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ABSTRACT. In this paper, Hyers-Ulam stability theorems of
nonlinear second order damped differential equations with forc-
ing term are considered. By using the Bihari inequality and
Gronwall-Bellman-Bihari integral inequality, we obtain new suf-
ficient conditions for the Hyers-Ulam stability of every nonlin-
ear second order differential equation considered. Our results
improve and extend some known results.
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1. INTRODUCTION

In this paper, we study the Hyers-Ulam stability of the following forced
nonlinear second order differential equations with damping:

(r(t)K1(u(t), u
′(t)))′+p(t)K2(u(t), u

′(t))u′(t)+q(t)f(u(t)) = P (t, u(t), u′(t)),
(1.1)

u′′(t) + np(t)Q(t, u(t))u′(t) + q(t)f(u(t)) = P (t, u(t), u′(t)), (1.2)

for all t > 0, with initial conditions

u(t0) = u′(t0) = 0, (1.3)
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where r(t), p(t), q(t) ∈ C(R+), f ∈ C(R), K1,K2 ∈ C(R2), Q ∈
C(R+ × R), P ∈ C(R+ × R2), R+ = [0,∞) and R = (−∞, ∞).
The Hyers-Ulam stability of equations (1.1),(1.2) and their variants are
considered by transforming the equations into integral inequalities for
easy use of Bihari and Gronwall-Bellman-Bihari inequalities.
The study of stability problem for various functional equations orig-

inated from a famous talk of S.M. Ulam. In 1940, Ulam [32] posed a
problem concerning the stability of functional equations: ’Give condi-
tions in order for a linear function near an approximately linear function
to exist’. Since then, this question has attracted the attention of many
researchers. The solution to this question was given by Hyers [13] for ad-
ditive functions defined on Banach spaces in 1941. Thereafter, the result
by Hyers [13] was generalised by Rassias [26], Aoki [3] and Bourgin[5].
A generalisation of Ulam’s problem was proposed by replacing func-

tional equations with differential equations. Obloza [23] seems to be the
first author to prove the Ulam stability of differential equations. There-
after, the Hyers-Ulam stability of various linear differential equations
were extensively studied. In 1998, Alsina and Ger [2] proved the fol-
lowing : Assume that a differentiable function f : I → R is a solution
of the differential inequality |u′(t) − u(t)| ≤ ϵ, then there exists a so-
lution f0 : I → R of the differential equation u′(t) = u(t) such that
|f(t)− f0(t)| ≤ 3ϵ for any t ∈ I.
Following the same approach as in [2], Miura et al. [20], Miura [19],
Takahasi et al. [30], and Miura et al., [21] proved that the Hyers-Ulam
stability holds true for the differential equation

u′(t) = λu(t), (1.4)

while Jung [17] proved a similar result for the differential equation

ψ(t)u′(t) = u(t). (1.5)

Furthermore, the result of Hyers-Ulam for first-order linear differential
equations was generalised by Miura et al.[22], by Takahasi et al. [30]
and Jung [15]. They dealt with the nonhomogeneous linear differential
equation of first order

u′(t) + p(t)u(t) + q(t) = 0. (1.6)

Recently, Jung [16] proved that the differential equations of the form

tu′(t) + αu(t) + βtrx0 = 0 (1.7)

satisfy the generalised Hyers-Ulam stability and then applied the result
in the investigation of the Hyers-Ulam stability of the Euler(Cauchy)
differential equation

t2u′′(t) + αtu′(t) + βu(t) = 0. (1.8)

In their work, Li and Shen [29] proved that if the characteristic equa-
tion λ2 + αλ + β = 0 has two distinct positive roots, then the second
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order linear differential equation with constant coefficients

u′′(t) + αy′(t) + βy(t) = f(t) (1.9)

has the Hyers-Ulam stability where y ∈ C2[a, b], f ∈ C[a, b] and −∞ <
a, b < +∞. Ghaemi et al. [12] proved the Hyers-Ulam stability of the
exact second order linear differential equation

p0(t)u
′′(t) + p1(t)u

′(t) + p2(t)u+ f(t) = 0 (1.10)

with p′′0(t)− p1(t)
′+ p2(t) = 0. Here, p0, p1, p2, f : (a, b) → R are contin-

uous functions.
The following authors also discussed Hyers-Ulam stability of nonlinear

differential equations: Rus [27, 28] Qarawani [24, 25], Algfiary and Jung
[1], Fakunle and Arawomo [9, 10, 11].

