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ALGEBRAIC POINTS OF DEGRRE AT MOST 14
ON THE FERMAT SEPTIC
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ABSTRACT. In this paper, we study the algebraic points of
degree at most 14 over Q on the Fermat septic curve F7 of pro-
jective equation X7 + Y 7 + Z7 = 0. Tzermias determined in
1998 in ([11]) all algebraic points of degree at most 5 over Q on
F7 and O. Sall improved the result of Tzermias by determining
in 2003 in ([9]), the algebraic points of degree at most 10 over
Q. Using their results and Abel Jacobi’s theorem, we extend
their work by giving a geometric description of algebraic points
of degree at most 14 over Q on F7. .
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1. Introduction

Let C be a smooth projective plane curve of degree d defined over
Q. The degree of an algebraic point on C is the degree of its field of
definition over Q. A theorem of Debarre and Klassen ([5]) asserts that

(1) If d ≥ 7, then the set of algebraic points on C of degree at most
d− 2 over Q is finite.

(2) If d ≥ 8, then, with a finite number of exceptions, the set of
algebraic points on C of degree at most d− 1 over Q arise as the
intersection of C with a rational line through a rational point of
C.

We denote by F7 the Fermat septic, i.e., the smooth plane curve of
degree 7 with projective equation

F7 = {(X, Y, Z) ∈ P2(Q) : X7 + Y 7 + Z7 = 0}.
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We denote by J7 the Jacobian of F7 and its genus is 15. According to
(1), the set of algebraic points on F7 of degree at most 5 over Q is finite.
Tzermias ([11]) has completely described this set. There are exactly five
algebraic points of degree at most 5 on F7, namely a = (0, −1, 1), b =
(−1, 0, 1), ∞ = (−1, 1, 0), P = (−η, −η, 1) and P = (−η, −η, 1)
where η is a primitive 6−th root of unity in Q and η is the complex
conjugate of η.
Sall ([9], [10]) has pushad this description by determining the algebraic
points on F7 of degree at most 10 over Q, and he has established the
following theorem :
Theorem 1.

(1) The algebraic points on F7 of degree 6 over Q are obtained as
intersection of F7 with a line defined over Q passing through a,
b or ∞.

(2) The algebraic points on F7 of degree 7 over Q are obtained as
intersection of F7 with a line defined over Q.

(3) There are no algebraic points on F7 of degree 8 or 9 over Q.
(4) The algebraic points on F7 of degree 10 over Q are obtained as

residual intersection of F7 with a conic C defined over Q having
a contact point of order 2 at {a, b} or {a,∞} or {b,∞}.

In this note, we propose to extend this geometric description of algebraic
points on F7 of degree at most 14 over Q.

2. Main Result

Our main result is the following theorem :

Theorem 2 : Let F7 be the Fermat septic.
(1) The algebraic points on F7 of degree 11 over Q are obtained as

intersection of F7 with a conic defined over Q passing through
one of the points a, b, ∞ and tangent to one of the other two.

(2) The algebraic points on F7 of degree 12 over Q are obtained
either as intersection of F7 with
(a) a conic defined over Q

(i) passing through two of the points a, b, ∞ or through
P and P ,

(ii) tangent to F7 at one of the points a, b, ∞,
(b) a cubic defined over Q having a, b and ∞ as contact points

of order 3 at each of its points,
(c) a quartic defined over Q having P and P as contact points

of order 8 at each of its points.
(3) The algebraic points on F7 of degree 13 over Q are obtained

either as intersection of F7 with
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(a) a conic defined over Q passing through one of the points a,
b, ∞,

(b) a cubic defined over Q tangent to F7 at one of the points
a, b, ∞, and having a point of contact of order 3 with the
other two.

(4) The algebraic points on F7 of degree 14 over Q are obtained
either as intersection of F7 with
(a) a conic defined over Q,
(b) a cubic defined over Q

(i) passing through one of the points a, b, ∞ and having
a contact point of order 3 with other two,

(ii) tangent to F7 at two of the points a, b, ∞ and having
a contact point of order 3 with the other,

(c) a quartic defined over Q having P and P as contact points
of order 7 at each of its points,

(d) a quintic defined over Q having a contact point of order 5
at one of the points a, b, ∞ and of order 8 at each of its
points P and P ,

(e) a sextic defined over Q having two contact points of order
6 among the points a, b, ∞ and of order 8 at each of its
points P and P .

