard, that is, the numbers weakly in-
crease from the left to the right. We denote the collection of all such
fillings by C2

2,r and call it the 2-filling set. For instance, The members

of C2
(2,4) are

,
1
,
2
,
1 1

,
1 2

,
2 2

,
1 1 1

,

1 1 2
,
1 2 2

,
2 2 2

,
1 1 1 1

,

1 1 1 2
,
1 1 2 2

,
1 2 2 2

,
2 2 2 2

These 15 semi standard Young tableaux can be organized in terms of
their defining one-row Young diagrams. It turns out that this arrange-
ment can be expressed as a polynomial, given by T4(t) = 1 + 2t+ 3t2 +
4t3+5t4. This is the triangular polynomial of degree 4 illustrated in the
Figure 1.

(i.) The size L2(r) of the 2-filling set C2
2,r is

(
r+2
2

)
and the sequence

(L2(r))∞r=0 of cardinalities as r grows is recorded by the gener-
ating function

P (C2
(2,r), z) =

1

(1− z)3
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[fill] (1,1) circle [radius=0.075]; [fill] (2,0) circle [radius=0.075]; [fill]
(3,-1) circle [radius=0.075]; [fill] (-1,-1) circle [radius=0.075]; [fill] (1,-1)
circle [radius=0.075]; [fill] (-2,-2) circle [radius=0.075]; [fill] (-0.08,-2)
circle [radius=0.075]; [fill] (2.08,-2) circle [radius=0.075]; [fill] (4,-2)

circle [radius=0.075]; [fill] (0,0) circle [radius=0.075]; [fill] (-3,-3) circle
[radius=0.075]; [fill] (-1.5,-3) circle [radius=0.075]; [fill] (1,-3) circle
[radius=0.075]; [fill] (3.5,-3) circle [radius=0.075]; [fill] (5,-3) circle

[radius=0.075]; [-¿] (-2,-2)–(-3,-3)–(-1.5,-3)–(1,-3)–(3.5,-3)–(5,-3)–(4,-2);
[-¿] (0,0)–(1,1)–(-1,-1)–(-2,-2); [-¿] (1,1)–(2,0)–(3,-1)–(4,-2); [-¿]

(-2,-2)–(-0.08,-2)–(2.08,-2)–(4,-2); (3,-1)–(1,-1)–(-1,-1); (0,0)–(2,0); [left]

at (0,0)
1
; [] at (1,1) ; [right] at (2,0)

2
; [left] at (-1,-1)

1 1
; []

at (1,-1)
1 2

; [right] at (3,-1)
2 2

; [left] at (-2,-2)
1 1 1

; [] at

(2.08, -2)
1 2 2

; [] at (-0.08,-2)
1 1 2

; [right] at (4,-2)

2 2 2
; [left] at (-3,-3)

1 1 1 1
; [] at (-1.5,-3)

1 1 1 2
; []

at (1,-3)
1 1 2 2

; [] at (3.5,-3)
1 2 2 2

; [right] at (5,-3)

2 2 2 2
;

Figure 1. T4(t) = 1 + 2t+ 3t2 + 4t3 + 5t4

(ii.) More is true, there is a graded counting polynomial of the semi
standard tableaux in C2

2,r given by

T 2
r (t) =

r∑
k=0

(k + 1)tk

that is, a k-box row diagram gives (k+1) semi standard Young
tableaux. This has a generating function

G(t, z) =
z

(1− z)(1− tz)2
.

Proof. (i) (L2(r))∞r=0 is a well known sequence whose terms are triangu-

lar numbers and hence the general term
(
r+2
2

)
. Its generating function

follows from Ehrhart polynomial f(r) = 1
2r

2 + 3
2r + 1.

(ii) The row diagrams are given by the partitions λ = (k), 0 ≤ k ≤ r.
The number of semi standard fillings of each of the row diagram with
shape λ = (k) using the elements of the set {1, 2} is given by∏

1≤i<j≤2

λi − λj + j − i

j − i
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this is precisely k + 1. Lastly, notice that

Tr(t) = Tr−1(t) + (r + 1)tr and
∑
r≥0

(r + 1)zr =
1

(1− z)2
.