2. PRELIMINARY

The following definitions, lemmas and theorems are necessary for our
results
Definition 1. We say that equation (1.1) has the Hyers-Ulam stability,
if there exists a constant K∗

1 ≥ 0 with the following property: for every
ϵ > 0, u(t) ∈ C2(R+), if

|(r(t)K1(u(t), u
′(t)))′ + p(t)K2(u(t), u

′(t))u′(t) + q(t)f(u(t))

−P (t, u(t), u′(t))| ≤ ϵ,
(2.1)

then, there exists some u0(t) ∈ C2(R+) such that

|u(t)− u0(t)| ≤ K∗
1ϵ.

We call such K∗
1 a Hyers-Ulam constant.

Definition 2. The differential equation (1.2) has the Hyers-Ulam stabil-
ity with initial condition (1.3), if there exists a positive constant K∗

2 ≥ 0
with the following property: for every ϵ ≥ 0, u(t) ∈ C2(R+), which
satisfies

|u′′(t)+np(t)Q(t, u(t))(u′(t))+q(t)f(u(t))−P (t, u(t), u′(t))| ≤ ϵ, (2.2)

then there exists a function u0(t) ∈ C2(R+) satisfying (1.2) with initial
condition (1.3) such that

|u(t)− u0(t)| ≤ K∗
2ϵ,

We call such K∗
2 Hyers-Ulam stability constant for the differential equa-

tion (1.2) with initial conditions (1.3).

Definition 3. A function ω : [0,∞) → [0,∞) is said to belong to a class
Ψ if

i ω(u) is nondecreasing and continuous for u ≥ 0,
ii ( 1v )ω(u) ≤ ω(uv ) for all u and v ≥ 1,
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iii there exists a function ϕ, continuous on [0,∞) with ω(αu) ≤
ϕ(α)ω(u) for α ≥ 0.

Lemma 1. [4] Let u(t), f(t) be positive continuous functions defined on
t0 ≤ t ≤ b, (≤ ∞) and K > 0, M ≥ 0, further let ω(u) be a nonnegative
nondecreasing continuous function for u ≥ 0, then the inequality

u(t) ≤ K +M

∫ t

t0

f(s)ω(u(s))ds, t0 ≤ t < b, (2.3)

implies the inequality

u(t) ≤ Ω−1

(
Ω(k) +M

∫ t

t0

f(s)ds

)
, t0 ≤ t ≤ b′ ≤ b, (2.4)

where

Ω(u) =

∫ u

u0

dt

ω(t)
, 0 < u0 < u. (2.5)

In the case ω(0) > 0 or Ω(0+) is finite, one may take u0 = 0 and Ω−1

is the inverse function of Ω and t must be in the subinterval [t0, b
′] of

[t0, b] such that

Ω(k) +M

∫ t

t0

f(s)ds ∈ Dom(Ω−1).

Theorem 1. [6] Let

i u(t), r(t) : (0,∞) → (0,∞) and continuous on (0,∞),
ii ϖ ∈ Ψ,
iii n > 0 be monotonic, nondecreasing and continuous on (0,∞),

if

u(t) ≤ n(t) +

∫ t

0
f(s)ϖ(u(s))ds, 0 < t <∞, (2.6)

then

u(t) ≤ n(t)Ω−1

(
Ω(1) +

∫ t

0
f(s)ds

)
0 < t ≤ b, (2.7)

for (0, b) ⊂ (0,∞), where Ω(u) is defined in (2.5), Ω−1 is the inverse
of Ω and t is in the subinterval (0, b) chosen so that

Ω(1) +

∫ t

0
f(s)ds ∈ Dom(Ω−1).