3. Preliminary

3.1. Linear systems.
Let D be a divisor on F7. The vector space L(D) is defined to be the
set of rational functions

L(D) = {f ∈ Q(F7)
∗ : div(f) ≥ −D} ∪ {0}.

The dimension of L(D) as a Q−vector space is denoted by l(D). Con-
sider the rational functions x and y on F7 given by

x(X, Y, Z) =
X

Z
and y(X, Y, Z) =

Y

Z
.

Let ε be a primitive 14−th root of unity in Q. The cusps on F7 are the
points

aj = (0, ε2j+1, 1), bj = (ε2j+1, 0, 1), cj = (ε2j+1, 1, 0),

for 0 ≤ j ≤ 6. Observe that a = a3, b = b3 and ∞ = c3.

Lemma 1 : [Rohrlich, [8]] We have :
(1) div(x) = (a0 + · · ·+ a6)− (c0 + · · ·+ c6)
(2) div(x+ y) = 7∞− (c0 + · · ·+ c6).
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Lemma 2 : If k ∈ {4, 6}, the rational functions frs defined by

frs(x, y) =
xr

(x+ y)s
, with 0 ≤ r ≤ s ≤ k,

form a basis for the vector space L(7k∞).

Proof :

(1) For k = 4 :
According to Lemma 1, we have

div(frs(x, y)) = rdiv(x)− sdiv(x+ y)

= r(a0 + · · ·+ a6) + (s− r)(c0 + c1 + c2 + c4 + c5

+ c6)− (6s+ r)∞.

Since 0 ≤ r ≤ s ≤ 4, 6s + r ≤ 28, so frs(x, y) ∈ L(28∞).
Furthermore, if 6s + r = 6s′ + r′ with 0 ≤ r ≤ s ≤ 4 and
0 ≤ r′ ≤ s′ ≤ 4 then r ≡ r′ (mod 6). Since 0 ≤ r, r′ ≤ 4, then
r = r′, which implies that s = s′. Therefore, the functions frs
with 0 ≤ r ≤ s ≤ 4 are linearly independent. As the genus of F7

is 15, 28∞ is a canonical divisor on F7, hence l(28∞) = 15 =
#{frs, 0 ≤ r ≤ s ≤ 4}.

(2) For k = 6 :
As for k = 4, we show that the functions frs(x, y) are in L(42∞)
and that they are linearly independent. Then, we compute the
dimension of L(42∞) using the Riemann-Roch theorem (see [4])
which says that l(d∞) = d − 14 as soon as d ≥ 29. Finally, we
have l(42∞) = #{frs, 0 ≤ r ≤ s ≤ 6}.

3.2. Mordell-Weil Group.

We denote by J7(Q) the Mordell-Weil group of rational points of the
jacobian J7 of the curve F7. For an integer s with 1 ≤ s ≤ 5, Cs denotes
the affine equation curve v7 = u(1 − u)s and Js its jacobian. Consider
the rational map defined by

fs : F7 −→ Cs, (x, y) 7−→ (−x7, (−1)s+1xys).

This map induces a morphism (also denoted by fs) fs : J7 −→ Js and
its dual f∗

s : Js −→ J7.
Let A and B be the automorphisms of F7 given by

A(X,Y, Z) = (ζX, Y, Z) and B(X,Y, Z) = (X, ζY, Z),

where ζ is a primitive 7−th root of unity such that ε2 = ζ. Since
fs : F7 −→ Cs is Galois covering whose Galois group is generated by
A−sB, then for a divisor D of degree zero on F7, we have

f∗
s ◦ fs(D) =

6∑
j=0

(A−sB)j(D)
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on J7 (see [1]).
It is well-known (see [2], [3], [6]) that these maps induce an isogeny
defined over Q

f =
5∏

s=1

fs : J7 −→
5∏

s=1

Js

and the dual isogeny

f∗ =

5∑
s=1

f∗
s :

5∏
s=1

Js −→ J7

such that f∗ ◦ f = 7 on J7.

