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ABSTRACT. In this paper, Hyers-Ulam stability theorems of
nonlinear second order damped differential equations with forc-
ing term are considered. By using the Bihari inequality and
Gronwall-Bellman-Bihari integral inequality, we obtain new suf-
ficient conditions for the Hyers-Ulam stability of every nonlin-
ear second order differential equation considered. Our results
improve and extend some known results.

Keywords and phrases: Damped differential equation, Integral
inequality, Sufficient condition, Hyers-Ulam stability, Nonlinear dif-
ferential equation.

2010 Mathematical Subject Classification: 26A46, 34C10, 11R33,
35Q31

ILESANMI FAKUNLE! AND PETER OLUTOLA ARAWOMO?
1. INTRODUCTION

In this paper, we study the Hyers-Ulam stability of the following forced
nonlinear second order differential equations with damping:

(r(E) K (), ! (8)) +p(0) Ka (u(t), ! () (1) +a () f (u(t)) = P(t,u (f)l’%())
u”(t) +np(t)Q(t, u(t)w'(t) + q(t) f(u(t)) = P(t,u(t),u'(t),  (1.2)
for all ¢ > 0, with initial conditions
u(to) = u'(to) =0, (1.3)
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where 7(t), p(t), ¢(t) € C(Ry), f € C(R), Ki,Ks € C(R?), Q €
CRy xR), P € C(Ry x R?), Ry = [0,00) and R = (—o00, o).
The Hyers-Ulam stability of equations (1.1),(1.2) and their variants are
considered by transforming the equations into integral inequalities for
easy use of Bihari and Gronwall-Bellman-Bihari inequalities.

The study of stability problem for various functional equations orig-
inated from a famous talk of S.M. Ulam. In 1940, Ulam [32] posed a
problem concerning the stability of functional equations: ’Give condi-
tions in order for a linear function near an approximately linear function
to exist’. Since then, this question has attracted the attention of many
researchers. The solution to this question was given by Hyers [13] for ad-
ditive functions defined on Banach spaces in 1941. Thereafter, the result
by Hyers [13] was generalised by Rassias [26], Aoki [3] and Bourgin[5].

A generalisation of Ulam’s problem was proposed by replacing func-
tional equations with differential equations. Obloza [23] seems to be the
first author to prove the Ulam stability of differential equations. There-
after, the Hyers-Ulam stability of various linear differential equations
were extensively studied. In 1998, Alsina and Ger [2] proved the fol-
lowing : Assume that a differentiable function f : I — R is a solution
of the differential inequality |u'(¢) — u(t)| < €, then there exists a so-
lution fo : T — R of the differential equation u'(t) = u(t) such that
|f(t) — fo(t)] < 3e for any ¢ € 1.

Following the same approach as in [2], Miura et al. [20], Miura [19],
Takahasi et al. [30], and Miura et al., [21] proved that the Hyers-Ulam
stability holds true for the differential equation

u'(t) = du(t), (1.4)
while Jung [17] proved a similar result for the differential equation
Y0 (1) = u(t). (1.5)

Furthermore, the result of Hyers-Ulam for first-order linear differential
equations was generalised by Miura et al.[22], by Takahasi et al. [30]
and Jung [15]. They dealt with the nonhomogeneous linear differential
equation of first order

' (£) + p(t)ult) + q(t) = 0. (1.6)
Recently, Jung [16] proved that the differential equations of the form
tu' () + au(t) + Bt"zo = 0 (1.7)

satisfy the generalised Hyers-Ulam stability and then applied the result
in the investigation of the Hyers-Ulam stability of the Euler(Cauchy)
differential equation

2" (t) + atu/(t) + Bu(t) = 0. (1.8)

In their work, Li and Shen [29] proved that if the characteristic equa-
tion A% 4+ a\ + B = 0 has two distinct positive roots, then the second
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order linear differential equation with constant coefficients

u’(t) + ay'(t) + By(t) = f(t) (1.9)
has the Hyers-Ulam stability where y € C?[a,b], f € C[a,b] and —co <

a,b < 4+00. Ghaemi et al. [12] proved the Hyers-Ulam stability of the
exact second order linear differential equation

po()u” () + pL(t) (t) + po(t)u + f(t) =0 (1.10)

with pfj(t) — p1(t)’ + p2(t) = 0. Here, po, p1,p2, [ : (a,b) — R are contin-
uous functions.

