ALGEBRAIC POINTS OF DEGRRE AT MOST 14 ON THE FERMAT SEPTIC

MOUSSA FALL ${ }^{1}$, MOUSTAPHA CAMARA ${ }^{2}$ AND OUMAR SALL ${ }^{3}$

Abstract

In this paper, we study the algebraic points of degree at most 14 over \mathbb{Q} on the Fermat septic curve F_{7} of projective equation $X^{7}+Y^{7}+Z^{7}=0$. Tzermias determined in 1998 in ([11]) all algebraic points of degree at most 5 over \mathbb{Q} on F_{7} and O. Sall improved the result of Tzermias by determining in 2003 in ([9]), the algebraic points of degree at most 10 over \mathbb{Q}. Using their results and Abel Jacobi's theorem, we extend their work by giving a geometric description of algebraic points of degree at most 14 over \mathbb{Q} on F_{7}. .

Keywords and phrases: Algebraic points, Galois conjugates, Mordell-Weil group, Divisor, Linear systems.
2010 Mathematical Subject Classification: 14H50; 11D41; 11G05; 14C20; 14C17.

1. Introduction

Let \mathcal{C} be a smooth projective plane curve of degree d defined over \mathbb{Q}. The degree of an algebraic point on \mathcal{C} is the degree of its field of definition over \mathbb{Q}. A theorem of Debarre and Klassen ([5]) asserts that
(1) If $d \geq 7$, then the set of algebraic points on \mathcal{C} of degree at most $d-2$ over \mathbb{Q} is finite.
(2) If $d \geq 8$, then, with a finite number of exceptions, the set of algebraic points on \mathcal{C} of degree at most $d-1$ over \mathbb{Q} arise as the intersection of \mathcal{C} with a rational line through a rational point of \mathcal{C}.

We denote by F_{7} the Fermat septic, i.e., the smooth plane curve of degree 7 with projective equation

$$
F_{7}=\left\{(X, Y, Z) \in \mathbb{P}^{2}(\overline{\mathbb{Q}}): X^{7}+Y^{7}+Z^{7}=0\right\} .
$$

Received by the editors August 18, 2022; Revised: October 05, 2022; Accepted: May 09, 2023
www.nigerianmathematicalsociety.org; Journal available online at https://ojs.ictp. it/jnms/

We denote by J_{7} the Jacobian of F_{7} and its genus is 15 . According to (1), the set of algebraic points on F_{7} of degree at most 5 over \mathbb{Q} is finite. Tzermias ([11]) has completely described this set. There are exactly five algebraic points of degree at most 5 on F_{7}, namely $a=(0,-1,1), b=$ $(-1,0,1), \infty=(-1,1,0), P=(-\eta,-\bar{\eta}, 1)$ and $\bar{P}=(-\bar{\eta},-\eta, 1)$ where η is a primitive 6 -th root of unity in $\overline{\mathbb{Q}}$ and $\bar{\eta}$ is the complex conjugate of η.
Sall ([9], [10]) has pushad this description by determining the algebraic points on F_{7} of degree at most 10 over \mathbb{Q}, and he has established the following theorem :

Theorem 1.

(1) The algebraic points on F_{7} of degree 6 over \mathbb{Q} are obtained as intersection of F_{7} with a line defined over \mathbb{Q} passing through a, b or ∞.
(2) The algebraic points on F_{7} of degree 7 over \mathbb{Q} are obtained as intersection of F_{7} with a line defined over \mathbb{Q}.
(3) There are no algebraic points on F_{7} of degree 8 or 9 over \mathbb{Q}.
(4) The algebraic points on F_{7} of degree 10 over \mathbb{Q} are obtained as residual intersection of F_{7} with a conic \mathcal{C} defined over \mathbb{Q} having a contact point of order 2 at $\{a, b\}$ or $\{a, \infty\}$ or $\{b, \infty\}$.

In this note, we propose to extend this geometric description of algebraic points on F_{7} of degree at most 14 over \mathbb{Q}.

2. Main Result

Our main result is the following theorem :
Theorem 2: Let F_{7} be the Fermat septic.
(1) The algebraic points on F_{7} of degree 11 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞ and tangent to one of the other two.
(2) The algebraic points on F_{7} of degree 12 over \mathbb{Q} are obtained either as intersection of F_{7} with
(a) a conic defined over \mathbb{Q}
(i) passing through two of the points a, b, ∞ or through P and \bar{P},
(ii) tangent to F_{7} at one of the points a, b, ∞,
(b) a cubic defined over \mathbb{Q} having a, b and ∞ as contact points of order 3 at each of its points,
(c) a quartic defined over \mathbb{Q} having P and \bar{P} as contact points of order 8 at each of its points.
(3) The algebraic points on F_{7} of degree 13 over \mathbb{Q} are obtained either as intersection of F_{7} with
(a) a conic defined over \mathbb{Q} passing through one of the points a, b, ∞,
(b) a cubic defined over \mathbb{Q} tangent to F_{7} at one of the points a, b, ∞, and having a point of contact of order 3 with the other two.
(4) The algebraic points on F_{7} of degree 14 over \mathbb{Q} are obtained either as intersection of F_{7} with
(a) a conic defined over \mathbb{Q},
(b) a cubic defined over \mathbb{Q}
(i) passing through one of the points a, b, ∞ and having a contact point of order 3 with other two,
(ii) tangent to F_{7} at two of the points a, b, ∞ and having a contact point of order 3 with the other,
(c) a quartic defined over \mathbb{Q} having P and \bar{P} as contact points of order 7 at each of its points,
(d) a quintic defined over \mathbb{Q} having a contact point of order 5 at one of the points a, b, ∞ and of order 8 at each of its points P and \bar{P},
(e) a sextic defined over \mathbb{Q} having two contact points of order 6 among the points a, b, ∞ and of order 8 at each of its points P and \bar{P}.