Theorem 2. [18] If f(t) and g(t) are continuous in [t0, t] ⊆ I and f(t)
does not change sign in the interval, then there is a point ξ ∈ [t0, t] such

that

∫ t

t0

g(s)f(s)ds = g(ξ)

∫ t

t0

f(s)ds
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Theorem 3. [8, 7] Suppose u(t), r(t), h(t) ∈ C(I,R+) and ϖ(u), β(u) ∈
Ψ are nonnegative, monotonic, nondecreasing, continuous functions and
ω(u) a submultiplicative function for u > 0. Let

u(t) ≤ K + T

∫ t

t0

r(s)β(u(s))ds+ L

∫ t

t0

h(s)ϖ(u(s))ds (2.8)

for K, T and L positive constants, then

u(t) ≤ Ω−1

(
Ω(K) + L

∫ t

t0

h(s)ϖ

(
F−1

(
F (1) + T

∫ s

t0

r(α)dα

))
ds

)
F−1

(
F (1) + T

∫ t

t0

r(s)ds

)
(2.9)

where β(u) ̸= ϖ(u), Ω is defined in equation (2.5) and F (u) is defined
as

F (u) =

∫ u

u0

ds

β(s)
, 0 < u0 ≤ u, (2.10)

F−1, Ω−1 are the inverses of F, Ω respectively and t is in the subinterval
(0, b) ∈ I so that

F (1) + T

∫ t

t0

r(s)ds ∈ Dom(F−1)

and

Ω(K) + L

∫ t

t0

h(s)ϖ

(
F−1

(
F (1) + T

∫ t

t0

r(α)dα

))
ds ∈ Dom(Ω−1)

Corollary 1. [7, 8] Suppose ρ(t) is a nonnegative, monotonic, nonde-
creasing continuous function on R+. Let

u(t) ≤ ρ(t) + T

∫ t

t0

r(s)β(u(s))ds+ L

∫ t

t0

h(s)ϖ(u(s))ds, (2.11)

for T and L be positive constants, then

u(t) ≤ ρ(t)Ω−1

(
Ω(1) + L

∫ t

t0

h(s)ϖ

(
F−1

(
F (1) + T

∫ t

t0

r(α)dα)

))
ds

)
F−1

(
F (1) + T

∫ t

t0

r(s)ds

)
, t ∈ I,

(2.12)

where Ω(u) and F (u) are defined as in (2.5) and (2.10) respectively.

Theorem 4. [8, 7] If u(t), r(t), h(t), ρ(t), g(t) ∈ C(R+) and ω, f, γ ∈ Ψ
be nonnegative, monotonic, nondecreasing continuous functions. Let γ
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be a submultiplicative function. If

u(t) ≤ ρ(t) +A

∫ t

t0

r(s)β(u(s))ds+B

∫ t

t0

h(s)ϖ(u(s))ds+

L

∫ t

t0

g(s)γ(u(s))ds

(2.13)

for K,A,B,L > 0, then

u(t) ≤ ρ(t)Υ−1[
Υ(1) + L

∫ t

t0

g(s)γ

[
Ω−1

(
Ω(1) +B

∫ s

t0

h(α)ϖ (T (α)) dα

)
T (s)

]
ds

]
Ω−1

(
Ω(1) +B

∫ t

t0

h(s)ϖ (T (s)) ds

)
T (t)

(2.14)

where T (t) is given as

T (t) = F−1

(
F (1) +A

∫ t

t0

r(s)ds

)
(2.15)

and

Υ(r) =

∫ t

t0

ds

γ(s)
, 0 < r0 ≤ r, (2.16)

and F−1, Ω−1 and Υ−1 are the inverses of F, Ω, Υ respectively t ∈
(0, b) ⊂ (I). So that

Υ(1) + L

∫ t

t0

g(s)γ

[
Ω−1

(
Ω(1) +B

∫ s

t0

h(α)ϖ (T (α)) dα

)
T (s)

]
ds ∈ Dom(Υ−1

Lemma 2. [14] Let r(t) be an integrable function then the n successive
integration of r over the interval [t0, t] is given by∫ t

t0

· · ·
∫ t

t0

r(s)dsn =
1

(n− 1)!