The following authors also discussed Hyers-Ulam stability of nonlinear
differential equations: Rus [27, 28] Qarawani [24, 25], Algfiary and Jung
[1], Fakunle and Arawomo [9, 10, 11].

2. PRELIMINARY

The following definitions, lemmas and theorems are necessary for our
results
Definition 1. We say that equation (1.1) has the Hyers-Ulam stability,
if there exists a constant K7 > 0 with the following property: for every
e >0, u(t) € C*(Ry), if

(2B (), (6))' + () Ko (), (5 () + a(0) (1)

—P(t,ut), u'(t)] <e
then, there exists some ug(t) € C?(R) such that
lu(t) — up(t)| < Kie.

(2.1)

We call such K7 a Hyers-Ulam constant.

Definition 2. The differential equation (1.2) has the Hyers-Ulam stabil-
ity with initial condition (1.3), if there exists a positive constant Kj > 0
with the following property: for every ¢ > 0, u(t) € C?(R.), which
satisfies

[ () +np(H)Q(t, u(t)) (W' (1)) +q(8) f (u(t)) — P(t, u(t), o' ()| < e, (2.2)
then there exists a function ug(t) € C?(R.y) satisfying (1.2) with initial
condition (1.3) such that

u(t) — uo(t)] < K¢,
We call such K35 Hyers-Ulam stability constant for the differential equa-
tion (1.2) with initial conditions (1.3).

Definition 3. A function w : [0, 00) — [0, 00) is said to belong to a class
v if

i w(u) is nondecreasing and continuous for u > 0,

i (Dw(u) <w(®)forallu and v >1,
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iii there exists a function ¢, continuous on [0,00) with w(au) <

d(a)w(u) for a > 0.

Lemma 1. [4] Let u(t), f(t) be positive continuous functions defined on
to <t <b,(<00)and K >0, M >0, further let w(u) be a nonnegative
nondecreasing continuous function for u > 0, then the inequality

t

u(t) < K+ M [ f(s)w(u(s))ds, to <t <b, (2.3)

implies the inequality

u(t) < Q71 <Q(k:) + M tf(s)ds) , o<t <b <, (2.4)
to
where
Qu) = / wCZ)’ 0<up<u. (2.5)

In the case w(0) > 0 or Q(0+) is finite, one may take ug = 0 and Q1
is the inverse function of Q and ¢ must be in the subinterval [tg,d'] of
[to, b] such that

t
Qk)+ M | f(s)ds € Dom(Q™1).
to
Theorem 1. [6] Let

i u(t),r(t):(0,00) = (0,00) and continuous on (0, c0),
iiweVv,
iii n > 0 be monotonic, nondecreasing and continuous on (0, c0),
if
¢
u(t) < n(t) -l—/ f(s)mw(u(s))ds, 0 <t < o0, (2.6)
0
then
t
u(t) < n(t)Q! (9(1) +/ f(s)ds) 0<t<b, (2.7)
0
for (0,b) C (0,00), where (u) is defined in (2.5), Q7! is the inverse
of Q and t is in the subinterval (0,b) chosen so that

Q(1) —i—/o f(s)ds € Dom(Q71).

Theorem 2. [18] If f(¢) and g(t) are continuous in [tg,t] C I and f(¢)
does not change sign in the interval, then there is a point £ € [tg, t] such

that [ ()£ (s)ds = g(€) / ' f(s)ds



HYERS-ULAM STABILITY THEOREMS... 23

Theorem 3. [8, 7] Suppose u(t),r(t),h(t) € C(I,Ry) and w(u), f(u) €
¥ are nonnegative, monotonic, nondecreasing, continuous functions and
w(u) a submultiplicative function for u > 0. Let

w(t) < K+ T / r(5)B(uls))ds + L / Ws)o(u(s)ds  (2.8)

to to

for K, T and L positive constants, then

u(t) < Q71 (Q(K) + L/t: h(s)w (F—l (F(l) - T/t: r(a)da)) ds)
F1 (F(l) +T /t; r(s)ds>

(2.9)

where f(u) # w(u), Q is defined in equation (2.5) and F'(u) is defined
as
“ ds

 Ju B(s)
F~1, Q71 are the inverses of F, Q respectively and ¢ is in the subinterval
(0,b) € I so that

F(u)

0 <wup <w, (2.10)