3. Preliminary

3.1. Linear systems.

Let D be a divisor on F_{7}. The vector space $\mathcal{L}(D)$ is defined to be the set of rational functions

$$
\mathcal{L}(D)=\left\{f \in \overline{\mathbb{Q}}\left(F_{7}\right)^{*}: \operatorname{div}(f) \geq-D\right\} \cup\{0\} .
$$

The dimension of $\mathcal{L}(D)$ as a $\overline{\mathbb{Q}}$-vector space is denoted by $l(D)$. Consider the rational functions x and y on F_{7} given by

$$
x(X, Y, Z)=\frac{X}{Z} \quad \text { and } \quad y(X, Y, Z)=\frac{Y}{Z}
$$

Let ε be a primitive 14 -th root of unity in $\overline{\mathbb{Q}}$. The cusps on F_{7} are the points

$$
a_{j}=\left(0, \varepsilon^{2 j+1}, 1\right), \quad b_{j}=\left(\varepsilon^{2 j+1}, 0,1\right), \quad c_{j}=\left(\varepsilon^{2 j+1}, 1,0\right),
$$

for $0 \leq j \leq 6$. Observe that $a=a_{3}, b=b_{3}$ and $\infty=c_{3}$.

Lemma 1 : [Rohrlich, [8]] We have :
(1) $\operatorname{div}(x)=\left(a_{0}+\cdots+a_{6}\right)-\left(c_{0}+\cdots+c_{6}\right)$
(2) $\operatorname{div}(x+y)=7 \infty-\left(c_{0}+\cdots+c_{6}\right)$.

Lemma 2 : If $k \in\{4,6\}$, the rational functions $f_{r s}$ defined by

$$
f_{r s}(x, y)=\frac{x^{r}}{(x+y)^{s}}, \quad \text { with } \quad 0 \leq r \leq s \leq k
$$

form a basis for the vector space $\mathcal{L}(7 k \infty)$.

Proof :

(1) For $k=4$:

According to Lemma 1, we have

$$
\begin{aligned}
\operatorname{div}\left(f_{r s}(x, y)\right) & =r \operatorname{div}(x)-s \operatorname{div}(x+y) \\
& =r\left(a_{0}+\cdots+a_{6}\right)+(s-r)\left(c_{0}+c_{1}+c_{2}+c_{4}+c_{5}\right. \\
& \left.+c_{6}\right)-(6 s+r) \infty
\end{aligned}
$$

Since $0 \leq r \leq s \leq 4,6 s+r \leq 28$, so $f_{r s}(x, y) \in \mathcal{L}(28 \infty)$. Furthermore, if $6 s+r=6 s^{\prime}+r^{\prime}$ with $0 \leq r \leq s \leq 4$ and $0 \leq r^{\prime} \leq s^{\prime} \leq 4$ then $r \equiv r^{\prime}(\bmod 6)$. Since $0 \leq r, r^{\prime} \leq 4$, then $r=r^{\prime}$, which implies that $s=s^{\prime}$. Therefore, the functions $f_{r s}$ with $0 \leq r \leq s \leq 4$ are linearly independent. As the genus of F_{7} is $15,28 \infty$ is a canonical divisor on F_{7}, hence $l(28 \infty)=15=$ $\#\left\{f_{r s}, 0 \leq r \leq s \leq 4\right\}$.
(2) For $k=6$:

As for $k=4$, we show that the functions $f_{r s}(x, y)$ are in $\mathcal{L}(42 \infty)$ and that they are linearly independent. Then, we compute the dimension of $\mathcal{L}(42 \infty)$ using the Riemann-Roch theorem (see [4]) which says that $l(d \infty)=d-14$ as soon as $d \geq 29$. Finally, we have $l(42 \infty)=\#\left\{f_{r s}, 0 \leq r \leq s \leq 6\right\}$.

3.2. Mordell-Weil Group.

We denote by $J_{7}(\mathbb{Q})$ the Mordell-Weil group of rational points of the jacobian J_{7} of the curve F_{7}. For an integer s with $1 \leq s \leq 5, C_{s}$ denotes the affine equation curve $v^{7}=u(1-u)^{s}$ and J_{s} its jacobian. Consider the rational map defined by

$$
f_{s}: F_{7} \longrightarrow C_{s}, \quad(x, y) \longmapsto\left(-x^{7},(-1)^{s+1} x y^{s}\right) .
$$

This map induces a morphism (also denoted by f_{s}) $f_{s}: J_{7} \longrightarrow J_{s}$ and its dual $f_{s}^{*}: J_{s} \longrightarrow J_{7}$.
Let A and B be the automorphisms of F_{7} given by

$$
A(X, Y, Z)=(\zeta X, Y, Z) \quad \text { and } \quad B(X, Y, Z)=(X, \zeta Y, Z)
$$

where ζ is a primitive 7 -th root of unity such that $\varepsilon^{2}=\zeta$. Since $f_{s}: F_{7} \longrightarrow C_{s}$ is Galois covering whose Galois group is generated by $A^{-s} B$, then for a divisor D of degree zero on F_{7}, we have

$$
f_{s}^{*} \circ f_{s}(D)=\sum_{j=0}^{6}\left(A^{-s} B\right)^{j}(D)
$$

on J_{7} (see [1]).
It is well-known (see [2], [3], [6]) that these maps induce an isogeny defined over \mathbb{Q}

$$
f=\prod_{s=1}^{5} f_{s}: J_{7} \longrightarrow \prod_{s=1}^{5} J_{s}
$$

and the dual isogeny

$$
f^{*}=\sum_{s=1}^{5} f_{s}^{*}: \prod_{s=1}^{5} J_{s} \longrightarrow J_{7}
$$