Lemma 3 : J7(Q) is isomorphic to (Z/2Z)2 × (Z/7Z)2.

Proof : According to Faddeev ([2], [3]), J7(Q) is finite. In [11], Tzermias
concludes that the following facts :

(1) For a prime l ̸= 2, 7, the group J7[l
∞](Q) is trivial.

(2) The group J7[7
∞](Q) is isomorphic to (Z/7Z)2 and is generated

by [a−∞] and [b−∞].

It remains to compute the 2−primary part of J7(Q). Since there exists

an isogeny f : J7 −→
∏5

s=1 Js, then this amounts to computing the
2−primary part of each Js(Q). But now a result of Gross and Rohrlich
in [1] states that

Js(Q)tors ∼=
{

Z/7Z× Z/2Z if 1 ≡ s3 ≡ (6− s)3 (mod 7)
Z/7Z otherwise,

but the only s ≤ 5 such that 1 ≡ s3 ≡ (6 − s)3 (mod 7) are s = 2 or
s = 4, which gives two copies of Z/2Z and so

J7[2
∞](Q) ∼= (Z/2Z)2.

Now put x0 = −P − P + 2∞, x1 = f∗
4 ◦ f4(x0) and x2 = f∗

2 ◦ f2(x0).
Referring to the works of Gross and Rohrlich ([1]) and of Sall ([9], [10]),
we have the properties given by the following proposition:

Proposition 1 :

(P1) The disivor x0 is of order 14. We show that −2x1 is the divisor
of y3 + x+ x3y. Thus, x1 is a point of order 2 on J7(Q).

(P2) f∗
4 ◦ f4(x1) = 7x1 and f∗

2 ◦ f2(x2) = 7x2.
(P3) (Z/2Z)2 =< x1, x2 >.
(P4) fs(a−∞) and fs(b−∞) are of order 7.
(P5) Js(Q)tors ⊆ ker(f∗

s ).
(P6) ker(f∗

s ◦ fs) ⊆ J7[7].
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Corollary : We have

J7(Q) =
{
m[∞− a] + n[∞− b] + kx0 + lx2, with 0 ≤ m,n ≤ 6

and 0 ≤ k, l ≤ 1
}
, or

J7(Q) =
{
m[∞− a] + n[∞− b] + kx0 + lx1, with 0 ≤ m,n ≤ 6

and 0 ≤ k, l ≤ 1
}

Proof : Combining Lemma 3 and (P3), we have

J7(Q) =
{
m1[∞− a] + n1[∞− b] + kx1 + lx2, with 0 ≤ m1, n1 ≤ 6

and 0 ≤ k, l ≤ 1
}
.

Then (P1) and (P2) give f∗
4 ◦f4(x1) = x1 = f∗

4 ◦f4(x0). Thus, according
to (P6), we have x1 − x0 ∈ ker(f∗

4 ◦ f4) ⊆ J7[7], so
x1 − x0 = m2[∞− a] + n2[∞− b] with 0 ≤ m2, n2 ≤ 6. Therefore,

J7(Q) =
{
m[∞− a] + n[∞− b] + kx0 + lx2, with 0 ≤ m,n ≤ 6

and 0 ≤ k, l ≤ 1
}
.

Similarly, using f∗
2 ◦ f2, we find the other expression of J7(Q).

3.3. Geometric lemmas.

Lemma 4 : Let La, Lb and L∞ be the tangent lines to F7 at a, b and
∞, respectively.

(1) The lines La, Lb and L∞ have a point of contact of order 7 with
F7 at a, b and ∞, respectively.

(2) If a plane algebraic curve Γ of degree ≤ 6 has a contact point
of order > deg(Γ) with F7 at a, b or ∞, then Γ is reducible and
contains La, Lb or L∞, respectively.

Proof :

(1) In affine, we have F7 : x7 + y7 + 1 = 0. The tangent line to F7

at a is La : y + 1 = 0. It is clear that a is the only point of
intersection of the line La and the curve F7. Thus, by Bezout’s
theorem, we have

La.F7 = (degLa × degF7)a = 7a = multa(La ∩ F7)a.