∫ t

t0

(t− s)n−1r(s)ds (2.17)

3. MAIN RESULTS

In this section, we establish the Hyers-Ulam stability of the nonlinear
differential equations (1.1) ,(1.2) and the case P (t, u(t), u′(t)) = 0. We
shall also prove the Hyers-Ulam stability of the nonlinear differential
equation (1.1) with initial conditions (1.3).
Theorem 5. Assume the following conditions:

i P (t, u(t), u′(t)) = ϕ(t)g(u(t))h((u′(t))4)
ii K1(u(t), u

′(t)) = γ(u(t))b(u′(t))u′(t)n, where n ∈ N
iii K2(u(t), u

′(t)) = ω(u(t))(u′(t))2
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iv limt0→∞

∫ t

t0

|u′(s)|ds = L, where L > 0,

v limt0→∞

∫ t

t0

ϕ(s)ds ≤ n1 <∞, where n1 > 0,

vi limt0→∞

∫ t

t0

p(s)ds ≤ n2 <∞, where n2 > 0,

vii limt0→∞

∫ t

t0

r(s)ds ≤ n3 <∞, where n3 > 0,

viii q(t)|F (u(t))| ≥ |u(t)|,

are satisfied and ϕ, γ, ω, g, h, b ∈ C(R+). In addition, if ϖ(u(t)) ∈ Ψ is
continuous, nondecreasing and monotonic, then equation (1.1) has the
Hyers-Ulam stability with Hyers-Ulam constant given by

K∗
1 = LΥ−1

[
Υ(1) + h(|u′(δ)|4)|u′(δ)|

n3g
[
Ω−1

(
Ω(1) + (|u′(ρ)|4n2ω (T ∗)

)
T ∗]]

Ω−1
(
Ω(1) + (|u′(ρ)|)4n2ω (T ∗)

)
T ∗.

(3.1)

Proof. Using inequality (2.1) and multiplying both sides by u′(t) we have

−ϵu′(t) ≤ (r(t)K1(u(t), u
′(t))′u′(t)

+p(t)K2(u(t), u
′(t))(u′(t))2 + q(t)f(u(t))u′(t)− P (t, u(t), u′(t))u′(t) ≤ ϵu′(t),

(3.2)

Considering (3.2) in the form

(r(t)K1(u(t), u
′(t))′u′(t) + p(t)K2(u(t), u

′(t))(u′(t))2 + q(t)f(u(t))u′(t)

−P (t, u(t), u′(t))u′(t) ≤ ϵu′(t).
(3.3)

Integrate both sides of (3.3) twice and apply Lemma 2, to obtain∫ t

t0

∫ t

t0

(r(s)K1(u(s), u
′(s))′u′(s)dsds+ t

∫ t

t0

p(s)K2(u(s), u
′(s))(u′(s))2ds

+t

∫ t

t0

q(s)f(u(s))u′(s)ds− t

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ tϵ

∫ t

t0

u′(s)ds.

(3.4)

Set

F (u(t)) =

∫ u(t)

u0

f(s)ds, (3.5)
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apply equation (3.5) in inequality (3.4) and integrate to get

∫ t

t0

r(s)K1(u(s), u
′(s))u′(s)ds+ t

∫ t

t0

p(s)K2(u(s), u
′(s))(u′(s))2ds

+tq(t)F (u(t))− t

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ tϵ

∫ t

t0

u′(s)ds.

(3.6)

Using conditions (i-iii) we obtain

∫ t

t0

r(s)γ(u(s))b(u′(s))u′(s)n+1ds+ t

∫ t

t0

p(s)ω(u(s))(u′(s))4ds

+tq(t)F (u(t))− t

∫ t

t0

ϕ(s)g(u(s))h((u′(s))4)u′(s)ds ≤ tϵ

∫ t

t0

u′(s)ds.