such that $f^{*} \circ f=7$ on J_{7}.
Lemma 3 : $J_{7}(\mathbb{Q})$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2} \times(\mathbb{Z} / 7 \mathbb{Z})^{2}$.
Proof : According to Faddeev $([2],[3]), J_{7}(\mathbb{Q})$ is finite. In [11], Tzermias concludes that the following facts :
(1) For a prime $l \neq 2,7$, the group $J_{7}\left[l^{\infty}\right](\mathbb{Q})$ is trivial.
(2) The group $J_{7}\left[7^{\infty}\right](\mathbb{Q})$ is isomorphic to $(\mathbb{Z} / 7 \mathbb{Z})^{2}$ and is generated by $[a-\infty]$ and $[b-\infty]$.
It remains to compute the 2 -primary part of $J_{7}(\mathbb{Q})$. Since there exists an isogeny $f: J_{7} \longrightarrow \prod_{s=1}^{5} J_{s}$, then this amounts to computing the 2 -primary part of each $J_{s}(\mathbb{Q})$. But now a result of Gross and Rohrlich in [1] states that

$$
J_{s}(\mathbb{Q})_{\text {tors }} \cong \begin{cases}\mathbb{Z} / 7 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} & \text { if } 1 \equiv s^{3} \equiv(6-s)^{3} \quad(\bmod 7) \\ \mathbb{Z} / 7 \mathbb{Z} & \text { otherwise },\end{cases}
$$

but the only $s \leq 5$ such that $1 \equiv s^{3} \equiv(6-s)^{3}(\bmod 7)$ are $s=2$ or $s=4$, which gives two copies of $\mathbb{Z} / 2 \mathbb{Z}$ and so

$$
J_{7}\left[2^{\infty}\right](\mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} .
$$

Now put $x_{0}=-P-\bar{P}+2 \infty, x_{1}=f_{4}^{*} \circ f_{4}\left(x_{0}\right)$ and $x_{2}=f_{2}^{*} \circ f_{2}\left(x_{0}\right)$. Referring to the works of Gross and Rohrlich ([1]) and of Sall ([9], [10]), we have the properties given by the following proposition:

Proposition 1 :

(P1) The disivor x_{0} is of order 14. We show that $-2 x_{1}$ is the divisor of $y^{3}+x+x^{3} y$. Thus, x_{1} is a point of order 2 on $J_{7}(\mathbb{Q})$.
(P2) $f_{4}^{*} \circ f_{4}\left(x_{1}\right)=7 x_{1}$ and $f_{2}^{*} \circ f_{2}\left(x_{2}\right)=7 x_{2}$.
(P3) $(\mathbb{Z} / 2 \mathbb{Z})^{2}=<x_{1}, x_{2}>$.
(P4) $f_{s}(a-\infty)$ and $f_{s}(b-\infty)$ are of order 7 .
(P5) $J_{s}(\mathbb{Q})_{\text {tors }} \subseteq \operatorname{ker}\left(f_{s}^{*}\right)$.
(P6) $\operatorname{ker}\left(f_{s}^{*} \circ f_{s}\right) \subseteq J_{7}[7]$.

Corollary : We have

$$
\begin{aligned}
J_{7}(\mathbb{Q})=\{ & m[\infty-a]+n[\infty-b]+k x_{0}+l x_{2}, \text { with } 0 \leq m, n \leq 6 \\
& \text { and } 0 \leq k, l \leq 1\}, \text { or } \\
J_{7}(\mathbb{Q})=\{ & m[\infty-a]+n[\infty-b]+k x_{0}+l x_{1}, \text { with } 0 \leq m, n \leq 6 \\
& \text { and } 0 \leq k, l \leq 1\}
\end{aligned}
$$

Proof : Combining Lemma 3 and (P3), we have

$$
\begin{aligned}
J_{7}(\mathbb{Q})= & \left\{m_{1}[\infty-a]+n_{1}[\infty-b]+k x_{1}+l x_{2}, \text { with } 0 \leq m_{1}, n_{1} \leq 6\right. \\
& \text { and } 0 \leq k, l \leq 1\} .
\end{aligned}
$$

Then (P1) and (P2) give $f_{4}^{*} \circ f_{4}\left(x_{1}\right)=x_{1}=f_{4}^{*} \circ f_{4}\left(x_{0}\right)$. Thus, according to (P6), we have $x_{1}-x_{0} \in \operatorname{ker}\left(f_{4}^{*} \circ f_{4}\right) \subseteq J_{7}[7]$, so $x_{1}-x_{0}=m_{2}[\infty-a]+n_{2}[\infty-b]$ with $0 \leq m_{2}, n_{2} \leq 6$. Therefore,
$J_{7}(\mathbb{Q})=\left\{m[\infty-a]+n[\infty-b]+k x_{0}+l x_{2}\right.$, with $0 \leq m, n \leq 6$ and $0 \leq k, l \leq 1\}$.

Similarly, using $f_{2}^{*} \circ f_{2}$, we find the other expression of $J_{7}(\mathbb{Q})$.

3.3. Geometric lemmas.

Lemma 4 : Let L_{a}, L_{b} and L_{∞} be the tangent lines to F_{7} at a, b and ∞, respectively.
(1) The lines L_{a}, L_{b} and L_{∞} have a point of contact of order 7 with F_{7} at a, b and ∞, respectively.
(2) If a plane algebraic curve Γ of degree ≤ 6 has a contact point of order $>\operatorname{deg}(\Gamma)$ with F_{7} at a, b or ∞, then Γ is reducible and contains L_{a}, L_{b} or L_{∞}, respectively.

