Journal of the	Vol. 42, Issue 1, pp. 19 - 35, 2023
Nigerian Mathematical Society	©Nigerian Mathematical Society

HYERS-ULAM STABILITY THEOREMS FOR SECOND ORDER NONLINEAR DAMPED DIFFERENTIAL EQUATIONS WITH FORCING TERM

ILESANMI FAKUNLE 1 AND PETER OLUTOLA ARAWOMO 2

ABSTRACT. In this paper, Hyers-Ulam stability theorems of nonlinear second order damped differential equations with forcing term are considered. By using the Bihari inequality and Gronwall-Bellman-Bihari integral inequality, we obtain new sufficient conditions for the Hyers-Ulam stability of every nonlinear second order differential equation considered. Our results improve and extend some known results.

Keywords and phrases: Damped differential equation, Integral inequality, Sufficient condition, Hyers-Ulam stability, Nonlinear differential equation.

2010 Mathematical Subject Classification: 26A46, 34C10, 11R33, 35Q31

ILESANMI FAKUNLE 1 AND PETER OLUTOLA ARAWOMO 2

1. INTRODUCTION

In this paper, we study the Hyers-Ulam stability of the following forced nonlinear second order differential equations with damping:

$$(r(t)K_1(u(t), u'(t)))' + p(t)K_2(u(t), u'(t))u'(t) + q(t)f(u(t)) = P(t, u(t), u'(t))$$

$$(1.1)$$

$$(1.1)$$

$$u''(t) + np(t)Q(t, u(t))u'(t) + q(t)f(u(t)) = P(t, u(t), u'(t)), \quad (1.2)$$

for all t > 0, with initial conditions

$$u(t_0) = u'(t_0) = 0, (1.3)$$

Received by the editors July 07, 2022; Revised: December 15, 2022; Accepted: January 25, 2023

www.nigerianmathematical society.org; Journal available online at https://ojs.ictp. it/jnms/

where r(t), p(t), $q(t) \in C(\mathbf{R}_+)$, $f \in C(\mathbf{R})$, $K_1, K_2 \in C(\mathbf{R}^2)$, $Q \in C(\mathbf{R}_+ \times \mathbf{R})$, $P \in C(\mathbf{R}_+ \times \mathbf{R}^2)$, $\mathbf{R}_+ = [0, \infty)$ and $\mathbf{R} = (-\infty, \infty)$. The Hyers-Ulam stability of equations (1.1), (1.2) and their variants are considered by transforming the equations into integral inequalities for easy use of Bihari and Gronwall-Bellman-Bihari inequalities.

The study of stability problem for various functional equations originated from a famous talk of S.M. Ulam. In 1940, Ulam [32] posed a problem concerning the stability of functional equations: 'Give conditions in order for a linear function near an approximately linear function to exist'. Since then, this question has attracted the attention of many researchers. The solution to this question was given by Hyers [13] for additive functions defined on Banach spaces in 1941. Thereafter, the result by Hyers [13] was generalised by Rassias [26], Aoki [3] and Bourgin[5].

A generalisation of Ulam's problem was proposed by replacing functional equations with differential equations. Obloza [23] seems to be the first author to prove the Ulam stability of differential equations. Thereafter, the Hyers-Ulam stability of various linear differential equations were extensively studied. In 1998, Alsina and Ger [2] proved the following : Assume that a differentiable function $f: \mathbf{I} \to \mathbf{R}$ is a solution of the differential inequality $|u'(t) - u(t)| \leq \epsilon$, then there exists a solution $f_0: \mathbf{I} \to \mathbf{R}$ of the differential equation u'(t) = u(t) such that $|f(t) - f_0(t)| \leq 3\epsilon$ for any $t \in \mathbf{I}$.

Following the same approach as in [2], Miura *et al.* [20], Miura [19], Takahasi *et al.* [30], and Miura *et al.*, [21] proved that the Hyers-Ulam stability holds true for the differential equation

$$u'(t) = \lambda u(t), \tag{1.4}$$

while Jung [17] proved a similar result for the differential equation

$$\psi(t)u'(t) = u(t). \tag{1.5}$$

Furthermore, the result of Hyers-Ulam for first-order linear differential equations was generalised by Miura *et al.*[22], by Takahasi *et al.* [30] and Jung [15]. They dealt with the nonhomogeneous linear differential equation of first order

$$u'(t) + p(t)u(t) + q(t) = 0.$$
(1.6)

Recently, Jung [16] proved that the differential equations of the form

$$tu'(t) + \alpha u(t) + \beta t^r x_0 = 0$$
 (1.7)

satisfy the generalised Hyers-Ulam stability and then applied the result in the investigation of the Hyers-Ulam stability of the Euler(Cauchy) differential equation

$$t^{2}u''(t) + \alpha tu'(t) + \beta u(t) = 0.$$
(1.8)

In their work, Li and Shen [29] proved that if the characteristic equation $\lambda^2 + \alpha \lambda + \beta = 0$ has two distinct positive roots, then the second

order linear differential equation with constant coefficients

$$u''(t) + \alpha y'(t) + \beta y(t) = f(t)$$
(1.9)

has the Hyers-Ulam stability where $y \in C^2[a, b]$, $f \in C[a, b]$ and $-\infty < a, b < +\infty$. Ghaemi *et al.* [12] proved the Hyers-Ulam stability of the exact second order linear differential equation

$$p_0(t)u''(t) + p_1(t)u'(t) + p_2(t)u + f(t) = 0$$
(1.10)

with $p''_0(t) - p_1(t)' + p_2(t) = 0$. Here, $p_0, p_1, p_2, f : (a, b) \to \mathbf{R}$ are continuous functions.