F(1)+ T/t r(s)ds € Dom(F~1)

and O
QK) + L/t: h(s)w (F‘l (F(l) + T/t: r(a)da>> ds € Dom(Q™")

Corollary 1. [7, 8] Suppose p(t) is a nonnegative, monotonic, nonde-
creasing continuous function on R,. Let

u(t) < p(t) + T/ r(s)B(u(s))ds + L | h(s)w(u(s))ds, (2.11)

to to

for T and L be positive constants, then

u(t) < p(HH! (9(1) ) / h(s)w <F—1 (F(l) b T / tr(a)da))) ds>

to to
F! (F(l) +T/tr(s)ds> , tel,
K (2.12)
where Q(u) and F(u) are defined as in (2.5) and (2.10) respectively.

Theorem 4. [8, 7] If u(t), r(t), h(t), p(t),g(t) € C(Ry) and w, f,y € ¥
be nonnegative, monotonic, nondecreasing continuous functions. Let ~y
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be a submultiplicative function. If
t

u(t) < p(t)+ A t r(s)B(u(s))ds + B/t h(s)w(u(s))ds+

(2.13)

for K, A, B, L > 0, then

[’r(l) + L /tg(s)’y [Q_l (Q(l) + B

to to

Q! <Q(1) +B t h(s)w (T(s)) d5> (t)
’ (2.14)
where T'(t) is given as
T(t)=F! (F(l) +A tr(s)ds) (2.15)
and .
Y(r)= /t ’;(lz), 0<rg<m, (2.16)

and F71, Q71 and Y~! are the inverses of F, Q, T respectively t €
(0,b) C (I). So that

T(1)+ L /tg(s)y [9—1 (Q(l) + B

to

S

h(a)w (T(a)) da> T(s)} ds € Dom(Y™1
to
Lemma 2. [14] Let () be an integrable function then the n successive
integration of r over the interval [tg, t] is given by

/to /to 8)ds" = o 1) /t:(t — )" r(s)ds  (2.17)

3. MAIN RESULTS

In this section, we establish the Hyers-Ulam stability of the nonlinear
differential equations (1.1) ,(1.2) and the case P(t,u(t),u'(t)) = 0. We
shall also prove the Hyers-Ulam stability of the nonlinear differential
equation (1.1) with initial conditions (1.3).

Theorem 5. Assume the following conditions:

i P(tu(t),u'(t)) = ¢(t)g(u(t)) h((u'(8)*)
i Ky (u(t), ' (t) =~y (u(t)b(d (t)u'(t)", where n € N
i Ko (u(t), u'(t)) = wlu(t))(u'(t))?
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t
iv limg, 00 [ [1/(8)|ds = L, where L > 0,
to

v limyy oo [ @(s)ds < my < 0o, wheren; > 0,
t
vi limto_mo/ p(s)ds < ng < oo, where ng > 0,
to
L
vii limtoﬁoo/ r(s)ds < n3 < 0o, where ng > 0,
to
viii (O F ()] > [u(b)],

are satisfied and ¢,v,w,g,h,b € C(R4). In addition, if w(u(t)) € ¥ is
continuous, nondecreasing and monotonic, then equation (1.1) has the
Hyers-Ulam stability with Hyers-Ulam constant given by

- T<1+h<|u<>|4>|u’<5>\
ndg[ﬂ (<>+<|u<p now (1)) T (3.1)
Q7 (Q(1) + (I (p)]) e (T7) T".

Proof. Using inequality (2.1) and multiplying both sides by «/(t) we have

—eu'(t) < (r(t) K (u(t), u' ()" (t)

+p(t) Kz (ult), o' (1)) (u'(8))? + q(8) f (u(t))d' (t) — P(t,u(t), U’(t))U'(t)( < E)U'(t),
3.2

Considering (3.2) in the form

(r(8) K (ult), ' (8)) " (t) + p(£) Ko (u(t), o' () (u'(£))? + q(8) f (w(t)' (¢)
—P(t,u(t), v (t)u'(t) < eu(t).
(3.3)

Integrate both sides of (3.3) twice and apply Lemma 2, to obtain

/t /t (r(s) K1 (u(s), ' (5)) o () dsds + ¢ /t () K (u(s), o () (u/ (5))2ds

—i—t/t q(s)f(u(s))u/(s)ds—t/t P(s,u(s),u'(s))u/(s)ds < te/t u/(s)ds.
(3.4)