Proof :

(1) In affine, we have $F_{7}: x^{7}+y^{7}+1=0$. The tangent line to F_{7} at a is $L_{a}: y+1=0$. It is clear that a is the only point of intersection of the line L_{a} and the curve F_{7}. Thus, by Bezout's theorem, we have

$$
L_{a} \cdot F_{7}=\left(\operatorname{deg} L_{a} \times \operatorname{deg} F_{7}\right) a=7 a=\operatorname{mult}_{a}\left(L_{a} \cap F_{7}\right) a .
$$

We show the same for L_{b} and L_{∞}.
(2) Let H, G and F be plane curves. Assume that H is irreducible and is neither a component of G nor of F. Let \mathcal{O} be a nonsingular point of H. Then, according to Lemma 2.3.2 in [7], we have:

$$
\min \left\{\operatorname{mult}_{\mathcal{O}}(H \cap F), \operatorname{mult}_{\mathcal{O}}(H \cap G)\right\} \leq \operatorname{mult}_{\mathcal{O}}(F \cap G)
$$

Thus, to obtain the desired result, it suffices to take $\mathcal{O} \in\{a, b, \infty\}$, $H=L_{\mathcal{O}}, G=\Gamma$ and $F=F_{7}$ taking into account (1).

Lemma 5 : Let L be the line with equation $X+Y+Z=0$. Then $L . F_{7}=a+b+\infty+2 P+2 \bar{P}$.

Proof : In affine, $L: x+y+1=0$ and $F_{7}: x^{7}+y^{7}+1=0$. According to Gross and Rohrlich ([1]), we have $L \cap F_{7}=\{a, b, \infty, P, \bar{P}\}$; then there exist strictly positive integers $n_{1}, n_{2}, n_{3}, n_{4}, n_{5}$ such that L. $F_{7}=$ $n_{1} a+n_{2} b+n_{3} \infty+n_{4} P+n_{5} \bar{P}$ with $n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=7$. Since P and \bar{P} are conjugates, so $n_{4}=n_{5}$. The tangent line to F_{7} at P is $T_{P}: x+y+1=0$, hence $n_{4} \geq 2$; thus $n_{1}=n_{2}=n_{3}=1$ and $n_{4}=n_{5}=2$.

4. PROOF OF THE MAIN RESULT

Let R be an algebraic point on F_{7} of degree $d \leq 14$ over \mathbb{Q}; if $d \leq 5$ these points are described by Tzermias ([11]); if $6 \leq d \leq 10$ these points are given by Theorem 1. Thus, we can assume that $11 \leq d \leq 14$. Let R_{1}, \cdots, R_{d} be the Galois conjugates of R. Put $t=\left[R_{1}+\cdots+R_{d}-d P_{\infty}\right] \in$ $J_{7}(\mathbb{Q})$.
According to the corollary, we can consider the following four cases :

Case 1 : $t=m[\infty-a]+n[\infty-b]$ with $0 \leq m, n \leq 6$.

Then we have $\left[R_{1}+\cdots+R_{d}-d \infty\right]=m[\infty-a]+n[\infty-b]$, hence $\left[R_{1}+\cdots+R_{d}+m a+n b-(d+m+n) \infty\right]=0$. Since $d+m+n \leq 28$, Lemma 2 leads to the existence of a quartic polynomial $f(x, y)$ such that

$$
\operatorname{div}\left(f(x, y) /(x+y)^{4}\right)=R_{1}+\cdots+R_{d}+m a+n b-(d+m+n) \infty
$$

Thus, by Lemma 1,

$$
\begin{aligned}
\operatorname{div}(f(x, y))= & R_{1}+\cdots+R_{d}+m a+n b+(28-d-m-n) \infty \\
& -4\left(c_{0}+\cdots+c_{6}\right)
\end{aligned}
$$

Using the homogenized f^{*} of f, we have

$$
f^{*}(X, Y, Z)=Z^{4} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

where $f^{*}(X, Y, Z)$ defines a curve Γ_{4} of degree 4 ; which shows the existence of a quartic Γ_{4} defined over \mathbb{Q}. As the curve F_{7} is smooth, hence $\operatorname{div}(f(x, y))=\Gamma_{4} \cdot F_{7}-4\left(c_{0}+\cdots+c_{6}\right)$. Therefore,

$$
\Gamma_{4} \cdot F_{7}=R_{1}+\cdots+R_{d}+m a+n b+(28-d-m-n) \infty
$$

If $m \geq 5$, then, by Lemma $4, \Gamma_{4}$ is reducible and contains L_{a}. Moreover, since $m \leq 6$, one of the points R_{i} is a, which is absurd because R_{i} and a are not of the same degree. Hence $m \leq 4$. Similarly, we have $n \leq 4$. Therefore $6 \leq 28-d-m-n \leq 17$. The Lemma 4 also shows that Γ_{4} contains L_{∞}, there exists a cubic Γ_{3} such that

$$
\begin{equation*}
\Gamma_{3} \cdot F_{7}=R_{1}+\cdots+R_{d}+m a+n b+(21-d-m-n) \infty \tag{*}
\end{equation*}
$$