The following authors also discussed Hyers-Ulam stability of nonlinear differential equations: Rus [27, 28] Qarawani [24, 25], Algfiary and Jung [1], Fakunle and Arawomo [9, 10, 11].

2. PRELIMINARY

The following definitions, lemmas and theorems are necessary for our results

Definition 1. We say that equation (1.1) has the Hyers-Ulam stability, if there exists a constant $K_1^* \ge 0$ with the following property: for every $\epsilon > 0, u(t) \in C^2(\mathbf{R}_+)$, if

$$\frac{|(r(t)K_1(u(t), u'(t)))' + p(t)K_2(u(t), u'(t))u'(t) + q(t)f(u(t))}{-P(t, u(t), u'(t))| \le \epsilon},$$
(2.1)

then, there exists some $u_0(t) \in C^2(\mathbf{R}_+)$ such that

$$|u(t) - u_0(t)| \le K_1^* \epsilon.$$

We call such K_1^* a Hyers-Ulam constant.

Definition 2. The differential equation (1.2) has the Hyers-Ulam stability with initial condition (1.3), if there exists a positive constant $K_2^* \ge 0$ with the following property: for every $\epsilon \ge 0$, $u(t) \in C^2(\mathbf{R}_+)$, which satisfies

$$|u''(t) + np(t)Q(t, u(t))(u'(t)) + q(t)f(u(t)) - P(t, u(t), u'(t))| \le \epsilon, (2.2)$$

then there exists a function $u_0(t) \in C^2(\mathbf{R}_+)$ satisfying (1.2) with initial condition (1.3) such that

$$|u(t) - u_0(t)| \le K_2^* \epsilon,$$

We call such K_2^* Hyers-Ulam stability constant for the differential equation (1.2) with initial conditions (1.3).

Definition 3. A function $\omega : [0, \infty) \to [0, \infty)$ is said to belong to a class Ψ if

i $\omega(u)$ is nondecreasing and continuous for $u \ge 0$, ii $(\frac{1}{v})\omega(u) \le \omega(\frac{u}{v})$ for all u and $v \ge 1$,

ILESANMI FAKUNLE AND PETER OLUTOLA ARAWOMO

iii there exists a function ϕ , continuous on $[0,\infty)$ with $\omega(\alpha u) \leq \phi(\alpha)\omega(u)$ for $\alpha \geq 0$.

Lemma 1. [4] Let u(t), f(t) be positive continuous functions defined on $t_0 \leq t \leq b$, $(\leq \infty)$ and K > 0, $M \geq 0$, further let $\omega(u)$ be a nonnegative nondecreasing continuous function for $u \geq 0$, then the inequality

$$u(t) \le K + M \int_{t_0}^t f(s)\omega(u(s))ds, \ t_0 \le t < b,$$
 (2.3)

implies the inequality

$$u(t) \le \Omega^{-1} \left(\Omega(k) + M \int_{t_0}^t f(s) ds \right), \ t_0 \le t \le b' \le b,$$
 (2.4)

where

$$\Omega(u) = \int_{u_0}^{u} \frac{dt}{\omega(t)}, \quad 0 < u_0 < u.$$
(2.5)

In the case $\omega(0) > 0$ or $\Omega(0+)$ is finite, one may take $u_0 = 0$ and Ω^{-1} is the inverse function of Ω and t must be in the subinterval $[t_0, b']$ of $[t_0, b]$ such that

$$\Omega(k) + M \int_{t_0}^t f(s) ds \in Dom(\Omega^{-1}).$$

Theorem 1. [6] Let

i $u(t), r(t) : (0, \infty) \to (0, \infty)$ and continuous on $(0, \infty)$, ii $\varpi \in \Psi$,

iii n > 0 be monotonic, nondecreasing and continuous on $(0, \infty)$,

$$u(t) \le n(t) + \int_0^t f(s)\varpi(u(s))ds, \ 0 < t < \infty,$$
 (2.6)

then

$$u(t) \le n(t)\Omega^{-1} \left(\Omega(1) + \int_0^t f(s)ds \right) \ 0 < t \le b,$$
 (2.7)

for $(0,b) \subset (0,\infty)$, where $\Omega(u)$ is defined in (2.5), Ω^{-1} is the inverse of Ω and t is in the subinterval (0,b) chosen so that

$$\Omega(1) + \int_0^t f(s)ds \in Dom(\Omega^{-1}).$$

Theorem 2. [18] If f(t) and g(t) are continuous in $[t_0, t] \subseteq \mathbf{I}$ and f(t) does not change sign in the interval, then there is a point $\xi \in [t_0, t]$ such that $\int_{t_0}^t g(s)f(s)ds = g(\xi) \int_{t_0}^t f(s)ds$

Theorem 3. [8, 7] Suppose $u(t), r(t), h(t) \in C(\mathbf{I}, \mathbf{R}_+)$ and $\varpi(u), \beta(u) \in \Psi$ are nonnegative, monotonic, nondecreasing, continuous functions and $\omega(u)$ a submultiplicative function for u > 0. Let

$$u(t) \le K + T \int_{t_0}^t r(s)\beta(u(s))ds + L \int_{t_0}^t h(s)\varpi(u(s))ds$$
 (2.8)

for K, T and L positive constants, then

$$u(t) \leq \Omega^{-1} \left(\Omega(K) + L \int_{t_0}^t h(s) \varpi \left(F^{-1} \left(F(1) + T \int_{t_0}^s r(\alpha) d\alpha \right) \right) ds \right)$$
$$F^{-1} \left(F(1) + T \int_{t_0}^t r(s) ds \right)$$
(2.9)

where $\beta(u) \neq \varpi(u)$, Ω is defined in equation (2.5) and F(u) is defined as

$$F(u) = \int_{u_0}^{u} \frac{ds}{\beta(s)}, \quad 0 < u_0 \le u,$$
(2.10)

