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AN APPROXIMATE SOLUTION OF θ-BASED

RICHARDS’ EQUATION BY COMBINATION OF NEW

INTEGRAL TRANSFORM AND HOMOTOPY

PERTURBATION METHOD
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ABSTRACT. In this paper, we apply the mixture of new inte-
gral transform and homotopy perturbation method (NITHPM)
to solve Richards’ equation. This method is a mixture of new
integral transform method and homotopy perturbation method.
The nonlinear term can be easily handled by homotopy per-
turbation method. Some cases of the Richards’ equation are
solved as examples to illustrate ability and reliability of mixture
of new integral transform and homotopy perturbation method.
The results reveal that this method is quite capable, practically
will appropriate for use in such problems and can be applied
to other nonlinear problems. This method is seen as a better
alternative method to some existing techniques for such realistic
problems.
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1. INTRODUCTION

When water on the ground surface enters the soil process of infiltra-
tion occurs. The water table is bounded between the saturated and
unsaturated flows where atmospheric pressure prevail. Saturated
flow occurs below the water table, while unsaturated flow occurs
above the water table [1]. The continuity equation is together with
Darcy’s law as a momentum equation, and the Richards’ equation is
obtained [2]. Numerical and various common, even various, analyt-
ical methods have been used to solve the Richards’ equation. For
examples, the Exp-Function Method [3], the Homotopy Analysis
Method (HAM) [4], the Adomian Decomposition Method (ADM)
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[5, 6, 7]. There still seems to be a need for the development of an-
alytical methods to study the problem of unsaturated multi phase
flow in porous media.
A new integral transform [8] was first anticipated by Artion Kashuri
and Akli Fundo to solve various differential equations. Some inte-
gral transform methods like Laplace transform [9, 10] and Sumudu
transform [11, 12, 13] methods, are used to solve general nonlinear
non-homogenous partial differential equations with initial condi-
tions and use richness of these integral transform lies in their ca-
pability to transform differential equations into algebraic equations
which allows easy and straightforward solution procedures.

Definition 1. Over the set of functions

F = {f(t)\∃M,k1, k2 > 0, such that |f(t)| ≤ Me
|t|
k2
i , if t ∈ (−1)i×[0,∞)},

(1)

where the constant M must be finite number, k1, k2 may be finite
or infinite.
The new integral transform is defined by:

A(v) = K [u(t)] =
1

v

∞∫
0

e−
t
v2 u(t)dt. (2)

For more details and properties of this transform, see [8, 14, 15, 16].

In the current investigation, an analytical method known as the
combination of new integral transform and homotopy perturbation
method (NITHPM) has been employed to solve the problem of
one-dimensional infiltration of water in unsaturated soil governed
by Richards’ equation. In the Section 2, mathematical formulation
of Richards’ equation discussed. Basic idea of the mixture of new
integral transform and homotopy perturbation method is given in
Section 3. Illustrative examples are also given in order to exhibit
the effectiveness of the NITHPM for solving Richards’ equation in
Section 4.

2. FORMULATION OF θ-BASED RICHARDS’ EQUATION

The fundamental theories describing fluid flow through porous
media were first proposed by Buckingham [17] who realized that
water flow in unsaturated soil is highly dependent on water con-
tent. Buckingham introduced the concept of “conductivity”, relay
on water content, which is today known as unsaturated hydraulic
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conductivity. This equation is generally referred to as Bucking-
ham law. Buckingham also went on to define moisture diffusiv-
ity which is the product of the unsaturated hydraulic conductiv-
ity and the slope of the soil-water characteristic curve. Almost
two decades later, Richards’ [2] applied the continuity equation to
Buckingham’s law, which itself is an expansion of Darcy’s law and
obtained a general partial differential equation demonstrating wa-
ter flow in unsaturated, non-swelling soils with the matric potential
as the single dependent variable [18]. There are usually three main
forms of Richards’ equation present in the literature namely the
mixed formulation, the h-based formulation and the θ-based for-
mulation, where h is the weight-based pressure potential and θ is
the volumetric water content. Since Richards’ equation is a gen-
eral combination of Darcy’s law and the continuity equation as
earlier mentioned, the two relations must first be written in order
to derive Richards’ equation. Herein, one-dimensional infiltration
of water in vertical direction of unsaturated soil is considered, for
which Darcy’s law and the continuity equation are given by Eqs.
(3) and (4) respectively [19]:

q = −K
∂H

∂z
= −K

∂(h + z)