We must have $0 \leq m, n \leq 3$ and so $1 \leq 21-d-m-n \leq 10$. The sum of the coefficients of a, b and ∞ equals $21-d$.
1.1 Suppose that $1 \leq 21-d-m-n \leq 3$. Then, the sum of the coefficients of a, b and ∞ is ≤ 9, i.e., $21-d \leq 9$, therefore $d \geq 12$. Let m_{1}, m_{2} and m_{3} be the coefficients of a, b and ∞ respectively. We have $0 \leq m_{1}, m_{2} \leq 3,1 \leq m_{3} \leq 3$ and $m_{1}+m_{2}+m_{3}=21-d$.
Thus, we obtain :
1.1. a for $d=12$, the relation $(*)$ becomes

$$
\Gamma_{3} \cdot F_{7}=R_{1}+\cdots+R_{12}+3 a+3 b+3 \infty
$$

which shows that algebraic points on F_{7} of degree 12 over \mathbb{Q} are obtained as intersection of F_{7} with a cubic defined over \mathbb{Q} having a, b and ∞ as contact points of order 3 at each of its points.
1.1.b for $d=13$, the relation $(*)$ becomes

$$
\Gamma_{3} \cdot F_{7}=R_{1}+\cdots+R_{13}+m_{1} a+m_{2} b+m_{3} \infty
$$

with $m_{i} \in\{2,3\}$ and $m_{1}+m_{2}+m_{3}=8$,
which shows that algebraic points on F_{7} of degree 13 over \mathbb{Q} are obtained as intersection of F_{7} with a cubic defined over \mathbb{Q} tangent to F_{7} at one of the points a, b, ∞ and having a point of contact of order 3 with the other two.
1.1.c for $d=14$, the relation $(*)$ becomes

$$
\Gamma_{3} \cdot F_{7}=R_{1}+\cdots+R_{14}+m_{1} a+m_{2} b+m_{3} \infty
$$

with $m_{i} \in\{1,2,3\}$ and $m_{1}+m_{2}+m_{3}=7$,
which shows that algebraic points on F_{7} of degree 14 over \mathbb{Q} are obtained as intersection of F_{7} with a cubic defined over \mathbb{Q}

- passing through one of the points a, b, ∞ and having a contact point of order 3 with other two,
- tangent to F_{7} at two of the points a, b, ∞ and having a contact point of order 3 with the other.
1.2 Suppose that $21-d-m-n \geq 4$.

Then, by Lemma $4, \Gamma_{3}$ contains L_{∞}. Then there exists a conic Γ_{2} such that
$\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{d}+m a+n b+(14-d-m-n) \infty . \quad(* *)$. We must have $0 \leq m, n \leq 2$ and $0 \leq 14-d-m-n \leq 2$. The sum of the coefficients of a, b and ∞ is equal to $14-d$. Let m_{1}, m_{2} and m_{3} be the coefficients of a, b and ∞ respectively. We have $0 \leq m_{i} \leq 2$ and $m_{1}+m_{2}+m_{3}=14-d$. If the $m_{i} \neq 0$ then, according to, Lemma $5, \Gamma_{2}$ contains L, which is absurd otherwise one of the R_{i} would be equal to P or \bar{P}. Hence, at least one of m_{i} is zero. Thus, we obtain :
1.2.a. for $d=11$, the relation ($* *$) becomes

$$
\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{11}+m_{1} a+m_{2} b+m_{3} \infty
$$

with $m_{i} \neq m_{j} \in\{0,1,2\}$ and $m_{1}+m_{2}+m_{3}=3$,
thus, algebraic points on F_{7} of degree 11 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞ and tangent to one of the other two.
1.2.b. for $d=12$, the relation ($* *$) becomes

$$
\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{12}+m_{1} a+m_{2} b+m_{3} \infty
$$

with $m_{i} \in\{0,1,2\}$ and $m_{1}+m_{2}+m_{3}=2$,
thus, algebraic points on F_{7} of degree 12 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q}

- passing through two of the points a, b, ∞,
- tangent to F_{7} at one of the points a, b, ∞.
1.2.c. for $d=13$, the relation ($* *$) becomes

$$
\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{13}+m_{1} a+m_{2} b+m_{3} \infty
$$

with $m_{i} \in\{0,1\}$ and $m_{1}+m_{2}+m_{3}=1$, thus, algebraic points on F_{7} of degree 13 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞.
1.2.d. for $d=14$, the relation ($* *$) becomes

$$
\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{14},
$$

thus, algebraic points on F_{7} of degree 14 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q}.

Case 2: $t=m[\infty-a]+n[\infty-b]+x_{0}$ with $0 \leq m, n \leq 6$.
Then we have

$$
\left[R_{1}+\cdots+R_{d}+m a+n b+P+\bar{P}-(d+m+n+2) \infty\right]=0 .
$$

Since $d+m+n+2 \leq 28$, Lemmas 2 and 1 ensure the existence of a quartic polynomial $f(x, y)$ such that:

$$
\begin{aligned}
\operatorname{div}(f(x, y))= & R_{1}+\cdots+R_{d}+m a+n b+P+\bar{P}+(26-d-m-n) \infty \\
& -4\left(c_{0}+\cdots+c_{6}\right) .
\end{aligned}
$$

Since the curve F_{7} is smooth, there exists a quartic Γ_{4} such that $\operatorname{div}(f(x, y))=$ $\Gamma_{4} \cdot F_{7}-4\left(c_{0}+\cdots+c_{6}\right)$. As a result,

$$
\Gamma_{4} \cdot F_{7}=R_{1}+\cdots+R_{d}+m a+n b+P+\bar{P}+(26-d-m-n) \infty .
$$

We must have $0 \leq m, n \leq 4$ and so $4 \leq 26-d-m-n \leq 15$.
2.1 If $26-d-m-n=4$, i.e., $d=14, m=n=4$, then $\Gamma_{4} \cdot F_{7}=$ $R_{1}+\cdots+R_{14}+4 a+4 b+P+\bar{P}+4 \infty$. We see that Γ_{4} contains L, which is absurd otherwise one of the R_{i} 's to equal P or \bar{P}.
2.2 If $26-d-m-n \geq 5$, then Γ_{4} contains L_{∞}. There exists a cubic Γ_{3} such that
$\Gamma_{3} \cdot F_{7}=R_{1}+\cdots+R_{d}+m a+n b+P+\bar{P}+(19-d-m-n) \infty$.
We must have $0 \leq m, n \leq 3$ and $19-d-m-n \geq 0$.
2.2.a. If $m=n=0$, then $\Gamma_{3} . F_{7}=R_{1}+\cdots+R_{d}+P+\bar{P}+(19-d) \infty$.