 $F^{-1},\,\Omega^{-1}$ are the inverses of $F,\,\Omega$ respectively and t is in the subinterval $(0,b)\in {\bf I}$ so that

$$F(1) + T \int_{t_0}^t r(s) ds \in Dom(F^{-1})$$

and

$$\Omega(K) + L \int_{t_0}^t h(s) \varpi \left(F^{-1} \left(F(1) + T \int_{t_0}^t r(\alpha) d\alpha \right) \right) ds \in Dom(\Omega^{-1})$$

Corollary 1. [7, 8] Suppose $\rho(t)$ is a nonnegative, monotonic, nondecreasing continuous function on \mathbf{R}_+ . Let

$$u(t) \le \rho(t) + T \int_{t_0}^t r(s)\beta(u(s))ds + L \int_{t_0}^t h(s)\varpi(u(s))ds, \qquad (2.11)$$

for T and L be positive constants, then

$$u(t) \leq \rho(t)\Omega^{-1} \left(\Omega(1) + L \int_{t_0}^t h(s)\varpi \left(F^{-1} \left(F(1) + T \int_{t_0}^t r(\alpha)d\alpha \right) \right) \right) ds \right)$$
$$F^{-1} \left(F(1) + T \int_{t_0}^t r(s)ds \right), \quad t \in \mathbf{I},$$
(2.12)

where $\Omega(u)$ and F(u) are defined as in (2.5) and (2.10) respectively.

Theorem 4. [8, 7] If $u(t), r(t), h(t), \rho(t), g(t) \in C(\mathbf{R}_+)$ and $\omega, f, \gamma \in \Psi$ be nonnegative, monotonic, nondecreasing continuous functions. Let γ

be a submultiplicative function. If

$$u(t) \leq \rho(t) + A \int_{t_0}^t r(s)\beta(u(s))ds + B \int_{t_0}^t h(s)\varpi(u(s))ds + L \int_{t_0}^t g(s)\gamma(u(s))ds$$

$$(2.13)$$

for K, A, B, L > 0, then

$$u(t) \leq \rho(t)\Upsilon^{-1}$$

$$\left[\Upsilon(1) + L \int_{t_0}^t g(s)\gamma \left[\Omega^{-1} \left(\Omega(1) + B \int_{t_0}^s h(\alpha)\varpi \left(T(\alpha)\right) d\alpha\right) T(s)\right] ds\right]$$

$$\Omega^{-1} \left(\Omega(1) + B \int_{t_0}^t h(s)\varpi \left(T(s)\right) ds\right) T(t)$$
(2.14)

where T(t) is given as

$$T(t) = F^{-1}\left(F(1) + A \int_{t_0}^t r(s)ds\right)$$
(2.15)

and

24

$$\Upsilon(r) = \int_{t_0}^t \frac{ds}{\gamma(s)}, \quad 0 < r_0 \le r,$$
(2.16)

and F^{-1} , Ω^{-1} and Υ^{-1} are the inverses of F, Ω , Υ respectively $t \in (0,b) \subset (I)$. So that

$$\Upsilon(1) + L \int_{t_0}^t g(s)\gamma \left[\Omega^{-1} \left(\Omega(1) + B \int_{t_0}^s h(\alpha) \varpi \left(T(\alpha) \right) d\alpha \right) T(s) \right] ds \in Dom(\Upsilon^{-1})$$

Lemma 2. [14] Let r(t) be an integrable function then the n successive integration of r over the interval $[t_0, t]$ is given by

$$\int_{t_0}^t \cdots \int_{t_0}^t r(s) ds^n = \frac{1}{(n-1)!} \int_{t_0}^t (t-s)^{n-1} r(s) ds$$
(2.17)

3. MAIN RESULTS

In this section, we establish the Hyers-Ulam stability of the nonlinear differential equations (1.1) ,(1.2) and the case P(t, u(t), u'(t)) = 0. We shall also prove the Hyers-Ulam stability of the nonlinear differential equation (1.1) with initial conditions (1.3).

Theorem 5. Assume the following conditions:

i
$$P(t, u(t), u'(t)) = \phi(t)g(u(t))h((u'(t))^4)$$

ii $K_1(u(t), u'(t)) = \gamma(u(t))b(u'(t))u'(t)^n$, where $n \in \mathbf{N}$
iii $K_2(u(t), u'(t)) = \omega(u(t))(u'(t))^2$

iv
$$\lim_{t_0\to\infty} \int_{t_0}^t |u'(s)| ds = L$$
, where $L > 0$,
v $\lim_{t_0\to\infty} \int_{t_0}^t \phi(s) ds \le n_1 < \infty$, where $n_1 > 0$,
vi $\lim_{t_0\to\infty} \int_{t_0}^t p(s) ds \le n_2 < \infty$, where $n_2 > 0$,
vii $\lim_{t_0\to\infty} \int_{t_0}^t r(s) ds \le n_3 < \infty$, where $n_3 > 0$,
viii $q(t)|F(u(t))| \ge |u(t)|$,

are satisfied and $\phi, \gamma, \omega, g, h, b \in C(\mathbf{R}_+)$. In addition, if $\varpi(u(t)) \in \Psi$ is continuous, nondecreasing and monotonic, then equation (1.1) has the Hyers-Ulam stability with Hyers-Ulam constant given by

$$K_{1}^{*} = L\Upsilon^{-1} \left[\Upsilon(1) + h(|u'(\delta)|^{4})|u'(\delta) \right]$$

$$n_{3}g \left[\Omega^{-1} \left(\Omega(1) + (|u'(\rho)|^{4}n_{2}\omega(T^{*})) T^{*} \right] \right]$$

$$\Omega^{-1} \left(\Omega(1) + (|u'(\rho)|)^{4}n_{2}\omega(T^{*}) \right) T^{*}.$$