We show the same for Lb and L∞.
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(2) Let H, G and F be plane curves. Assume that H is irreducible
and is neither a component of G nor of F . Let O be a non-
singular point of H. Then, according to Lemma 2.3.2 in [7], we
have:

min{multO(H ∩ F ),multO(H ∩G)} ≤ multO(F ∩G).

Thus, to obtain the desired result, it suffices to takeO ∈ {a, b,∞},
H = LO, G = Γ and F = F7 taking into account (1).

Lemma 5 : Let L be the line with equation X + Y + Z = 0. Then
L.F7 = a+ b+∞+ 2P + 2P .

Proof : In affine, L : x + y + 1 = 0 and F7 : x7 + y7 + 1 = 0. Accord-
ing to Gross and Rohrlich ([1]), we have L ∩ F7 = {a, b,∞, P, P}; then
there exist strictly positive integers n1, n2, n3, n4, n5 such that L.F7 =
n1a+ n2b+ n3∞+ n4P + n5P with n1 + n2 + n3 + n4 + n5 = 7. Since
P and P are conjugates, so n4 = n5. The tangent line to F7 at P is
TP : x+y+1 = 0, hence n4 ≥ 2; thus n1 = n2 = n3 = 1 and n4 = n5 = 2.

4. PROOF OF THE MAIN RESULT

Let R be an algebraic point on F7 of degree d ≤ 14 over Q; if d ≤ 5
these points are described by Tzermias ([11]); if 6 ≤ d ≤ 10 these points
are given by Theorem 1. Thus, we can assume that 11 ≤ d ≤ 14. Let
R1, · · · , Rd be the Galois conjugates of R. Put t = [R1+· · ·+Rd−dP∞] ∈
J7(Q).
According to the corollary, we can consider the following four cases :

Case 1 : t = m[∞− a] + n[∞− b] with 0 ≤ m,n ≤ 6.

Then we have [R1 + · · · + Rd − d∞] = m[∞ − a] + n[∞ − b], hence
[R1 + · · ·+Rd +ma+ nb− (d+m+ n)∞] = 0. Since d+m+ n ≤ 28,
Lemma 2 leads to the existence of a quartic polynomial f(x, y) such that

div(f(x, y)/(x+ y)4) = R1 + · · ·+Rd +ma+ nb− (d+m+ n)∞.

Thus, by Lemma 1,

div(f(x, y)) = R1 + · · ·+Rd +ma+ nb+ (28− d−m− n)∞
− 4(c0 + · · ·+ c6).

Using the homogenized f∗ of f , we have

f∗(X, Y, Z) = Z4f(
X

Z
,
Y

Z
),
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where f∗(X, Y, Z) defines a curve Γ4 of degree 4; which shows the exis-
tence of a quartic Γ4 defined over Q. As the curve F7 is smooth, hence
div(f(x, y)) = Γ4.F7 − 4(c0 + · · ·+ c6). Therefore,

Γ4.F7 = R1 + · · ·+Rd +ma+ nb+ (28− d−m− n)∞.

If m ≥ 5, then, by Lemma 4, Γ4 is reducible and contains La. Moreover,
since m ≤ 6, one of the points Ri is a, which is absurd because Ri and
a are not of the same degree. Hence m ≤ 4. Similarly, we have n ≤ 4.
Therefore 6 ≤ 28 − d −m − n ≤ 17. The Lemma 4 also shows that Γ4

contains L∞, there exists a cubic Γ3 such that

Γ3.F7 = R1 + · · ·+Rd +ma+ nb+ (21− d−m− n)∞. (∗)

We must have 0 ≤ m,n ≤ 3 and so 1 ≤ 21− d−m− n ≤ 10. The sum
of the coefficients of a, b and ∞ equals 21− d.

1.1 Suppose that 1 ≤ 21 − d − m − n ≤ 3. Then, the sum of the
coefficients of a, b and ∞ is ≤ 9, i.e., 21 − d ≤ 9, therefore
d ≥ 12. Let m1, m2 and m3 be the coefficients of a, b and
∞ respectively. We have 0 ≤ m1,m2 ≤ 3, 1 ≤ m3 ≤ 3 and
m1 +m2 +m3 = 21− d.
Thus, we obtain :

1.1.a for d = 12, the relation (∗) becomes

Γ3.F7 = R1 + · · ·+R12 + 3a+ 3b+ 3∞,

which shows that algebraic points on F7 of degree 12 over Q are
obtained as intersection of F7 with a cubic defined over Q having
a, b and ∞ as contact points of order 3 at each of its points.