G(t, z) =
∑
r≥0

Tr(t)z
r =

∑
r≥0

[
Tr−1(t) + (r + 1)tr−1

]
zr.

G(t, z) = zG(t, z) +
∑
r≥1

[
(r + 1)tr−1

]
zr, and so

G(t, z) =
z

(1− z)(1− tz)2
.

□

There is a bijection between the set C2
2,r and the set r∆2∩2

≥0 of the
lattice points of the dilation r∆2. Furthermore, the triangular polyno-
mial Tr(t) is precisely the slicing of the dilation r∆2 with lines y + x =
c, 0 ≤ c ≤ r.

Proof. The bijection is given by T 7→ v(T ). To each semi standard
tableau T ∈ C2

(2,r) there exists a unique exponent vector v(T ) = (v(T )1, v(T )2)

in which the coordinate v(T )j is the number of appearances of j in T ,
1 ≤ j ≤ 2. For a fixed point s = (1, 1) and non-negative integers c,
consider

Ls
r∆2

(c, r) = #{a ∈ r∆2∩2
≥0 : s · a = c, 0 ≤ c ≤ r}

Notice that Ls
r∆2

(c, r) = (c + 1), 0 ≤ c ≤ r. Therefore, the triangular

polynomial, viewed now as Tr(t) =
∑r

c=0(c+ 1)tc counts the number of
lattice points (a1, a2) ∈ r∆2 on each of the lines y+x = c, 0 ≤ c ≤ r. □

The triangular polynomial Tr(t) is a refinement of the Ehrhart poly-
nomial. The triangular polynomial Tr(t) =

∑r
c=0(c + 1)tc specialises

at t = 1 to the Ehrhart polynomial
(
r+2
2

)
.

The triangular polynomial associated to the dilation 4∆2 is illustrated
below

3. Grassmannian Monomials

For every lattice point a ∈ r∆2∩2
≥0, there is a corresponding monomial

ta in the polynomial ring [t1, t2] given by ta := ta11 ta22 . We call these
monomials Grassmannian and denote their collection by W r

2 ,that is,

W r
2 = {ta11 ta22 ∈ [t1, t2] : (a1, a2) ∈ r∆2∩2

≥0} (11)

To every monomial ta ∈ W r
2 we associate a weight wa defined by

wa =
d∑

k=1

kak (12)
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(0,0)–(1,0)–(2,0)–(3,0)–(4,0); (0,0)–(0,1)–(0,2)–(0,3)–(0,4);
(0,4)–(1,3)–(2,2)–(3,1)–(4,0); [ultra thick,red] (1,0)–(0,1); [ultra

thick,red] (0,2)–(1,1)–(2,0); [ultra thick,red] (0,3)–(1,2)–(2,1)–(3,0);
[fill] (1,3) circle [radius=0.075]; [fill] (2,2) circle [radius=0.075]; [fill]
(3,1) circle [radius=0.075]; [fill] (4,0) circle [radius=0.075]; [fill] (0,4)
circle [radius=0.075]; [fill] (1,0) circle [radius=0.075]; [fill] (0,0) circle

[radius=0.075]; [fill] (3,0) circle [radius=0.075]; [fill] (2,0) circle
[radius=0.075]; [fill] (1,1) circle [radius=0.075]; [fill] (0,3) circle
[radius=0.075]; [fill] (2,1) circle [radius=0.075]; [fill] (1,2) circle
[radius=0.075]; [fill] (0,2) circle [radius=0.075]; [fill] (0,1) circle

[radius=0.075];

Figure 2. T4(t) = 1 + 2t+ 3t2 + 4t3 + 5t4

It turns out that wa admits two important partitions λ, λ∗ ⊢ wa which
can be identified with the monomial ta . These partitions, λ and λ∗ are
called α-partition and β-partition respectively. A partition λ ⊢ wa is
said to be the α-partition of the monomial ta11 ta22 ∈ W r

2 if the number of
parts of size i in λ is ai, 1 ≤ i ≤ 2, while the β partition λ∗ = (λ∗

1, λ
∗
2)

of wa is such that λ∗
k =

∑2
i≥k ai, 1 ≤ k ≤ 2. For instance, for the

monomial t21t
3
2 ∈ W 5

2 , the corresponding α-partition λ and β-partition
λ∗ are (2,2,2,1,1) and (5,3) respectively.