(3.1)

Proof. Using inequality (2.1) and multiplying both sides by u'(t) we have

$$-\epsilon u'(t) \le (r(t)K_1(u(t), u'(t))'u'(t) + p(t)K_2(u(t), u'(t))(u'(t))^2 + q(t)f(u(t))u'(t) - P(t, u(t), u'(t))u'(t) \le \epsilon u'(t),$$
(3.2)

Considering (3.2) in the form

$$(r(t)K_{1}(u(t), u'(t))'u'(t) + p(t)K_{2}(u(t), u'(t))(u'(t))^{2} + q(t)f(u(t))u'(t) - P(t, u(t), u'(t))u'(t) \le \epsilon u'(t).$$
(3.3)

Integrate both sides of (3.3) twice and apply Lemma 2, to obtain

$$\int_{t_0}^t \int_{t_0}^t (r(s)K_1(u(s), u'(s))'u'(s)dsds + t \int_{t_0}^t p(s)K_2(u(s), u'(s))(u'(s))^2ds + t \int_{t_0}^t q(s)f(u(s))u'(s)ds - t \int_{t_0}^t P(s, u(s), u'(s))u'(s)ds \le t\epsilon \int_{t_0}^t u'(s)ds.$$
(3.4)

 Set

$$F(u(t)) = \int_{u_0}^{u(t)} f(s)ds,$$
(3.5)

26 ILESANMI FAKUNLE AND PETER OLUTOLA ARAWOMO

apply equation (3.5) in inequality (3.4) and integrate to get

$$\int_{t_0}^t r(s)K_1(u(s), u'(s))u'(s)ds + t \int_{t_0}^t p(s)K_2(u(s), u'(s))(u'(s))^2ds + tq(t)F(u(t)) - t \int_{t_0}^t P(s, u(s), u'(s))u'(s)ds \le t\epsilon \int_{t_0}^t u'(s)ds.$$
(3.6)

Using conditions (i-iii) we obtain

$$\int_{t_0}^t r(s)\gamma(u(s))b(u'(s))u'(s)^{n+1}ds + t \int_{t_0}^t p(s)\omega(u(s))(u'(s))^4ds + tq(t)F(u(t)) - t \int_{t_0}^t \phi(s)g(u(s))h((u'(s))^4)u'(s)ds \le t\epsilon \int_{t_0}^t u'(s)ds.$$
(3.7)

The application of Theorem 2 implies there exists $\xi,\rho,\delta\in[t_0,t]$ such that

$$b(u'(\xi))u'(\xi)^{n+1} \int_{t_0}^t (r(s)\gamma(u(s))ds + t(u'(\rho))^4 \int_{t_0}^t p(s)\omega(u(s))ds + tq(t)F(u(t)) - th((u'(\delta))^4)u'(\delta) \int_{t_0}^t \phi(s)g(u(s))ds \le t\epsilon \int_{t_0}^t u'(s)ds.$$
(3.8)

Multiplying by $\frac{1}{t}, t \neq 0$ we obtain

$$q(t)F(u(t)) \leq \epsilon \int_{t_0}^t u'(s)ds - b(u'(\xi))u'(\xi)^{n+1} \int_{t_0}^t r(s)\gamma(u(s))ds - (u'(\rho))^4 \int_{t_0}^t p(s)\omega(u(s))ds + h((u'(\delta))^4)u'(\delta) \int_{t_0}^t \phi(s)g(u(s))ds.$$
(3.9)

By conditions (iv) and (viii) we have

$$|u(t)| \le \epsilon L + b(|u'(\xi)|)|u'(\xi)|^{n+1} \int_{t_0}^t r(s)\gamma(|u(s)|)ds + (|u'(\rho)|)^4 \int_{t_0}^t p(s)\omega(|u(s)|)ds + h((|u'(\delta)|)^4)|u'(\delta)| \int_{t_0}^t \phi(s)g(|u(s)|)ds$$
(3.10)

and the application of Theorem 4 gives

$$\begin{aligned} |u(t)| &\leq \epsilon L \Upsilon^{-1} \left[\Upsilon(1) + h(|u'(\delta)|^4) |u'(\delta)| \right. \\ \int_{t_0}^t \phi(s) g \left[\Omega^{-1} \left(\Omega(1) + (|u'(\rho)|^4 \int_{t_0}^s p(\alpha) \omega \left(T(\alpha) \right) d\alpha \right) T(s) \right] ds \right] \\ \Omega^{-1} \left(\Omega(1) + (|u'(\rho)|)^4 \int_{t_0}^t p(s) \omega \left(T(s) \right) ds \right) T(t) \end{aligned}$$

$$(3.11)$$

 for

$$T(t) = F^{-1}\left(F(1) + b(|u'(\xi)|)|u'(\xi)|^{n+1}\int_{t_0}^t r(s)ds\right).$$
 (3.12)

Applying conditions (vi)- (vii), we arrive at

$$|u(t)| \leq \epsilon L \Upsilon^{-1} \left[\Upsilon(1) + h(|u'(\delta)|^4) |u'(\delta)| \right. \\ n_{3g} \left[\Omega^{-1} \left(\Omega(1) + (|u'(\rho)|^4 n_2 \omega (T^*)) T^* \right] \right]$$
(3.13)

$$\Omega^{-1} \left(\Omega(1) + (|u'(\rho)|)^4 n_2 \omega (T^*) \right) T^*,$$

where T^* is defined by

$$T^* = F^{-1} \left(F(1) + b(|u'(\xi)|) |u'(\xi)|^{n+1} n_3 \right).$$
(3.14)