Set

F(u(t)) = f(s)ds, (3.5)
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apply equation (3.5) in inequality (3.4) and integrate to get

/tT(S)Kl(u(s),u/(s))u’(s)ds—i—t/t p(S)Kg(u(s),u'(s))(u’(s))2d5

gt F(u(t)) — t /t P(s, u(s), w/(s)1'(s)ds < te /t o (5)ds.
’ ’ (3.6)

Using conditions (i-iii) we obtain

/tT(S)'V(U(S))b(U'(S))U'(S)”“dS+t/t p(s)w(u(s)) (' (s))"ds

+HalO)F((®) =t [ o)l () ) (s < e / ! (3)ds.
’ NEY

The application of Theorem 2 implies there exists &, p,d € [to,t] such
that

t t

b(U'(f))U’(ﬁ)"H/ (T(S)V(U(S))ds+t(U’(p))4/ p(s)w(u(s))ds

to to

+tq(t)F(u(t)) — th((u'(8))u'(8) [ é(s)g(u(s))ds < tE/t u/(s)ds.

to

1
Multiplying by n t # 0 we obtain
t t

A F(u(t)) < ¢ / ! ()ds — b(ul (€))u! (€)™ / r(s)y(u(s))ds
fo fo (3.9)

—(U'(P))A‘/t p(S)w(U(S))dS+h((u'(5))4)u'(5)/t ¢(s)g(u(s))ds.
By conditions (iv) and (viii) we have

u(t)] < €L + b{jed (€) ) (€)1 / r(syy(Jus) ) ds

+(IU’(p)I)4/ p(S)w(IU(S)I)d8+h((U’(5)I)4)IU’(5)I/t ¢(s)g(lu(s)|)ds

to
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and the application of Theorem 4 gives

[u(t)] < LT [T(1) + h(jd/ (8)[*) ' (9)]

o |21 (200)+ (I [ pla)e (T(@)da) 7(6)] ]

to

t

to

o (Qu) 0D [ ploh (T(s) ds) ()
’ (3.11)

for
T(t) = P! (F(l)+b(\U’(€)I)\U’(€)I”“ / r(s)ds). (3.12)

Applying conditions (vi)- (vii), we arrive at
u(t)] < LY~ [T(1) + h(fu ( )| (6)]
n3g [ (L) + (Ju/(p)|*naw (T%)) T*]] (3.13)
Q7 (1) + (Ju/ (p)]) tnaw (T7)) T,
where T™ is defined by
T =F 1 (F(1) +b(|u' (&))" n) . (3.14)
Hence,
|u(t) —ulto)| < |u(t)| < Kie
with
Ki =LY 1 [T(1)+ h(lU( D' (8))]
nsg [Q ( ( )+ ([u/ (p)|*naw ( ) T*]
Q71 Q1) + ([ (p)]) 'naw (T*)) T
g

Theorem 6. Suppose that the conditions of Theorem 5 are satisfied.
In addition, let

i Q(t,u(t)) :t v(t)a(u(t)) where v(t) a continuous function on R4

i’ limto_mo/ p(s)v(s)ds < ky < oo, where kq > 0,
to

hold true for a function a(u(t)) € ¥ continuous, nondecreasing and

monotonic, then equation (1.2) has the Hyers-Ulam stability with Hyers-

Ulam constant given by

K3 = (L+u"(6)L) Q7' (1) + A(A)HA
kig (F71 (F(1) + n(A\)na))) (3.15)
F1 (F(1)+ n)\2n4) .
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Proof. Evaluate inequality (2.2) and multiply both sides by u/(t), we get

—u'(t)e < u”(t)u'(t) + np(t)Q(t, u(t)) (u'(t))u'(t)
( /

B fu()u'(t) — P(t,u(t), o' (¢)u'(t) < ' (t)e. (3.16)

Integrate inequality (3.16) twice, apply Lemma 2 and equation (3.5) to
obtain

—et/t u'(s)ds §t/t u'(s)u"(s)ds+nt/t p(s)Q(s,u(s))(u'(s))%ds

+t/t q(s);iF(u(s)ds—t/t P(s,u(s),u'(s))u/(s)ds < et/t u/(s)ds.
(3.17)

Divide through by ¢ # 0 and integrate, for ¢(t) nondecreasing, ¢'(t) > 0
then the application of Theorem 2 implies that there exists & € [to, ]
such that

dOF(®) < e [ (s)ds—u'(©) [ w(s)ds
fo fo (3.18)

—n/t p(s)Q(s,u(s))(u’(s))st—i—/t P(s,u(s),u' (s))u'(s)ds.