1.1.b for d = 13, the relation (∗) becomes

Γ3.F7 = R1 + · · ·+R13 +m1a+m2b+m3∞

with mi ∈ {2, 3} and m1 +m2 +m3 = 8,
which shows that algebraic points on F7 of degree 13 over Q
are obtained as intersection of F7 with a cubic defined over Q
tangent to F7 at one of the points a, b, ∞ and having a point of
contact of order 3 with the other two.

1.1.c for d = 14, the relation (∗) becomes

Γ3.F7 = R1 + · · ·+R14 +m1a+m2b+m3∞

with mi ∈ {1, 2, 3} and m1 +m2 +m3 = 7,
which shows that algebraic points on F7 of degree 14 over Q are
obtained as intersection of F7 with a cubic defined over Q

– passing through one of the points a, b, ∞ and having a
contact point of order 3 with other two,

– tangent to F7 at two of the points a, b, ∞ and having a
contact point of order 3 with the other.
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1.2 Suppose that 21− d−m− n ≥ 4.
Then, by Lemma 4, Γ3 contains L∞. Then there exists a conic
Γ2 such that
Γ2.F7 = R1 + · · ·+Rd +ma+ nb+ (14− d−m− n)∞. (∗∗).
We must have 0 ≤ m,n ≤ 2 and 0 ≤ 14 − d −m − n ≤ 2. The
sum of the coefficients of a, b and ∞ is equal to 14− d. Let m1,
m2 and m3 be the coefficients of a, b and ∞ respectively. We
have 0 ≤ mi ≤ 2 and m1 + m2 + m3 = 14 − d. If the mi ̸= 0
then, according to, Lemma 5, Γ2 contains L, which is absurd
otherwise one of the Ri would be equal to P or P . Hence, at
least one of mi is zero. Thus, we obtain :

1.2.a. for d = 11, the relation (∗∗) becomes

Γ2.F7 = R1 + · · ·+R11 +m1a+m2b+m3∞

with mi ̸= mj ∈ {0, 1, 2} and m1 +m2 +m3 = 3,
thus, algebraic points on F7 of degree 11 over Q are obtained as
intersection of F7 with a conic defined over Q passing through
one of the points a, b, ∞ and tangent to one of the other two.

1.2.b. for d = 12, the relation (∗∗) becomes

Γ2.F7 = R1 + · · ·+R12 +m1a+m2b+m3∞

with mi ∈ {0, 1, 2} and m1 +m2 +m3 = 2,
thus, algebraic points on F7 of degree 12 over Q are obtained as
intersection of F7 with a conic defined over Q

– passing through two of the points a, b, ∞,
– tangent to F7 at one of the points a, b, ∞.

1.2.c. for d = 13, the relation (∗∗) becomes

Γ2.F7 = R1 + · · ·+R13 +m1a+m2b+m3∞

with mi ∈ {0, 1} and m1 +m2 +m3 = 1,
thus, algebraic points on F7 of degree 13 over Q are obtained as
intersection of F7 with a conic defined over Q passing through
one of the points a, b, ∞.

1.2.d. for d = 14, the relation (∗∗) becomes

Γ2.F7 = R1 + · · ·+R14,

thus, algebraic points on F7 of degree 14 over Q are obtained as
intersection of F7 with a conic defined over Q.

Case 2 : t = m[∞− a] + n[∞− b] + x0 with 0 ≤ m,n ≤ 6.
Then we have

[R1 + · · ·+Rd +ma+ nb+ P + P − (d+m+ n+ 2)∞] = 0.
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Since d + m + n + 2 ≤ 28, Lemmas 2 and 1 ensure the existence of a
quartic polynomial f(x, y) such that:

div(f(x, y)) = R1 + · · ·+Rd +ma+ nb+ P + P + (26− d−m− n)∞
− 4(c0 + · · ·+ c6).

Since the curve F7 is smooth, there exists a quartic Γ4 such that div(f(x, y)) =
Γ4.F7 − 4(c0 + · · ·+ c6). As a result,

Γ4.F7 = R1 + · · ·+Rd +ma+ nb+ P + P + (26− d−m− n)∞.