We have $19-d \geq 5$, hence Γ_{3} contains L_{∞}. There exists a conic Γ_{2} such that

$$
\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{d}+P+\bar{P}+(12-d) \infty,
$$

which gives $d=12$, hence

$$
\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{12}+P+\bar{P},
$$

thus, algebraic points on F_{7} of degree 12 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q} passing through P and \bar{P}.
2.2.b. If $m \neq 0$ or $n \neq 0$, then at least two of the coefficients of a, b and ∞ are non-zero. Consequenlty Γ_{3} contains L, which is absurd otherwise one of the R_{i} 's to equal P or \bar{P}.

Case 3: $t=m[\infty-a]+n[\infty-b]+k x_{0}+x_{1}$ with $0 \leq m, n \leq 6$ and $0 \leq k \leq 1$.
Then we have $\left[R_{1}+\cdots+R_{d}-d \infty\right]=m[\infty-a]+n[\infty-b]+k x_{0}+x_{1}$.
Composing by $f_{4}^{*} \circ f_{4}$ and using (P4) and (P5), we have

$$
f_{4}^{*} \circ f_{4}\left(\left[R_{1}+\cdots+R_{d}-d \infty\right]\right)=f_{4}^{*} \circ f_{4}\left(k x_{0}\right)+f_{4}^{*} \circ f_{4}\left(x_{1}\right) .
$$

Then, combining (P2) and the definition of x_{1}, we have

$$
f_{4}^{*} \circ f_{4}\left(\left[R_{1}+\cdots+R_{d}-d \infty\right]\right)=f_{4}^{*} \circ f_{4}\left(k x_{0}\right)+f_{4}^{*} \circ f_{4}\left(7 x_{0}\right) .
$$

Thus,

$$
f_{4}^{*} \circ f_{4}\left(\left[R_{1}+\cdots+R_{d}-(7+k) x_{0}-d \infty\right]\right)=0
$$

From (P6), we obtain

$$
\left[R_{1}+\cdots+R_{d}-(7+k) x_{0}-d \infty\right]=m[\infty-a]+n[\infty-b] .
$$

What is also writtten
$\left[R_{1}+\cdots+R_{d}+m a+n b+(7+k) P+(7+k) \bar{P}-(14+d+m+n+2 k) \infty\right]=0$.
Since $14+d+m+n+2 k \leq 42$, Lemmas 2 and 1 ensure the existence of a sextic polynomial $f(x, y)$ such that

$$
\begin{aligned}
\operatorname{div}(f(x, y))= & R_{1}+\cdots+R_{d}+m a+n b+(7+k) P+(7+k) \bar{P} \\
& +(28-d-m-n-2 k) \infty-6\left(c_{0}+\cdots+c_{6}\right) .
\end{aligned}
$$

As the plane curve F_{7} is smooth, there exists a sextic Γ_{6} such that $\operatorname{div}(f(x, y))=\Gamma_{6} \cdot F_{7}-6\left(c_{0}+\cdots+c_{6}\right)$. Therefore,

$$
\begin{aligned}
\Gamma_{6} \cdot F_{7}= & R_{1}+\cdots+R_{d}+m a+n b+(7+k) P+(7+k) \bar{P} \\
& +(28-d-m-n-2 k) \infty .
\end{aligned}
$$

3.1. $m=0$ or $n=0$
3.1.a. If $m=n=0$, then
$\Gamma_{6} \cdot F_{7}=R_{1}+\cdots+R_{d}+(7+k) P+(7+k) \bar{P}+(28-d-2 k) \infty$
with $12 \leq 28-d-2 k \leq 17$. The curve Γ_{6} contains L_{∞}, there exists a quintic Γ_{5} such that
$\Gamma_{5} \cdot F_{7}=R_{1}+\cdots+R_{d}+(7+k) P+(7+k) \bar{P}+(21-d-2 k) \infty$
with $5 \leq 21-d-2 k \leq 10$.
3.1.a.i. If $21-d-2 k=5$, i.e., $d=14$ and $k=1$, then

$$
\Gamma_{5} \cdot F_{7}=R_{1}+\cdots+R_{14}+8 P+8 \bar{P}+5 \infty
$$

that is, algebraic points on F_{7} of degree 14 over \mathbb{Q} are obtained as intersection of F_{7} with a quintic defined over \mathbb{Q} having a contact point of order 5 at ∞ and of order 8 at each of its points P and \bar{P}.
3.1.a.ii. If $21-d-2 k \geq 6$, then Γ_{5} contains L_{∞}, there exists a quartic Γ_{4} such that

$$
\Gamma_{4} \cdot F_{7}=R_{1}+\cdots+R_{d}+(7+k) P+(7+k) \bar{P}+(14-d-2 k) \infty
$$

with $0 \leq 14-d-2 k \leq 3$. We see that the coefficient of ∞ must be zero otherwise one of R_{i} should be equal to a or b. Thus $14-d-2 k=0$, i.e., we have ($d=14$ and $k=0$) or ($d=12$ and $k=1)$. As a result,

$$
\Gamma_{4} \cdot F_{7}=R_{1}+\cdots+R_{14}+7 P+7 \bar{P},
$$

in other words, algebraic points on F_{7} of degree 14 over \mathbb{Q} are obtained as intersection of F_{7} with a quartic defined over Q
having P and \bar{P} as contact points of order 7 at each of its points; or