We use condition (i’) of Theorem 6 and condition (ii) of Theorem 5 to
get

t t

A0 F(u(t))] < ( ol ()| ds + " (€) ru'<s>rds)

to to

+n/t p(s)o(s)alu(s)|)(|u'(s)])*ds + t ¢(s)g(Ju(s)DA(| (' () ) (|uls)])ds.
(3.19)

For ¢ > 0, the use of condition (viii) in Theorem 5 gives

u(t)] < e ( ol (s)ds + [u"(€) \u’<s>|ds)

to to

+n(IU’(t)I)2/t p(s)v(s)au(s))ds + h((Ju'(H))*) ([’ (£)]) t o(s)g(lu(s)])ds.
(3.20)
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Applying Corollary 4 we obtain

u(t)] < e ( ()| ds + o' (€) |u’<s>|ds)

to to

Q7 (Q(1) + A((Ju (BN (1 1))
/t: B(s)g (F—l <F(1) + n(ju' ()])? /t:p(a)v(a)da)» d8> (3.21)

F1 <F(1) + n(u/ (1)])? /to p(s)v(s)ds> , tel
Setting |u/(t)] < A and applying conditions (vi), (v) of Theorem 5 and
(i’) of Theorem 6, we arrive at
u(t)] < € (L+u"(§)L) Q7 (1) +h(N)HN)
nig (F~' (F(1) + nAn4))) (3.22)
F7H(EF(L) + nX’ny) .
Hence,
|u(t) — u(to)| < fu(t)] < Kje,
where
Kj = (L+u"(&)L) Q' (1) HA
nig (F (F(l) +nA n4)))
-1 (F(1) + n)\2n4)
U

For P(t,u(t),u/(t)) = 0 in equations (1.1) and (1.2) the results are
given in the following theorems:

Theorem 7. Suppose that all the conditions of Theorem 5 remain valid.
Then for P(t,u(t),u'(t)) = 0 in equation (1.1), the equation

(r(O) K (u(t),u' (£) ' (t) + p() Ko (ult), o' (£) (u'()* + Q(t)f(U(t))(U’(t)): 0,
3.23

has Hyers-Ulam stability with the Hyers-Ulam constant given by
K3 = L7 (Q1) + ([u/(p)) 'new (FH(F(1)
+b(|u(€))]u'(€)]"  ns))) (3.24)
FH(F) + ([ (D' (6)]" ns) -
Proof. Using inequality (2.1) and multiplying both sides of the equation
by u/(t) we have
el (£) < (r(B) K (u(t), o (£))2d (1)

/ / 2 / / (3'25)
+p() Ka(u(t), w (t)(w (£))” + q(t) f (u(t))w (t) < eu'(t).
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It is clear that

(r(6) Ky (ult), u' (1)) ' (t)

/ / 2 / / (3'26)
+p(t) Ko (u(t), w' () (v () + q(t) f (u(t)u'(t) < eu'(t).

Integrating the inequality (3.26) and applying Lemma 2, we obtain
t ot t
/ / (r(s)K1(u(s),u'(s))) 4 (s)dsds + t/ p(s) Ko (u(s),u'(s)) (v (s))ds
to Jto to

—l—t/t q(s) f(u(s))u'(s) < te/t u'(s)ds.
’ " (3.27)

If we apply equation (3.5) to inequality (3.27) and integrate for ¢/(¢t) > 0
since ¢(t) is nondecreasing, we get

/t(T(S)Kl(u(s)vU/(S))Ul(s)ds+7f/t p(s)Ka(u(s), u'(s))(u'(s))?ds
() F(u(t)) < te /t o (5)ds.
T (3.

Using conditions (ii) and (iii) of Theorem 5, we obtain

/ r(s)y(u(s)b(w' (s))u' ()" ds + ¢ / p(s)w(u(s)) (W' (s)) ds
o o (3.29)

Hq(t) F(u(t)) < te /t " (s)ds.