Hence,

$$|u(t) - u(t_0)| \le |u(t)| \le K_1^* \epsilon$$

with

$$K_1^* = L\Upsilon^{-1} \left[\Upsilon(1) + h(|u'(\delta)|^4) |u'(\delta)| \right]$$

$$n_3 g \left[\Omega^{-1} \left(\Omega(1) + (|u'(\rho)|^4 n_2 \omega (T^*)) T^* \right] \right]$$

$$\Omega^{-1} \left(\Omega(1) + (|u'(\rho)|)^4 n_2 \omega (T^*) \right) T^*.$$

Theorem 6. Suppose that the conditions of Theorem 5 are satisfied. In addition, let

i'
$$Q(t, u(t)) = v(t)\alpha(u(t))$$
 where $v(t)$ a continuous function on \mathbf{R}_+
ii' $\lim_{t_0 \to \infty} \int_{t_0}^t p(s)v(s)ds \le k_4 < \infty$, where $k_4 > 0$,

hold true for a function $\alpha(u(t)) \in \Psi$ continuous, nondecreasing and monotonic, then equation (1.2) has the Hyers-Ulam stability with Hyers-Ulam constant given by

$$K_{2}^{*} = \left(L + u''(\xi)L\right)\Omega^{-1}\left(\Omega(1) + h(\lambda)^{4}\right)\lambda$$

$$k_{1}g\left(F^{-1}\left(F(1) + n(\lambda)^{2}n_{4}\right)\right)\right)$$

$$F^{-1}\left(F(1) + n\lambda^{2}n_{4}\right).$$
(3.15)

28 ILESANMI FAKUNLE AND PETER OLUTOLA ARAWOMO

Proof. Evaluate inequality (2.2) and multiply both sides by u'(t), we get

$$-u'(t)\epsilon \le u''(t)u'(t) + np(t)Q(t,u(t))(u'(t))u'(t) +q(t)f(u(t))u'(t) - P(t,u(t),u'(t))u'(t) \le u'(t)\epsilon.$$
(3.16)

Integrate inequality (3.16) twice, apply Lemma 2 and equation (3.5) to obtain

$$-\epsilon t \int_{t_0}^t u'(s)ds \le t \int_{t_0}^t u'(s)u''(s)ds + nt \int_{t_0}^t p(s)Q(s,u(s))(u'(s))^2ds + t \int_{t_0}^t q(s)\frac{d}{ds}F(u(s)ds - t \int_{t_0}^t P(s,u(s),u'(s))u'(s)ds \le \epsilon t \int_{t_0}^t u'(s)ds.$$
(3.17)

Divide through by $t \neq 0$ and integrate, for q(t) nondecreasing, $q'(t) \geq 0$ then the application of Theorem 2 implies that there exists $\xi \in [t_0, t]$ such that

$$q(t)F(u(t)) \le \epsilon \int_{t_0}^t u'(s)ds - u''(\xi) \int_{t_0}^t u'(s)ds - n \int_{t_0}^t p(s)Q(s,u(s))(u'(s))^2ds + \int_{t_0}^t P(s,u(s),u'(s))u'(s)ds.$$
(3.18)

We use condition (i') of Theorem 6 and condition (ii) of Theorem 5 to get

$$q(t)|F(u(t))| \le \epsilon \left(\int_{t_0}^t |u'(s)|ds + u''(\xi)\int_{t_0}^t |u'(s)|ds\right) + n \int_{t_0}^t p(s)v(s)\alpha(|u(s)|)(|u'(s)|)^2 ds + \int_{t_0}^t \phi(s)g(|u(s)|)h(|(u'(s)|)^4)(|u(s)|) ds.$$
(3.19)

For t > 0, the use of condition (viii) in Theorem 5 gives

$$|u(t)| \leq \epsilon \left(\int_{t_0}^t |u'(s)| ds + |u''(\xi)| \int_{t_0}^t |u'(s)| ds \right) + n(|u'(t)|)^2 \int_{t_0}^t p(s)v(s)\alpha(|u(s)|) ds + h((|u'(t)|)^4)(|u'(t)|) \int_{t_0}^t \phi(s)g(|u(s)|) ds.$$
(3.20)

Applying Corollary 4 we obtain

$$\begin{aligned} |u(t)| &\leq \epsilon \left(\int_{t_0}^t |u'(s)| ds + u''(\xi) \int_{t_0}^t |u'(s)| ds \right) \\ &\Omega^{-1} \left(\Omega(1) + h((|u'(t)|)^4)(|u'(t)|) \right) \\ &\int_{t_0}^t \phi(s) g \left(F^{-1} \left(F(1) + n(|u'(t)|)^2 \int_{t_0}^t p(\alpha) v(\alpha) d\alpha \right) \right) \right) ds \right) \\ & F^{-1} \left(F(1) + n(|u'(t)|)^2 \int_{t_0}^s p(s) v(s) ds \right), \quad t \in \mathbf{I}. \end{aligned}$$
(3.21)

Setting $|u'(t)| \leq \lambda$ and applying conditions (vi), (v) of Theorem 5 and (ii') of Theorem 6, we arrive at

$$|u(t)| \le \epsilon \left(L + u''(\xi)L \right) \Omega^{-1} \left(\Omega(1) + h(\lambda)^4 \right) (\lambda) n_1 g \left(F^{-1} \left(F(1) + n\lambda^2 n_4 \right) \right) F^{-1} \left(F(1) + n\lambda^2 n_4 \right).$$
(3.22)