$$
\Gamma_{4} \cdot F_{7}=R_{1}+\cdots+R_{12}+8 P+8 \bar{P},
$$

in other words, algebraic points on F_{7} of degree 12 over \mathbb{Q} are obtained as intersection of F_{7} with a quartic defined over Q having P and \bar{P} as contact points of order 8 at each of its points.
3.1.b. If $m=0$ and $n \geq 1$ (resp. $m \geq 1$ and $n=0$), then
$\Gamma_{6} \cdot F_{7}=R_{1}+\cdots+R_{d}+n b+(7+k) P+(7+k) \bar{P}+(28-d-n-2 k) \infty$ with $6 \leq 28-d-n-2 k \leq 16$.
3.1.b.i. If $28-d-n-2 k=6$, i.e., $d=14, n=6$ and $k=1$, then

$$
\Gamma_{6} \cdot F_{7}=R_{1}+\cdots+R_{14}+6 b+8 P+8 \bar{P}+6 \infty
$$

which proves that algebraic points on F_{7} of degree 14 over \mathbb{Q} are obtained as intersection of F_{7} with a sextic defined over \mathbb{Q} having a contact point of order 6 at b and ∞ and of order 8 at each of its points P and \bar{P}.
3.1.b.ii. If $28-d-n-2 k \geq 7$, then Γ_{6} contains L_{∞}, there exists a quintic Γ_{5} such that
$\Gamma_{5} \cdot F_{7}=R_{1}+\cdots+R_{d}+n b+(7+k) P+(7+k) \bar{P}+(21-d-n-2 k) \infty$ with $0 \leq 21-d-n-2 k \leq 9$. Since $n \neq 0$, the coefficient of ∞ must be zero, i.e., $21-d-n-2 k=0$, in this case, we have $(d=13, n=6$ and $k=1)$ or $(d=14, n=5$ and $k=1)$. Thus, $\Gamma_{5} \cdot F_{7}=R_{1}+\cdots+R_{13}+6 b+8 P+8 \bar{P}$, this case is absurd otherwise one of the R_{i} 's to equal b or

$$
\Gamma_{5} \cdot F_{7}=R_{1}+\cdots+R_{14}+5 b+8 P+8 \bar{P},
$$

that is, algebraic points on F_{7} of degree 14 over \mathbb{Q} are obtained as intersection of F_{7} with a quintic defined over \mathbb{Q} having a contact point of order 5 at b and of order 8 at each of its points P and \bar{P}.
3.2. $m=1$ or $n=1$
3.2.a. If $m=n=1$, then
$\Gamma_{6} \cdot F_{7}=R_{1}+\cdots+R_{d}+a+b+(7+k) P+(7+k) \bar{P}+(26-d-2 k) \infty$.
The curve Γ_{6} contains L, there exists a quintic Γ_{5} such that
$\Gamma_{5} \cdot F_{7}=R_{1}+\cdots+R_{d}+(5+k) P+(5+k) \bar{P}+(25-d-2 k) \infty$
with $9 \leq 25-d-2 k \leq 14$. The curve Γ_{5} contains L_{∞}, there exists a quartic Γ_{4} such that
$\Gamma_{4} \cdot F_{7}=R_{1}+\cdots+R_{d}+(5+k) P+(5+k) \bar{P}+(18-d-2 k) \infty$
with $2 \leq 18-d-2 k \leq 7$. As the coefficient of ∞ is non-zero, then Γ_{4} contains L which is absurd otherwise one of the R_{i} is a or b.
3.2.b If $m=1$ and $n \geq 2$ (resp. $m \geq 2$ and $n=1$), then
$\Gamma_{6} \cdot F_{7}=R_{1}+\cdots+R_{d}+a+n b+(7+k) P+(7+k) \bar{P}+(27-d-n-2 k) \infty$.
We see that Γ_{6} contains L, there exists a quintic Γ_{5} such that
$\Gamma_{5} \cdot F_{7}=R_{1}+\cdots+R_{d}+(n-1) b+(7+k) P+(7+k) \bar{P}+(26-d-n-2 k) \infty$.
Γ_{5} contains L which is absurd otherwise one of the R_{i} is a.
3.3. $2 \leq m, n \leq 6$
3.3.a. If $28-d-m-n-2 k=0$, i.e., $d=14, m=n=6$ and $k=1$, then

$$
\Gamma_{6} \cdot F_{7}=R_{1}+\cdots+R_{14}+6 a+6 b+8 P+8 \bar{P},
$$

which proves that algebraic points on F_{7} of degree 14 over \mathbb{Q} are obtained as intersection of F_{7} with a sextic defined over \mathbb{Q} having a contact point of order 6 at a and b and of order 8 at each of its points P and \bar{P}.
3.3.b If $28-d-m-n-2 k \geq 1$, then Γ_{6} contains L, there exists a quintic Γ_{5} such that

$$
\begin{aligned}
\Gamma_{5} \cdot F_{7}= & R_{1}+\cdots+R_{d}+(m-1) a(n-1) b+(5+k) P \\
& +(5+k) \bar{P}+(27-d-m-n-2 k) \infty .
\end{aligned}
$$

We see that Γ_{5} contains L, there exists a quartic Γ_{4} such that

$$
\begin{aligned}
\Gamma_{4} \cdot F_{7}= & R_{1}+\cdots+R_{d}+(m-2) a+(n-2) b+(3+k) P+ \\
& (3+k) \bar{P}+(26-d-m-n-2 k) \infty .
\end{aligned}
$$

Since, the coefficients of a, b and ∞ are not simultaneously zero, then Γ_{4} contains L, there exists a cubic Γ_{3} such that $\Gamma_{3} \cdot F_{7}=$ $R_{1}+\cdots+R_{d}+(m-3) a+(n-3) b+(1+k) P+(1+k) \bar{P}+$ ($25-d-m-n-2 k) \infty$.
We must have $3 \leq m, n \leq 6$ and $25-d-m-n-2 k \geq 0$.
3.3.b.i. If $m=n=3$, then

$$
\Gamma_{3} \cdot F_{7}=R_{1}+\cdots+R_{d}+(1+k) P+(1+k) \bar{P}+(19-d-2 k) \infty
$$

with $3 \leq 19-d-2 k \leq 8$.