(3.7)

The application of Theorem 2 implies there exists ξ, ρ, δ ∈ [t0, t] such
that

b(u′(ξ))u′(ξ)n+1

∫ t

t0

(r(s)γ(u(s))ds+ t(u′(ρ))4
∫ t

t0

p(s)ω(u(s))ds

+tq(t)F (u(t))− th((u′(δ))4)u′(δ)

∫ t

t0

ϕ(s)g(u(s))ds ≤ tϵ

∫ t

t0

u′(s)ds.

(3.8)

Multiplying by
1

t
, t ̸= 0 we obtain

q(t)F (u(t)) ≤ ϵ

∫ t

t0

u′(s)ds− b(u′(ξ))u′(ξ)n+1

∫ t

t0

r(s)γ(u(s))ds

−(u′(ρ))4
∫ t

t0

p(s)ω(u(s))ds+ h((u′(δ))4)u′(δ)

∫ t

t0

ϕ(s)g(u(s))ds.

(3.9)

By conditions (iv) and (viii) we have

|u(t)| ≤ ϵL+ b(|u′(ξ)|)|u′(ξ)|n+1

∫ t

t0

r(s)γ(|u(s)|)ds

+(|u′(ρ)|)4
∫ t

t0

p(s)ω(|u(s)|)ds+ h((|u′(δ)|)4)|u′(δ)|
∫ t

t0

ϕ(s)g(|u(s)|)ds

(3.10)
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and the application of Theorem 4 gives

|u(t)| ≤ ϵLΥ−1
[
Υ(1) + h(|u′(δ)|4)|u′(δ)|∫ t

t0

ϕ(s)g

[
Ω−1

(
Ω(1) + (|u′(ρ)|4

∫ s

t0

p(α)ω (T (α)) dα

)
T (s)

]
ds

]
Ω−1

(
Ω(1) + (|u′(ρ)|)4

∫ t

t0

p(s)ω (T (s)) ds

)
T (t)

(3.11)

for

T (t) = F−1

(
F (1) + b(|u′(ξ)|)|u′(ξ)|n+1

∫ t

t0

r(s)ds

)
. (3.12)

Applying conditions (vi)- (vii), we arrive at

|u(t)| ≤ ϵLΥ−1
[
Υ(1) + h(|u′(δ)|4)|u′(δ)|

n3g
[
Ω−1

(
Ω(1) + (|u′(ρ)|4n2ω (T ∗)

)
T ∗]]

Ω−1
(
Ω(1) + (|u′(ρ)|)4n2ω (T ∗)

)
T ∗,

(3.13)

where T ∗ is defined by

T ∗ = F−1
(
F (1) + b(|u′(ξ)|)|u′(ξ)|n+1n3

)
. (3.14)

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ K∗
1ϵ

with

K∗
1 = LΥ−1

[
Υ(1) + h(|u′(δ)|4)|u′(δ)|

n3g
[
Ω−1

(
Ω(1) + (|u′(ρ)|4n2ω (T ∗)

)
T ∗]]

Ω−1
(
Ω(1) + (|u′(ρ)|)4n2ω (T ∗)

)
T ∗.

□

Theorem 6. Suppose that the conditions of Theorem 5 are satisfied.
In addition, let

i’ Q(t, u(t)) = v(t)α(u(t)) where v(t) a continuous function on R+

ii’ limt0→∞

∫ t

t0

p(s)v(s)ds ≤ k4 <∞, where k4 > 0,

hold true for a function α(u(t)) ∈ Ψ continuous, nondecreasing and
monotonic, then equation (1.2) has the Hyers-Ulam stability with Hyers-
Ulam constant given by

K∗
2 =

(
L+ u′′(ξ)L

)
Ω−1

(
Ω(1) + h(λ)4)λ

k1g
(
F−1

(
F (1) + n(λ)2n4

)))
F−1

(
F (1) + nλ2n4

)
.

(3.15)
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Proof. Evaluate inequality (2.2) and multiply both sides by u′(t), we get

−u′(t)ϵ ≤ u′′(t)u′(t) + np(t)Q(t, u(t))(u′(t))u′(t)

+q(t)f(u(t))u′(t)− P (t, u(t), u′(t))u′(t) ≤ u′(t)ϵ.
(3.16)

Integrate inequality (3.16) twice, apply Lemma 2 and equation (3.5) to
obtain

−ϵt
∫ t

t0

u′(s)ds ≤ t

∫ t

t0

u′(s)u′′(s)ds+ nt

∫ t

t0

p(s)Q(s, u(s))(u′(s))2ds

+t

∫ t

t0

q(s)
d

ds
F (u(s)ds− t

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ϵt

∫ t

t0

u′(s)ds.