Hence,

$$|u(t) - u(t_0)| \le |u(t)| \le K_2^* \epsilon,$$

where

$$K_2^* = \left(L + u''(\xi)L\right)\Omega^{-1}\left(\Omega(1) + h(\lambda)^4\right)\lambda$$
$$n_1g\left(F^{-1}\left(F(1) + n\lambda^2 n_4\right)\right)\right)$$
$$F^{-1}\left(F(1) + n\lambda^2 n_4\right).$$

For P(t, u(t), u'(t)) = 0 in equations (1.1) and (1.2) the results are given in the following theorems:

Theorem 7. Suppose that all the conditions of Theorem 5 remain valid. Then for P(t, u(t), u'(t)) = 0 in equation (1.1), the equation

$$(r(t)K_1(u(t), u'(t)))'u'(t) + p(t)K_2(u(t), u'(t))(u'(t))^2 + q(t)f(u(t))u'(t) = 0,$$
(3.23)

has Hyers-Ulam stability with the Hyers-Ulam constant given by

$$K_{3}^{*} = L\Omega^{-1} \left(\Omega(1) + (|u'(\rho)|)^{4} n_{2} \varpi \left(F^{-1} \left(F(1) + b(|u(\xi)|) |u'(\xi)|^{n+1} n_{3} \right) \right) \right)$$

$$F^{-1} \left(F(1) + b(|u'(\xi)|) |u'(\xi)|^{n+1} n_{3} \right).$$
(3.24)

Proof. Using inequality (2.1) and multiplying both sides of the equation by u'(t) we have

$$-\epsilon u'(t) \le (r(t)K_1(u(t), u'(t)))'u'(t) +p(t)K_2(u(t), u'(t))(u'(t))^2 + q(t)f(u(t))u'(t) \le \epsilon u'(t).$$
(3.25)

It is clear that

$$(r(t)K_1(u(t), u'(t)))'u'(t) + p(t)K_2(u(t), u'(t))(u'(t))^2 + q(t)f(u(t))u'(t) \le \epsilon u'(t).$$
(3.26)

Integrating the inequality (3.26) and applying Lemma 2, we obtain

$$\int_{t_0}^t \int_{t_0}^t (r(s)K_1(u(s), u'(s)))'u'(s)dsds + t \int_{t_0}^t p(s)K_2(u(s), u'(s))(u'(s))^2ds + t \int_{t_0}^t q(s)f(u(s))u'(s) \le t\epsilon \int_{t_0}^t u'(s)ds.$$
(3.27)

If we apply equation (3.5) to inequality (3.27) and integrate for $q'(t) \ge 0$ since q(t) is nondecreasing, we get

$$\int_{t_0}^t (r(s)K_1(u(s), u'(s))u'(s)ds + t \int_{t_0}^t p(s)K_2(u(s), u'(s))(u'(s))^2 ds + tq(t)F(u(t)) \le t\epsilon \int_{t_0}^t u'(s)ds.$$
(3.28)

Using conditions (ii) and (iii) of Theorem 5, we obtain

$$\int_{t_0}^t r(s)\gamma(u(s))b(u'(s))u'(s)^{n+1}ds + t \int_{t_0}^t p(s)\omega(u(s))(u'(s))^4 ds + tq(t)F(u(t)) \le t\epsilon \int_{t_0}^t u'(s)ds.$$
(3.29)

Applying Theorem 2 implies there exists $\xi, \rho \in [t_0, t]$ such that

$$b(u'(\xi))u'(\xi)^{n+1} \int_{t_0}^t r(s)\gamma(u(s))ds + t(u'(\rho))^4 \int_{t_0}^t p(s)\omega(u(s))ds + tq(t)F(u(t)) \le t\epsilon \int_{t_0}^t u'(s)ds.$$
(3.30)

Let inequality (3.30) be multiplying by $\frac{1}{t}$, $t \neq 0$ to get

$$q(t)F(u(t)) \leq \epsilon \int_{t_0}^t u'(s)ds - b(u'(\xi))u'(\xi)^{n+1} \int_{t_0}^t r(s)\gamma(u(s))ds -(u'(\rho))^4 \int_{t_0}^t p(s)\omega(u(s))ds.$$
(3.31)

By condition (iv) of Theorem 5 and for $q(t)|F(u(t))| \ge |u(t)|$ we have

$$\begin{aligned} |u(t))| &\leq \epsilon L + b(|u'(\xi)|)|u'(\xi)|^{n+1} \int_{t_0}^t r(s)\gamma(|u(s)|)ds \\ &+ (|u'(\rho)|)^4 \int_{t_0}^t p(s)\omega(|u(s)|)ds. \end{aligned}$$
(3.32)

Apply Corollary 1 to get

$$|u(t)| \leq \epsilon L \Omega^{-1} \left(\Omega(1) + (|u'(\rho)|)^4 \int_{t_0}^t p(s) \varpi \left(F^{-1} \left(F(1) + b(|u(\xi)|) |u'(\xi)|^{n+1} \int_{t_0}^t r(\alpha) d\alpha \right) \right) \right) ds \right)$$
(3.33)
$$F^{-1} \left(F(1) + b(|u'(\xi)|) |u'(\xi)|^{n+1} \int_{t_0}^t r(s) ds \right), \quad t \in \mathbf{I}.$$

Further application of conditions (vi)- (vii) of Theorem 5, gives

$$|u(t)| \leq \epsilon L \Omega^{-1} \left(\Omega(1) + (|u'(\rho)|)^4 n_2 \varpi \left(F^{-1} \left(F(1) + b(|u(\xi)|) |u'(\xi)|^{n+1} n_3 \right) \right) ds \right)$$

$$F^{-1} \left(F(1) + b(|u'(\xi)|) |u'(\xi)|^{n+1} n_3 \right).$$
(3.34)