- If $19-d-2 k=3$, i.e., $d=14$ and $k=1$, then

$$
\Gamma_{3} \cdot F_{7}=R_{1}+\cdots+R_{14}+2 P+2 \bar{P}+3 \infty .
$$

We see that Γ_{3} contains L, which is absurd.

- If $19-d-2 k \geq 4$, then Γ_{3} contains L_{∞}, there exists a conic Γ_{2} such that
$\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{d}+(1+k) P+(1+k) \bar{P}+(12-d-2 k) \infty$.
We must have $12-d-2 k=0$, i.e., $d=12$ and $k=0$ so $\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{12}+P+\bar{P}$. Thus, algebraic points on F_{7} of degree 12 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q} passing through P and \bar{P}.
3.3.b.ii. If $m \neq 3$ or $n \neq 3$, then Γ_{3} contains L, there exists a conic Γ_{2} such that

$$
\begin{aligned}
\Gamma_{2} \cdot F_{7}= & R_{1}+\cdots+R_{d}+(m-4) a+(n-4) b+(-1+k) P \\
& +(-1+k) \bar{P}+(24-d-m-n-2 k) \infty
\end{aligned}
$$

We must have
$4 \leq m, n \leq 6, k=1$ and $0 \leq 24-d-m-n-2 k \leq 2$.
The sum of the coefficients of a, b and ∞ is equal to $14-d$. We have
$-\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{11}+m_{1} a+m_{2} b+m_{3} \infty$ with $m_{i} \neq$ $m_{j} \in\{0,1,2\}$ and $m_{1}+m_{2}+m_{3}=3$, thus, algebraic points on F_{7} of degree 11 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞ and tangent to one of the other two.
$-\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{12}+m_{1} a+m_{2} b+m_{3} \infty$ with $m_{i} \in$ $\{0,1,2\}$ and $m_{1}+m_{2}+m_{3}=2$, thus, algebraic points on F_{7} of degree 12 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q}

* passing through two of the points a, b, ∞,
* tangent to F_{7} at one of the points a, b, ∞.
$-\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{13}+m_{1} a+m_{2} b+m_{3} \infty$ with $m_{i} \in$ $\{0,1\}$ and $m_{1}+m_{2}+m_{3}=1$, thus, algebraic points on F_{7} of degree 13 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞.
- $\Gamma_{2} \cdot F_{7}=R_{1}+\cdots+R_{14}$, thus, algebraic points on F_{7} of degree 14 over \mathbb{Q} are obtained as intersection of F_{7} with a conic defined over \mathbb{Q}.

Case 4: $t=m[\infty-a]+n[\infty-b]+k x_{0}+x_{2}$ with $0 \leq m, n \leq 6$ and $0 \leq k \leq 1$.
Composing by $f_{2}^{*} \circ f_{2}$ and using the properties (P2), (P4), (P5) and (P6), we find exactly the same expression as in the Case 3 and therefore we obtain the same results.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referees for their comments and suggestions which have improved the quality of this paper.

REFERENCES

[1] B. Gross and D. Rohrlich, Some results on the Mordell-Weil group of the jacobian of the Fermat curve, Invent. Math. 44 (1978), 201 - 224.
[2] D. K. Faddeev, On the divisor class groups of some algebraic curves, Dokl. Tom 136 pp. $296-298=$ Sov. Math. Vol. 2 (1961) pp. $67-69$.
[3] D. K. Faddeev, Invariants of divisor classes for the curves $x^{k}(1-x)=y^{l}$ in l-adic cyclotomic fields, Trudy Math. Inst. Steklov 64 (1961) pp. $284-293$.
[4] M. Hindry and J. H. Silverman, Diophantine geometry, an introduction, volume 201 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.
[5] O. Debarre and M. Klassen, Points of low degree on smooth plane curves, J. Reine Angew. Math. 446, $81-87$ (1994).
[6] S. Lang, Introduction to algebraic and abelian functions (2nd edition), GTM 89, Springer-Verlag, New York-Heidelberg-Berlin.
[7] M. Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math. 767, Berlin : Springer-Verlag, 1979.
[8] D. Rohrlich, Points at infinity on the Fermat curves, Invent. Math. 39, 95-127 (1977)
[9] O. Sall, Points algébriques de degré au plus 10 sur la septique de Fermat, Afrika mathematika, serie 3, volume $15(2003) 49-55$.
[10] O. Sall, Points algébriques de petits degrés sur les courbes de Fermat, C. R. Acad. Sci. Paris, t.330, série I, p $67-70,2000$.
[11] P. Tzermias, Algebraic points of low degree on the Fermat curve of degree seven, Manusc. Math. 97 (4) 1998, $483-488$.

[^0]
[^0]: ${ }^{1}$ Moussa FALL
 DEPARTMENT OF MATHEMATICS, ASSANE SECK UNIVERSITY, ZIGUINCHOR, SENEGAL
 E-mail address: m.fall@univ-zig.sn
 ${ }^{2}$ Moustapha CAMARA
 DEPARTMENT OF MATHEMATICS, ASSANE SECK UNIVERSITY, ZIGUINCHOR, SENEGAL
 E-mail addresses: m.camara5367@zig.univ.sn
 ${ }^{3}$ Oumar SALL
 DEPARTMENT OF MATHEMATICS, ASSANE SECK UNIVERSITY, ZIGUINCHOR, SENEGAL
 E-mail addresses: o.sall@univ-zig.sn