(3.17)

Divide through by t ̸= 0 and integrate, for q(t) nondecreasing, q′(t) ≥ 0
then the application of Theorem 2 implies that there exists ξ ∈ [t0, t]
such that

q(t)F (u(t)) ≤ ϵ

∫ t

t0

u′(s)ds− u′′(ξ)

∫ t

t0

u′(s)ds

−n
∫ t

t0

p(s)Q(s, u(s))(u′(s))2ds+

∫ t

t0

P (s, u(s), u′(s))u′(s)ds.

(3.18)

We use condition (i’) of Theorem 6 and condition (ii) of Theorem 5 to
get

q(t)|F (u(t))| ≤ ϵ

(∫ t

t0

|u′(s)|ds+ u′′(ξ)

∫ t

t0

|u′(s)|ds
)

+n

∫ t

t0

p(s)v(s)α(|u(s)|)(|u′(s)|)2ds+
∫ t

t0

ϕ(s)g(|u(s)|)h(|(u′(s)|)4)(|u(s)|)ds.

(3.19)

For t > 0, the use of condition (viii) in Theorem 5 gives

|u(t)| ≤ ϵ

(∫ t

t0

|u′(s)|ds+ |u′′(ξ)|
∫ t

t0

|u′(s)|ds
)

+n(|u′(t)|)2
∫ t

t0

p(s)v(s)α(|u(s)|)ds+ h((|u′(t)|)4)(|u′(t)|)
∫ t

t0

ϕ(s)g(|u(s)|)ds.

(3.20)
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Applying Corollary 4 we obtain

|u(t)| ≤ ϵ

(∫ t

t0

|u′(s)|ds+ u′′(ξ)

∫ t

t0

|u′(s)|ds
)

Ω−1
(
Ω(1) + h((|u′(t)|)4)(|u′(t)|)∫ t

t0

ϕ(s)g

(
F−1

(
F (1) + n(|u′(t)|)2

∫ t

t0

p(α)v(α)dα)

))
ds

)
F−1

(
F (1) + n(|u′(t)|)2

∫ s

t0

p(s)v(s)ds

)
, t ∈ I.

(3.21)

Setting |u′(t)| ≤ λ and applying conditions (vi), (v) of Theorem 5 and
(ii’) of Theorem 6, we arrive at

|u(t)| ≤ ϵ
(
L+ u′′(ξ)L

)
Ω−1

(
Ω(1) + h(λ)4)(λ)

n1g
(
F−1

(
F (1) + nλ2n4

)))
F−1

(
F (1) + nλ2n4

)
.

(3.22)

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ K∗
2ϵ,

where

K∗
2 =

(
L+ u′′(ξ)L

)
Ω−1

(
Ω(1) + h(λ)4)λ

n1g
(
F−1

(
F (1) + nλ2n4

)))
F−1

(
F (1) + nλ2n4

)
.

□

For P (t, u(t), u′(t)) = 0 in equations (1.1) and (1.2) the results are
given in the following theorems:

Theorem 7. Suppose that all the conditions of Theorem 5 remain valid.
Then for P (t, u(t), u′(t)) = 0 in equation (1.1), the equation

(r(t)K1(u(t), u
′(t)))′u′(t) + p(t)K2(u(t), u

′(t))(u′(t))2 + q(t)f(u(t))u′(t) = 0,
(3.23)

has Hyers-Ulam stability with the Hyers-Ulam constant given by

K∗
3 = LΩ−1

(
Ω(1) + (|u′(ρ)|)4n2ϖ

(
F−1 (F (1)

+b(|u(ξ)|)|u′(ξ)|n+1n3
)))

F−1
(
F (1) + b(|u′(ξ)|)|u′(ξ)|n+1n3

)
.