Therefore,

$$K_3^* = L\Omega^{-1} \left(\Omega(1) + (|u'(\rho)|)^4 n_2 \varpi \left(F^{-1} \left(F(1) + b(|u(\xi)|) |u'(\xi)|^{n+1} n_3 \right) \right) \right)$$

$$F^{-1} \left(F(1) + b(|u'(\xi)|) |u'(\xi)|^{n+1} n_3 \right).$$

Theorem 8. Suppose all the conditions of Theorem 5 and those of Theorem 6 hold true. Then, the equation

$$u''(t) + np(t)Q(t, u(t))(u'(t)) + q(t)f(u(t)) = 0,$$
(3.35)

has the Hyers-Ulam stability and Hyers-Ulam constant:

$$K_4^* = \left(L + u''(\xi)L\right)\Omega^{-1}\left(\Omega(1) + n\lambda^2 n_4\right).$$
(3.36)

Proof. Put P(t, u(t), u'(t)) = 0, in inequality (2.2), multiply by u'(t), integrate twice and apply Lemma 2 to obtain

$$-u'(t)\epsilon \le u''(t)u'(t) + np(t)Q(t,u(t))(u'(t))u'(t) +q(t)f(u(t))u'(t) \le u'(t)\epsilon.$$
(3.37)

Integrate inequality (3.37) twice, apply Lemma 2 and equation (3.5) to get

$$-\epsilon t \int_{t_0}^t u'(s)ds \le t \int_{t_0}^t u'(s)u''(s)ds + nt \int_{t_0}^t p(s)Q(s,u(s))(u'(s))^2 ds + t \int_{t_0}^t q(s)\frac{d}{ds}F(u(s))ds \le \epsilon t \int_{t_0}^t u'(s)ds.$$
(3.38)

Divide through by t, integrate and note that for q(t) nondecreasing, $q'(t) \ge 0$

the application of Theorem 2 implies there exists $\xi \in [t_0, t]$ such that

$$q(t)F(u(t)) \le \epsilon \int_{t_0}^t u'(s)ds - u''(\xi) \int_{t_0}^t u'(s)ds - n \int_{t_0}^t p(s)Q(s, u(s))(u'(s))^2ds$$
(3.39)

and using condition (i') of Theorem 6 together with condition (ii) of Theorem 5 gives

$$q(t)|F(u(t))| \le \epsilon \left(\int_{t_0}^t |u'(s)|ds + u''(\xi)\int_{t_0}^t |u'(s)|ds\right) + n \int_{t_0}^t p(s)v(s)\alpha(|u(s)|)(|u'(s)|)^2 ds.$$
(3.40)

For t > 0, use condition (viii) of Theorem 5 to get

$$|u(t)| \leq \epsilon \left(\int_{t_0}^t |u'(s)| ds + u''(\xi) \int_{t_0}^t |u'(s)| ds \right)$$

+ $n(|u'(t)|)^2 \int_{t_0}^t p(s)v(s)\alpha(|u(s)|) ds.$ (3.41)

Applying Theorem 1, we obtain

$$|u(t)| \le \epsilon \left(\int_{t_0}^t |u'(s)| ds + u''(\xi) \int_{t_0}^t |u'(s)| ds \right)$$

$$\Omega^{-1} \left(\Omega(1) + n(|u'(t)|)^2 \int_0^t p(s)v(s) ds \right), \ 0 < t \le b.$$
(3.42)

Setting $|u'(t)| \leq \lambda$ and applying condition (ii') of Theorem 6, we arrive at

$$|u(t)| \le \epsilon \left(L + u''(\xi)L \right) \Omega^{-1} \left(\Omega(1) + n\lambda n_4 \right).$$
(3.43)

Hence,

$$|u(t) - u(t_0)| \le |u(t)| \le K_4^* \epsilon$$

with

$$K_4^* = \left(L + u''(\xi)L\right)\Omega^{-1}\left(\Omega(1) + n\lambda^2 n_4\right).$$

Example 1. Consider the following equation

$$\left(\frac{1}{t^4}u^4(t)(u'(t))^2\right) + \frac{1}{t^2}u^2(t)(u'(t))^4 + t^2u^2(t) = \frac{1}{t^6}u^2(t)(u'(t))^8, \ t > 0,$$

where $K_1(u(t), u'(t)) = u^4(t)(u'(t))^2$, $K_2(u(t), u'(t)) = u^2(t)(u'(t))^3$, $q(t)f(u(t)) = t^2 u^2(t)$, $P(t, u(t), u'(t)) = \frac{1}{t^6} u^2(t)(u'(t))^8$, $r(t) = \frac{1}{t^4}$, $p(t) = \frac{1}{t^2}$, $\phi(t) = \frac{1}{t^6}$. By the criteria of Theorem 5, we arrive at the result.

Acknowledgment

The authors would like to thank the anonymous referees who did tremendous work and whose comments have improved the quality of this paper.