∂z
= −K

(
∂h

∂z
+ 1

)
, (3)

and
∂θ

∂t
= −∂q

∂z
, (4)

whereK is hydraulic conductivity, H is head equivalent of hydraulic
potential, q is flux density and t is time.
The mixed form of Richards’ equation is obtained by substituting
Eq. (3) in Eq. (4)

∂θ

∂t
=

∂

∂z

[
K

(
∂h

∂z
+ 1

)]
. (5)

Eq. (5) has two independent variables: the soil water content θ,
and pore water pressure head h. Obtaining solutions to this equa-
tion therefore requires constitutive relations to describe the inter-
dependence among pressure, saturation and hydraulic conductivity.
However, it is possible to remove either θ or h by adopting the con-
cept of differential water capacity, defined as the derivative of the
soil water retention curve [19]:

C(h) =
dθ

dh
. (6)
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The h-based formulation of Richards’ equation is thus obtained by
replacing Eq. (6) in Eq. (5) as:

C(h).
∂h

∂t
=

∂

∂z

(
K

∂h

∂z

)
+

∂K

∂z
. (7)

This is a essential equation in geotechnical and geo-environmental
engineering and is used for modeling flow of water through unsatu-
rated soils. For example, the two dimensional form of the equation
can be used to model seepage in the unsaturated zone above water
table in an earth dam.
Introducing a new term D, pore water diffusivity, defined as the ra-
tio of the hydraulic conductivity to the differential water capacity,
the θ-based form of Richards’ equation may be obtained. D can
therefore be written as:

D =
K

C
=

K
dθ
dh

= K
dh

dθ
. (8)

Since D and K are highly dependent on water content. Combining
(8) with Eq. (5) gives Richards’ equation as:

∂θ

∂t
=

∂

∂z
D

(
∂θ

∂z

)
+

∂K

∂z
. (9)

In order to solve Eq. (9), one must first accurately address the
task of estimate D and K, both of which are dependent on water
content. Various models have been recommended for determining
these parameters. The Van Genuchten model [20] and Brook’s and
Corey’s model [21] are the more frequently used models. The Van
Genuchten model uses mathematical relations to relate soil water
pressure head with water content and unsaturated hydraulic con-
ductivity, through a concept called “relative saturation rate”. This
model matches experimental data but its functional form is rather
complicated and it is therefore difficult to execute it in most ana-
lytical solution schemes. Brooks and Corey’s model on the other
hand has a more clear-cut definition and is therefore adopted in the
present investigation. By this model the following hydraulic con-
ductivity and water diffusitivity equation are obtained after some
considerations [22, 23, 24]:

D(θ) = D0 (n+ 1) θn, n ≥ 0,

K(θ) = K0θ
k, k ≥ 1, (10)

where K0, D0 and k are constants representing soil properties such
as pore-size distribution, particle size, etc. In this demonstration
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of D and K, θ is scaled between 0 and 1 and diffusivity is nor-

malized so that for all values of n,

∫ 1

0

D(θ)dθ = 1 [19]. Eq. (10)

suggests that conductivity may have linear, parabolic, cubic, etc.
variation with water content, related with k values of 1, 2, 3, etc.,
respectively. Many analytical and numerical solutions to Richards’
equation exist based on Brook’s and Corey’s representation of D
and K. Replacing n = 0 and k = 2 in D(θ) and K(θ) represented
in Eq. (10) yields the classic Burgers’ equation broadly studied by
many researchers [19, 25]. The generalized Burgers’ equation is also
obtained for general values of k and n [25].
As seen before, the two independent variables in Eq. (9) are time
and depth. By applying the traveling wave technique [26], instead
of time and depth, a new variable which is a linear combination
of them is found. Tangent-hyperbolic function is usually applied
to solve these transform equations [27]. Therefore the θ- based
Richards’ equation in order of (n, 1) is obtained as [26]:

∂θ

∂t
+ αθn

∂θ

∂z
− ∂2θ

∂z2
= 0, (11)

and its exact solution is given by [28]:

θ(z, t) =
(γ
2
+

γ

2
tanh (A1 [z − A2t])

1
n

)
, (12)

where

A1 = −αn+ n|α|
4(1 + n)

(n �= 0), A2 =
γα

(1 + n)
,

where γ is an arbitrary coefficient which is selected as 1 in the given
study [29]. By assuming t = 0 in Eq. (12), the initial condition for
(11) can be found. For different values of n, the θ-based Richards’
equation, which has been focus of this research, is solved here by
the mixture of new integral transform and homotopy perturbation
method. The basic idea of this method will be explained in the
next section.

3. THE BASIC IDEA OF NITHPM

To show the basic idea of this method, we consider a general non-
linear non-homogenous partial differential equation with the initial
conditions of the form

Du(x, t) + Ru(x, t) +Nu(x, t) = g(x, t), u(x, 0) = h(x), ut(x, 0) = f(x), (13)

where D is the second order linear differential operator D =
∂2

∂t2
, R

is the linear differential operator of less order than D, N represents
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the general nonlinear differential operator and g(x, t) is the source
term.
Taking the new integral transform on both sides of Eq. (13) and
using differential property of it with above initial conditions, we
get

K[u(x, t)] = v4K[g(x, t)] + vh(x) + v3f(x)− v4K [Ru(x, t) +Nu(x, t)] .
(14)

Now, applying inverse new integral transform on both sides of Eq.
(14), we get

u(x, t) = G(x, t)−K−1
{
v4K [Ru(x, t) +Nu(x, t)]

}
, (15)

where G(x, t) represents the term arising from the source term and
the prescribed initial conditions. Now, we apply the homotopy
perturbation method

u(x, t) =

∞∑
n=0

pnun(x, t), (16)

and the nonlinear term can be decomposed as

Nu(x, t) =
∞∑
n=0

pnHn(u), (17)

for some He’s polynomials Hn(u) (see [30, 31]) that are given by

Hn(u0, u1, · · · , un) =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

piui

)]
p=0

, n = 0, 1, 2, 3, · · · .

(18)
Substituting Eq. (16) and Eq. (17) in Eq. (15), we get

∞∑
n=0

pnun(x, t) = G(x, t)− p

{
K−1

[
v4K

[
R

∞∑
n=0

pnun(x, t) +
∞∑

n=0

pnHn(u)

]]}
, (19)

which is the combination of the new integral transform and the
homotopy perturbation method using He’s polynomials. Compar-
ing the coefficient of like powers of p, the following approximations
are obtained:

p0 : u0(x, t) = G(x, t),

p1 : u1(x, t) = −K−1
{
v4K [Ru0(x, t) +H0(u)]

}
,

p2 : u2(x, t) = −K−1
{
v4K [Ru1(x, t) +H1(u)]

}
,

· · · .
Thus the series solution of Eq. (13) is given by:

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · . (20)
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4. APPLICATION

In this section, while dealing with the solution of the Richards’
equation based on the Brooks and Corey model, the mixture of new
integral transform and homotopy perturbation method is discussed.
Although this method has the capability to solve Eq. (9) for any
given values of n. In the present analysis, only two different cases
of n are considered for the sake of simplicity and conciseness.

Case 1. The equation derived below is obtained by assuming n = 1
in Eq. (11)

∂θ

∂t
=

∂2θ

∂z2
− θ

∂θ

∂z
, (21)

with the initial condition

θ(z, 0) =

(
1

2
+

1

2
tanh

(−z

4

))
. (22)

As discussed in previous section, the NITHPM yields

θ(z, t) =

(
1

2
+

1

2
tanh

(−z

4

))
+K−1

{
v2K

[
∂2θ

∂z2
− θ

∂θ

∂z

]}
. (23)

Now, applying the homotopy perturbation method, we get

∞∑
n=0

pnθn(z, t) =

(
1

2
+

1

2
tanh

(−z

4

))
+ pK−1

{
v2K

[ ∞∑
n=0

pnθnzz(z, t) −
∞∑

n=0

pnHn(θ)

]}
.