Let λ be the α-partition associated with the monomial ta = ta11 ta22 ∈
[t1, t2]. Then its corresponding β-partition λ∗ is its conjugate.

Proof. By definition, if we denote the α-partition by λ = (λ1, . . . , λa1+a2)
and the β partition by λ∗ = (λ∗

1, λ
∗
2) then it is obvious that the following

identity is satisfied

a1+a2∑
k=1

(2k − 1)λk =
2∑

k=1

λ∗2
k

□

Every β-partition λ∗ identified with each of the monomials ta ∈ W r
2

fits into the 2× r rectangle □2×r.

Proof. It is sufficient to establish that the parts of λ∗ cannot exceed r
and the length ℓ(λ∗) of λ∗ is 2. Notice that the exponent vector a is a
lattice point of r∆2 and by definition a1 + a2 ≤ r. Therefore each part
λ∗
k of λ∗ is at most r and length ℓ(λ∗) is 2 by the definition of λ∗. □

The set of β-partitions λ∗ identified with monomials in W r
2 index the

Schubert varieties in the Grassmannian Gr(2, 2 + r).
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Let λ∗ be the β-partition identified with the monomial ta ∈ W r
2

then the length ℓ(w(λ∗)) of the Grassmannian permutation w(λ∗) is
the weight wa of the exponent vector a ∈ r∆2∩2

≥0. The weight wa

defined in the equation (3.2) gives another refinement P h
r∆2

(z) of the
Ehrhart polynomial of r∆2 with respect to a fixed point h = (1, 2).

P h
r∆2

(z) =
2r∑

m=0

Amzm. (13)

where Am = #{a ∈ r∆2∩2
≥0 : a · h = m, 0 ≤ m ≤ 2r}. That is, Am

is the number of exponent vectors a which share the weight m. We call
P h
r∆2

(z) the weighted polynomial associated with the dilation r∆2.

The polynomial P h
r∆2

(z) =
∑2r

m=0Amzm specializes at z = 1 to the
Ehrhart polynomial L∆2(r). There is an interesting geometric descrip-
tion of the two refinements of the Ehrhart polynomial L∆2(r) we have
introduced. While the triangular polynomial Tr(t) describes the set of r
translations of the line y + x = 0 controlled by the lattice points of the
dilation r∆2, the polynomial P h

r∆2
(z) gives the list of 2r translations of

the line x+ 2y = 0, controlled by the same lattice points.
Let P h

r∆2
(z) be the weighted polynomial of the lattice points of the

dilation r∆2 . Then the Poincaré polynomial P (Gr(2, 2 + r), t) of the
GrassmannianGr(2, 2+r) coincides with the weighted polynomial P h

r∆2
(z).

Proof. It is known from the Borel presentation of the cohomology ring
H∗(Gr(2, 2 + r), ) of the Grassmannian Gr(2, 2 + r) that the Poincaré
polynomial P(Gr(2, 2+ r), t) is given by the following Gaussian polyno-
mial

(1− t)(1− t2) · · · (1− t2+r)

(1− t)(1− t2)(1− t) · · · (1− tr)
.

This is combinatorially simplified as∑
λ⊆□2×r

t|λ|

where |λ| is the number of boxes in the Young diagram of shape λ. The
size |λ| coincides with the length ℓ(w(λ)) (the number of inversions) of
the Grassmannian permutation w(λ) identified with λ in the equation
(2.2). Notice that |λ| ≤ 2r, therefore, It follows from the Corollary
3.4 that |λ| is the weight wa of the monomial ta ∈ W r

2 , a ∈ r∆∩2
≥0,

therefore,
∑

λ⊆□2×r
t|λ| is precisely the polynomial

∑2r
m=0Amzm. □
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