We must have 0 ≤ m,n ≤ 4 and so 4 ≤ 26− d−m− n ≤ 15.

2.1 If 26 − d − m − n = 4, i.e., d = 14, m = n = 4, then Γ4.F7 =
R1+ · · ·+R14+4a+4b+P +P +4∞. We see that Γ4 contains
L, which is absurd otherwise one of the Ri’s to equal P or P .

2.2 If 26−d−m−n ≥ 5, then Γ4 contains L∞. There exists a cubic
Γ3 such that

Γ3.F7 = R1 + · · ·+Rd +ma+ nb+ P + P + (19− d−m− n)∞.

We must have 0 ≤ m,n ≤ 3 and 19− d−m− n ≥ 0.

2.2.a. If m = n = 0, then Γ3.F7 = R1 + · · ·+Rd +P +P + (19− d)∞.
We have 19−d ≥ 5, hence Γ3 contains L∞. There exists a conic
Γ2 such that

Γ2.F7 = R1 + · · ·+Rd + P + P + (12− d)∞,

which gives d = 12, hence

Γ2.F7 = R1 + · · ·+R12 + P + P ,

thus, algebraic points on F7 of degree 12 over Q are obtained as
intersection of F7 with a conic defined over Q passing through
P and P .

2.2.b. If m ̸= 0 or n ̸= 0, then at least two of the coefficients of a, b and
∞ are non-zero. Consequenlty Γ3 contains L, which is absurd
otherwise one of the Ri’s to equal P or P .

Case 3 : t = m[∞− a] + n[∞− b] + kx0 + x1 with 0 ≤ m,n ≤ 6 and
0 ≤ k ≤ 1.
Then we have [R1 + · · ·+Rd − d∞] = m[∞− a] + n[∞− b] + kx0 + x1.
Composing by f∗

4 ◦ f4 and using (P4) and (P5), we have

f∗
4 ◦ f4([R1 + · · ·+Rd − d∞]) = f∗

4 ◦ f4(kx0) + f∗
4 ◦ f4(x1).

Then, combining (P2) and the definition of x1, we have

f∗
4 ◦ f4([R1 + · · ·+Rd − d∞]) = f∗

4 ◦ f4(kx0) + f∗
4 ◦ f4(7x0).

Thus,

f∗
4 ◦ f4([R1 + · · ·+Rd − (7 + k)x0 − d∞]) = 0.
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From (P6), we obtain

[R1 + · · ·+Rd − (7 + k)x0 − d∞] = m[∞− a] + n[∞− b].

What is also writtten

[R1+· · ·+Rd+ma+nb+(7+k)P+(7+k)P−(14+d+m+n+2k)∞] = 0.

Since 14 + d +m + n + 2k ≤ 42, Lemmas 2 and 1 ensure the existence
of a sextic polynomial f(x, y) such that

div(f(x, y)) = R1 + · · ·+Rd +ma+ nb+ (7 + k)P + (7 + k)P

+ (28− d−m− n− 2k)∞− 6(c0 + · · ·+ c6).

As the plane curve F7 is smooth, there exists a sextic Γ6 such that
div(f(x, y)) = Γ6.F7 − 6(c0 + · · ·+ c6). Therefore,

Γ6.F7 = R1 + · · ·+Rd +ma+ nb+ (7 + k)P + (7 + k)P

+ (28− d−m− n− 2k)∞.

3.1. m = 0 or n = 0

3.1.a. If m = n = 0, then

Γ6.F7 = R1 + · · ·+Rd + (7 + k)P + (7 + k)P + (28− d− 2k)∞

with 12 ≤ 28 − d − 2k ≤ 17. The curve Γ6 contains L∞, there
exists a quintic Γ5 such that

Γ5.F7 = R1 + · · ·+Rd + (7 + k)P + (7 + k)P + (21− d− 2k)∞

with 5 ≤ 21− d− 2k ≤ 10.

3.1.a.i. If 21− d− 2k = 5, i.e., d = 14 and k = 1, then

Γ5.F7 = R1 + · · ·+R14 + 8P + 8P + 5∞,

that is, algebraic points on F7 of degree 14 over Q are obtained as
intersection of F7 with a quintic defined over Q having a contact
point of order 5 at ∞ and of order 8 at each of its points P and
P .