(24)

where Hn(θ) are He’s polynomials that represent the nonlinear
terms. The first few components of He’s polynomials are given by:

H0(θ) = θ0
∂θ0
∂z

,

H1(θ) = θ0
∂θ1
∂z

+ θ1
∂θ0
∂z

,

· · · .
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Comparing the coefficients of like powers of p, we have

p0 : θ0(z, t) =
1

2
+

1

2
tanh

(
−z

4

)
,

p1 : θ1(z, t) = K−1
{
v2K [θ0zz −H0(θ)]

}
,

=
1

16
sech2

(z
4

)
t,

p2 : θ2(z, t) = K−1
{
v2K [θ1zz −H1(θ)]

}
,

=
1

128
sech2

(z
4

)
tanh

(z
4

)
t2,

· · · .
Thus the approximate solution of (11) for the case n = 1 is given
by:

θ(z, t) =

(
1

2
+

1

2
tanh

(
− z

4

))
+

1

16
sech2

( z

4

)
t+

1

128
sech2

( z

4

)
tanh

( z

4

)
t2 + · · · . (25)

From the Figure 1, we can conclude that moisture content θ(z, t)

Table 1. Values of Moisture content θ(z, t) at dif-
ferent depth (z) and time (t) for n = 1

Moisture Content θ(z, t)

z t = 0 t = 0.5 t = 1 t = 1.5 t = 2 t = 2.5 t = 3

0 0.5 0.53125 0.5625 0.59375 0.625 0.65625 0.6875

1 0.377451 0.407366 0.43809 0.469714 0.502237 0.53566 0.569981

2 0.268941 0.294228 0.320934 0.349059 0.378605 0.40957 0.441954

3 0.182426 0.201809 0.222672 0.245016 0.26884 0.294144 0.320928

4 0.119203 0.132952 0.14795 0.164198 0.181695 0.200442 0.220438

5 0.0758582 0.0850857 0.095242 0.106328 0.118344 0.131288 0.145161

decreases when depth z increases for fix time t and it increases when
time t increases for fix depth z, which we can see from Figure 2. Its
numerical representation shows in Table 1. Figure 3 demonstrate
the approximate solution of (11) for n = 1. The comparison of
numerical results obtained with z = 0, 1, 2, 3, 4, 5 for t = 1, 3 by
homotopy analysis method (HAM), homotopy perturbation method
(HPM), differential transform method (DTM) and Elzaki transform
homotopy perturbation method (ETHPM) are shown in Table 2 &
3 and its graphical representation is given in Figures 4 & 5.

Case 2. The equation derived below is obtained by assuming n = 2
in (11) as

∂θ

∂t
=

∂2θ

∂z2
− θ2

∂θ

∂z
, (26)
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Figure 1. Moisture Content θ(z, t) versus Depth z
for n = 1

1 2 3 4 5
Time t

0.2

0.4

0.6

0.8

Moisture Content Θ�z,t�

z�5

z�4

z�3

z�2

z�1
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Figure 2. Moisture Content θ(z, t) versus Time t
for n = 1

with the initial condition

θ(z, 0) =

(
1

2
+

1

2
tanh

(−z

3

)) 1
2

.
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0.0
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Figure 3. Approximate Solution of (11) by
NITHPM when n=1

Table 2. Comparison between the results obtained
by different solutions for n = 1 and t = 1

Moisture Content θ(z, t)
z t = 1

HAM HPM DTM ETHPM NITHPM Exact
0 0.56217 0.5625 0.5625 0.5621 0.5625 0.5622
1 0.4378 0.4380 0.4382 0.4379 0.43809 0.4378
2 0.3208 0.3209 0.3211 0.3209 0.320934 0.3208
3 0.2227 0.2226 0.2228 0.2227 0.222672 0.2227
4 0.1480 0.1479 0.1480 0.1480 0.14795 0.1480
5 0.0953 0.0952 0.0953 0.0953 0.0953 0.0953

Using the same concept applying for Case 1, we get,

p0 : θ0(z, t) =

(
1

2
+

1

2
tanh

(−z

3

)) 1
2

,

p1 : θ1(z, t) = K−1
{
v2K [θ0zz −H0(θ)]

}
=

1

18
Sech

(z
3

)2 (
2− 2 tanh

(z
3

))− 1
2
t,

· · ·
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Table 3. Comparison between the results obtained
by different solutions for n = 1 and t = 3