References

- Q. H. Aligfiary, S. M Jung: On the Hyers-Ulam Stability of Differential Equations of Second Order. Hindawi Publishing Cooperation Abstract and Appliedd Analysis. (2014),1-8.
- [2] C. Alsina, R. Ger: On Some Inequalities and Stability Result Related to the Exponential Function. J. Inequ. Appl. 2(1988),373-380.
- [3] T. Aoki: On the Stability of the linear transformation in Banach spaces.
 J. Math. Soc. Japan. 2(1950), 64-66.
- [4] I. Bihari: Researches of the Boundedness and Stability of the Solutions of nonlinear differential Equations. Acta. Math Acad, Sc. Hung 7(1957),278-291.
- [5] D.G.Bourgin: Classes of transformations and bordering transformations. Bull. Amer. Math. Soc. 57(1988), 223-237.
- [6] U.D.Dhongade S.G. Deo: Some Generalisations of Bellman-Bihari Integral Inequalities., Journal of Mathematical Analysis and Applications. 44(1973),218-226.
- [7] I. Fakunle and P.O. Arawomo: Hyers-Ulam-Rassias stability of a Certain Perturbed Nonlinear Lienard Type Differential Equation. To appear in IAENG. International Journal of Applied Mathematics. 2022.
- [8] I. Fakunle and P.O. Arawomo: Hyers-Ulam-Rassias stability of Nonlinear Second Order of A Perturbed Ordinary Differential Equation. To appear in Proyecciones Journal of Mathematics. 2022.
- [9] I. Fakunle, P. O. Arawomo: Hyers-Ulam Stability of Certain Class of Nonlinear Second Order Differential Equations. International Journal of Pure and Applied Mathematical Sciences. 11(1)(2018),55-65.
- [10] I.Fakunle, P.O. Arawomo: On Hyers-Ulam Stability of Nonlinear Second Order Ordinary and Functional Differential Equations. International Journal of Differential Equations and Applications 17(1)(2018),77-88.
- [11] I.Fakunle, P.O. Arawomo: Hyers-Ulam Stability of a Perturbed Generalised Lienard Equation. International Journal of Applied Mathematics. 32(3)(2019),479-489.

- [12] MB. Ghaemi, M. EshaghiGordji, B. Alizadeh and Park.C: Hyers-Ulam Stability of exact second order linear differential equations. Adv. Diff.Equ.Article No 36(2012).
- [13] D. H. Hyers: On the Stability of the Linear functional equation. Proceedings of the National Academy of Science of the united States of America, 27(1941), 222-224.
- [14] E.L.Ince: Ordinary differential Equation. Messer.Longmans, Green and co. Heliopolis, pp 42,(1926).
- [15] S.-M. Jung: Hyers-Ulam Stability of Linear Differential Equations of First Order(II). Appl.Math.Lett.19(2006),854-858.
- [16] S.-M. Jung: Hyers-Ulam Stability of Linear Differential Equations of First Order(III). J.Math.Anal.Appl. 311(2005),139-146.
- [17] S.-M. Jung: Hyers-Ulam Stability of Linear Differential Equations of First Order. Appl.Math.Lett.17(2004),1135-1140.
- [18] R.S. Murray: Schum's Outline of Theory and Problem of Calculus. SI(Metric) Edition, International Edition 1974.
- [19] T. Miura: On the Hyers-Ulam Stability of a differential map. Sci.Math.Japan. 55(2000),17-24.
- [20] T. Miura, S.E. Takahasi, H. Choda: On the Hyers -Ulam Stability of real Continuous function valued differential map. Tokyo J. Math.24(2001),467-476.
- [21] T. Miura, S.-M. Jung, S.E.Takahasi: Hyers-Ulam-Rassias Stability of the Banach space valued linear differential equation $y' = \lambda y$. J. Korean Math. Soc. 41(2004),995-1005.
- [22] T. Miura, S.Miyajima, S.E.Takahasi: A characterisation of Hyers -Ulam Stability of first order linear differential operators. J. Math. Anal. Appl.286(2003), 136-146.
- [23] M. Obloza: Hyers stability of the linear differential equation. Rockniz Nauk-Dydakt. Prace Mat. 13(1993), 259-270.
- [24] M. N. Qarawani: Hyers-Ulam Stability of Linear and Nonlinear Differential Equations of Second Order. Int. Journal of Applied Mathematical Research. 1,4(2012),422-432.
- [25] M. N. Qarawani: Hyers-Ulam Stability of a Generalised Second Order Nonlinear Differential Equations. Applied Mathematics. 3(2012), 1857-1861.
- [26] TH. M. Rassias : On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the American Mathematical Society, 72,2(1978),297-300.
- [27] I. A. Rus: Ulam Stability of Ordinary Differential Equation. Studia Universities Babes-Bolyal Mathematical. 54,4(2010),306-309.
- [28] I. A. Rus : Ulam stability of Ordinary Differential Equations in a Banach Space. Carpathian, J.Math. 126(2010),103-107.
- [29] Y. Li, Y. Shen : Hyers-Ulam stability of Linear Differential Equations of second order. Appl.Math. Lett. 23(2010),306-309.
- [30] S. E. Takahasi, H. Takagi, T. Miura, S. Miyajima: The Hyers -Ulam Stability constants of first order linear differential operators.J.Anal.Appl. Math. 296(2004),403-409.

- [31] S.Takahasi, T. Miura, S. Miyajima : On the Hyers-UIam Stability of the Banach Space-Valued Differential Equation $y' = \lambda y$. Bulletin of the Korean Mathematical Society. 392(2002),309-315.
- [32] S. M. Ulam : Problems in Modern Mathematics Science Editions. wily, New York. NY, USA, Chapter 6, 1960.

 $^{1}\mathrm{DEPARTMENT}$ OF MATHEMATICS, ADEYEMI FEDERAL UNIVERSITY OF EDUCATION, ONDO, NIGERIA

E-mail address: fakunlesanmi@gmail.com

 $^2 \rm DEPARTMENT$ OF MATHEMATICS, UNIVERSITY OF IBADAN, IBADAN, NIGERIA <code>E-mail addresses: womopeter@gmail.com</code>