Applying Theorem 2 implies there exists £, p € [to, t] such that

b(u (€)' (€)™ / r(s)y(u(s))ds + £ (p))! / p(s)w(u(s))ds
fo o (3.30)

t
() F(ult)) < te / W (5)ds.
to
. ) o 1
Let inequality (3.30) be multiplying by o t # 0 to get

(O F(u(t)) < ¢ / ! (s)ds — bu! (€))u (€)™ / r(s)y(u(s))ds

(3.31)
—(u(p))* / p(s)e(u(s))ds.
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By condition (iv) of Theorem 5 and for ¢(t)|F(u(t))| > |u(t)| we have

u(t))| < €L+ b(!ﬂ’(&)l)ﬂ’(é)l”“/ r(s)y(lu(s)])ds
o (3.32)

+( (o)) / p(8)eo((u(s)])ds.

Apply Corollary 1 to get

Ju(t)] < eLQ™ (Q(l) + (\U’(p)!)4/t p(s)@ (F~1(F(1)

Fb(fu() Dl (€) /t:rm)da))) i) e
P (FO) OO /t:ms)ds) L tel

Further application of conditions (vi)- (vii) of Theorem 5, gives

()] < L™ (1) + (1 (o)
+b(Ju(©)
P (F(1) 4+ b

(
)tnaw (F~1 (F(1)
)| (€)M n ))ds) (3.34)
DI (E)]"n3) -
Therefore,
K3 = L7 (1) + (Ju'(p)]) 'nawo (F~ (F(1)
+0([u(€) ' (€)' ns)))
FTHEQ) +b(|u' (€)N)|u' (€)]" ns) -
O

Theorem 8. Suppose all the conditions of Theorem 5 and those of
Theorem 6 hold true. Then, the equation

u”(t) + np(t)Q(t, u(t)) (u'(8)) + q(t) f (u(t)) = 0, (3.35)
has the Hyers-Ulam stability and Hyers-Ulam constant:
Ki = (L+u"(6)L) Q7" (1) + nA’ny) . (3.36)

Proof. Put P(t,u(t),u(t)) = 0, in inequality (2.2), multiply by «/(¢),
integrate twice and apply Lemma 2 to obtain
—u'(t)e < u” (L)' (t) + np(t)Q(t, u(t)) (u'(t))u' (t)

(t
+q(t) f(u(t)u' (t) < u'(t)e. (3.37)
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Integrate inequality (3.37) twice, apply Lemma 2 and equation (3.5) to
get

—et/ u'(s)ds St/ u'(s)u”(s)ds—i—nt/ p(s)Q(s,u(s))(u'(s))*ds

to to to

—l—t/t q(s)%F(u(s))ds < et/t u/'(s)ds.
’ " (3.38)

Divide through by ¢, integrate and note that for ¢(t) nondecreasing,
q(t) =0
the application of Theorem 2 implies there exists £ € [to, t] such that
t t
dOF@®) < e [ (s)ds—u'(©) [ w(s)ds
to to
. ) (3.39)
n [ p6)Qs u() (0 (5)ds
to
and using condition (i’) of Theorem 6 together with condition (ii) of
Theorem 5 gives
t t

«mﬂmee<tW@m+w«>mew)

t (3.40)
+n/t p(s)v(s)a(lu(s)])(|u'(s)])*ds.

For t > 0, use condition (viii) of Theorem 5 to get

MWSe(!WW®+M@ rww@)

to to
t (3.41)

+n(\U'(t))2/ p(s)v(s)a(|u(s)])ds.

to
Applying Theorem 1, we obtain
¢

|mms6(tW%wu+M@>tW@w§

: (3.42)
ot (Q(l) + n(\u’(t)\)Q/O p(s)v(s)ds) , 0<t<b.

Setting |u/(t)| < A and applying condition (ii’) of Theorem 6, we arrive
at

lu®)] <e(L+u"(§)L) Q71 (L) + ning) . (3.43)
Hence,
u(t) — u(to)| < |u(t)| < Kje
with
Ki=(L+u"(€)L) Q7 (2(1) + nA\?na) .
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Example 1. Consider the following equation

(,34 u (1) (! <t>>2) (O 0) + Pa2(0) = (O 0, £>0,
where Ka(u(t)u/(1) = w0 ()%, Kafu(). () = w(t) ()"
q(0) F(u(t)) = 2u2(0), P(t u(t), /(1)) = Hud(0)(w/ (D)%, r(t) = &, p(t)

t%, o(t) By the criteria of Theorem 5, we arrive at the result.

1
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