Moisture Content θ(z, t)
t=3

z HAM HPM DTM ETHPM NITHPM Exact
0 0.6791 0.6875 0.6875 0.6787 0.6875 0.6791
1 0.5621 0.5699 0.5737 0.5665 0.569981 0.5621
2 0.4378 0.4419 0.4469 0.4430 0.441954 0.4378
3 0.3208 0.3209 0.3249 0.3238 0.320928 0.3208
4 0.2227 0.2204 0.2227 0.2233 0.220438 0.2227
5 0.1480 0.1451 0.1463 0.1474 0.145161 0.1480

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

z

Θ�
z,

t�

NITHPM

ETHPM

DTM

HPM

HAM

Exact

Figure 4. Comparison between the solution ob-
tained by different methods and exact solution (n =
1, t = 1)

Then the approximate solution can be written as:

θ(z, t) =

(
1

2
+

1

2
tanh

(−z

3

)) 1
2

+
1

18
Sech

( z

3

)2 (
2− 2 tanh

( z

3

))− 1
2
t + · · · .

From the Figure 6, we can conclude that moisture content θ(z, t)
decreases when depth z increases for fix time t and it increases when
time t increases for fix depth z, which we can see from Figure 7. Its
numerical representation shows in Table 4. Figure 8 demonstrate
the approximate solution of (11) for n = 2. The comparison of
numerical results obtained with z = 0, 1, 2, 3, 4, 5 for t = 1 by ho-
motopy analysis method (HAM), homotopy perturbation method
(HPM), differential transform method (DTM) and Elzaki transform
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1 2 3 4 5 6
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0.3

0.4

0.5

0.6

0.7

z

Θ�
z,

t�

NITHPM

ETHPM

DTM

HPM

HAM

Exact

Figure 5. Comparison between the solution ob-
tained by different methods and exact solution (n =
1, t = 3)

Table 4. Values of Moisture content θ(z, t) at dif-
ferent depth (z) and time (t) for n = 2

Moisture Content θ(z, t)
z t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
0 0.707107 0.74639 0.785674 0.824958 0.864242 0.903525
1 0.582446 0.625208 0.66797 0.710731 0.753493 0.796265
2 0.456737 0.496899 0.537061 0.577223 0.617385 0.657547
3 0.345258 0.379047 0.412836 0.446625 0.480414 0.514203
4 0.254891 0.281372 0.307853 0.334334 0.360815 0.387296
5 0.185594 0.205505 0.225417 0.245328 0.265239 0.28515

homotopy perturbation method (ETHPM) are shown in Table 5
and its graphical representation is given in Figure 9.

Table 5. Comparison between the results obtained
by different solutions for n = 2 and t = 1

Moisture Content θ(z, t)
t = 1

z HAM HPM DTM ETHPM NITHPM
0 0.7452 0.7453 0.7452 0.7464 0.74639
1 0.625 0.6252 0.6252 0.6252 0.625208
2 0.4977 0.4977 0.4979 0.4969 0.496899
3 0.3802 0.3803 0.3803 0.379 0.379047
4 0.2826 0.2826 0.2826 0.2814 0.281372
5 0.2065 0.2065 0.2065 0.2055 0.205505
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Figure 6. Moisture Content θ(z, t) versus Depth z
for n = 2
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0.6
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Figure 7. Moisture Content θ(z, t) versus Time t
for n = 2

4. CONCLUDING REMARKS

The conclusion that can be draw from our results is that the com-
bination of the new integral transform and homotopy perturbation
method is an effective tool to deal with nonlinear Richards’ equa-
tion and provides an accurate approximation. Illustrative exam-
ples proved the high accuracy of the results obtained using mixture
of new integral transform and homotopy perturbation method. It
is worth mentioning that the method is capable of reducing the
volume of the computational work as compared to the classical
methods while still maintaining the high accuracy of the numerical
result.
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Figure 8. Approximate Solution of (11) by
NITHPM when n = 2

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

NITHPM

ETHPM

DTM

HPM

HAM

Figure 9. Comparison between the solution ob-
tained by different methods for (n = 2, t = 1)
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