(3.24)

Proof. Using inequality (2.1) and multiplying both sides of the equation
by u′(t) we have

−ϵu′(t) ≤ (r(t)K1(u(t), u
′(t)))′u′(t)

+p(t)K2(u(t), u
′(t))(u′(t))2 + q(t)f(u(t))u′(t) ≤ ϵu′(t).

(3.25)
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It is clear that

(r(t)K1(u(t), u
′(t)))′u′(t)

+p(t)K2(u(t), u
′(t))(u′(t))2 + q(t)f(u(t))u′(t) ≤ ϵu′(t).

(3.26)

Integrating the inequality (3.26) and applying Lemma 2, we obtain∫ t

t0

∫ t

t0

(r(s)K1(u(s), u
′(s)))′u′(s)dsds+ t

∫ t

t0

p(s)K2(u(s), u
′(s))(u′(s))2ds

+t

∫ t

t0

q(s)f(u(s))u′(s) ≤ tϵ

∫ t

t0

u′(s)ds.

(3.27)

If we apply equation (3.5) to inequality (3.27) and integrate for q′(t) ≥ 0
since q(t) is nondecreasing, we get∫ t

t0

(r(s)K1(u(s), u
′(s))u′(s)ds+ t

∫ t

t0

p(s)K2(u(s), u
′(s))(u′(s))2ds

+tq(t)F (u(t)) ≤ tϵ

∫ t

t0

u′(s)ds.

(3.28)

Using conditions (ii) and (iii) of Theorem 5, we obtain∫ t

t0

r(s)γ(u(s))b(u′(s))u′(s)n+1ds+ t

∫ t

t0

p(s)ω(u(s))(u′(s))4ds

+tq(t)F (u(t)) ≤ tϵ

∫ t

t0

u′(s)ds.

(3.29)

Applying Theorem 2 implies there exists ξ, ρ ∈ [t0, t] such that

b(u′(ξ))u′(ξ)n+1

∫ t

t0

r(s)γ(u(s))ds+ t(u′(ρ))4
∫ t

t0

p(s)ω(u(s))ds

+tq(t)F (u(t)) ≤ tϵ

∫ t

t0

u′(s)ds.

(3.30)

Let inequality (3.30) be multiplying by
1

t
, t ̸= 0 to get

q(t)F (u(t)) ≤ ϵ

∫ t

t0

u′(s)ds− b(u′(ξ))u′(ξ)n+1

∫ t

t0

r(s)γ(u(s))ds

−(u′(ρ))4
∫ t

t0

p(s)ω(u(s))ds.

(3.31)
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By condition (iv) of Theorem 5 and for q(t)|F (u(t))| ≥ |u(t)| we have

|u(t))| ≤ ϵL+ b(|u′(ξ)|)|u′(ξ)|n+1

∫ t

t0

r(s)γ(|u(s)|)ds

+(|u′(ρ)|)4
∫ t

t0

p(s)ω(|u(s)|)ds.
(3.32)

Apply Corollary 1 to get

|u(t)| ≤ ϵLΩ−1

(
Ω(1) + (|u′(ρ)|)4

∫ t

t0

p(s)ϖ
(
F−1 (F (1)

+b(|u(ξ)|)|u′(ξ)|n+1

∫ t

t0

r(α)dα)

))
ds

)
F−1

(
F (1) + b(|u′(ξ)|)|u′(ξ)|n+1

∫ t

t0

r(s)ds

)
, t ∈ I.

(3.33)

Further application of conditions (vi)- (vii) of Theorem 5, gives

|u(t)| ≤ ϵLΩ−1
(
Ω(1) + (|u′(ρ)|)4n2ϖ

(
F−1 (F (1)

+b(|u(ξ)|)|u′(ξ)|n+1n3
))
ds
)

F−1
(
F (1) + b(|u′(ξ)|)|u′(ξ)|n+1n3

)
.

(3.34)

Therefore,

K∗
3 = LΩ−1

(
Ω(1) + (|u′(ρ)|)4n2ϖ

(
F−1 (F (1)

+b(|u(ξ)|)|u′(ξ)|n+1n3
)))

F−1
(
F (1) + b(|u′(ξ)|)|u′(ξ)|n+1n3

)
.

□

Theorem 8. Suppose all the conditions of Theorem 5 and those of
Theorem 6 hold true. Then, the equation

u′′(t) + np(t)Q(t, u(t))(u′(t)) + q(t)f(u(t)) = 0, (3.35)

has the Hyers-Ulam stability and Hyers-Ulam constant:

K∗
4 =

(
L+ u′′(ξ)L

)
Ω−1

(
Ω(1) + nλ2n4

)
. (3.36)

Proof. Put P (t, u(t), u′(t)) = 0, in inequality (2.2), multiply by u′(t),
integrate twice and apply Lemma 2 to obtain

−u′(t)ϵ ≤ u′′(t)u′(t) + np(t)Q(t, u(t))(u′(t))u′(t)

+q(t)f(u(t))u′(t) ≤ u′(t)ϵ.
(3.37)
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Integrate inequality (3.37) twice, apply Lemma 2 and equation (3.5) to
get

−ϵt
∫ t

t0

u′(s)ds ≤ t

∫ t

t0

u′(s)u′′(s)ds+ nt

∫ t

t0

p(s)Q(s, u(s))(u′(s))2ds

+t

∫ t

t0

q(s)
d

ds
F (u(s))ds ≤ ϵt

∫ t

t0

u′(s)ds.

(3.38)

Divide through by t, integrate and note that for q(t) nondecreasing,
q′(t) ≥ 0
the application of Theorem 2 implies there exists ξ ∈ [t0, t] such that

q(t)F (u(t)) ≤ ϵ

∫ t

t0

u′(s)ds− u′′(ξ)

∫ t

t0

u′(s)ds

−n
∫ t

t0

p(s)Q(s, u(s))(u′(s))2ds

(3.39)

and using condition (i’) of Theorem 6 together with condition (ii) of
Theorem 5 gives

q(t)|F (u(t))| ≤ ϵ

(∫ t

t0

|u′(s)|ds+ u′′(ξ)

∫ t

t0

|u′(s)|ds
)

+n

∫ t

t0

p(s)v(s)α(|u(s)|)(|u′(s)|)2ds.
(3.40)

For t > 0, use condition (viii) of Theorem 5 to get

|u(t)| ≤ ϵ

(∫ t

t0

|u′(s)|ds+ u′′(ξ)

∫ t

t0

|u′(s)|ds
)

+n(|u′(t)|)2
∫ t

t0

p(s)v(s)α(|u(s)|)ds.
(3.41)

Applying Theorem 1, we obtain

|u(t)| ≤ ϵ

(∫ t

t0

|u′(s)|ds+ u′′(ξ)

∫ t

t0

|u′(s)|ds
)

Ω−1

(
Ω(1) + n(|u′(t)|)2

∫ t

0
p(s)v(s)ds

)
, 0 < t ≤ b.

(3.42)

Setting |u′(t)| ≤ λ and applying condition (ii’) of Theorem 6, we arrive
at

|u(t)| ≤ ϵ
(
L+ u′′(ξ)L

)
Ω−1 (Ω(1) + nλn4) . (3.43)

Hence,
|u(t)− u(t0)| ≤ |u(t)| ≤ K∗

4ϵ

with
K∗

4 =
(
L+ u′′(ξ)L

)
Ω−1

(
Ω(1) + nλ2n4

)
.
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□

Example 1. Consider the following equation(
1

t4
u4(t)(u′(t))2

)
+

1

t2
u2(t)(u′(t))4 + t2u2(t) =

1

t6
u2(t)(u′(t))8, t > 0,

where K1(u(t), u
′(t)) = u4(t)(u′(t))2, K2(u(t), u

′(t)) = u2(t)(u′(t))3,
q(t)f(u(t)) = t2u2(t), P (t, u(t), u′(t)) = 1

t6
u2(t)(u′(t))8, r(t) = 1

t4
, p(t) =

1
t2
, ϕ(t) = 1

t6
. By the criteria of Theorem 5, we arrive at the result.
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