3.1.a.ii. If 21 − d − 2k ≥ 6, then Γ5 contains L∞, there exists a quartic
Γ4 such that

Γ4.F7 = R1 + · · ·+Rd + (7 + k)P + (7 + k)P + (14− d− 2k)∞

with 0 ≤ 14− d− 2k ≤ 3. We see that the coefficient of ∞ must
be zero otherwise one of Ri should be equal to a or b. Thus
14− d− 2k = 0, i.e., we have (d = 14 and k = 0) or (d = 12 and
k = 1). As a result,

Γ4.F7 = R1 + · · ·+R14 + 7P + 7P ,

in other words, algebraic points on F7 of degree 14 over Q are
obtained as intersection of F7 with a quartic defined over Q
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having P and P as contact points of order 7 at each of its points;
or

Γ4.F7 = R1 + · · ·+R12 + 8P + 8P ,

in other words, algebraic points on F7 of degree 12 over Q are
obtained as intersection of F7 with a quartic defined over Q
having P and P as contact points of order 8 at each of its points.

3.1.b. If m = 0 and n ≥ 1 (resp. m ≥ 1 and n = 0), then

Γ6.F7 = R1 + · · ·+Rd + nb+ (7+ k)P + (7+ k)P + (28− d− n− 2k)∞
with 6 ≤ 28− d− n− 2k ≤ 16.

3.1.b.i. If 28− d− n− 2k = 6, i.e., d = 14, n = 6 and k = 1, then

Γ6.F7 = R1 + · · ·+R14 + 6b+ 8P + 8P + 6∞,

which proves that algebraic points on F7 of degree 14 over Q
are obtained as intersection of F7 with a sextic defined over Q
having a contact point of order 6 at b and ∞ and of order 8 at
each of its points P and P .

3.1.b.ii. If 28−d−n−2k ≥ 7, then Γ6 contains L∞, there exists a quintic
Γ5 such that

Γ5.F7 = R1 + · · ·+Rd + nb+ (7+ k)P + (7+ k)P + (21− d− n− 2k)∞
with 0 ≤ 21 − d − n − 2k ≤ 9. Since n ̸= 0, the coefficient of
∞ must be zero, i.e., 21− d− n− 2k = 0, in this case, we have
(d = 13, n = 6 and k = 1) or (d = 14, n = 5 and k = 1).
Thus, Γ5.F7 = R1+ · · ·+R13+6b+8P +8P , this case is absurd
otherwise one of the Ri’s to equal b or

Γ5.F7 = R1 + · · ·+R14 + 5b+ 8P + 8P ,

that is, algebraic points on F7 of degree 14 over Q are obtained as
intersection of F7 with a quintic defined over Q having a contact
point of order 5 at b and of order 8 at each of its points P and
P .

3.2. m = 1 or n = 1

3.2.a. If m = n = 1, then

Γ6.F7 = R1 + · · ·+Rd + a+ b+ (7 + k)P + (7 + k)P + (26− d− 2k)∞.

The curve Γ6 contains L, there exists a quintic Γ5 such that

Γ5.F7 = R1 + · · ·+Rd + (5 + k)P + (5 + k)P + (25− d− 2k)∞
with 9 ≤ 25 − d − 2k ≤ 14. The curve Γ5 contains L∞, there
exists a quartic Γ4 such that

Γ4.F7 = R1 + · · ·+Rd + (5 + k)P + (5 + k)P + (18− d− 2k)∞
with 2 ≤ 18 − d − 2k ≤ 7. As the coefficient of ∞ is non-zero,
then Γ4 contains L which is absurd otherwise one of the Ri is a
or b.
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3.2.b If m = 1 and n ≥ 2 (resp. m ≥ 2 and n = 1), then

Γ6.F7 = R1+ · · ·+Rd+a+nb+(7+k)P +(7+k)P +(27−d−n−2k)∞.

We see that Γ6 contains L, there exists a quintic Γ5 such that

Γ5.F7 = R1+· · ·+Rd+(n−1)b+(7+k)P+(7+k)P+(26−d−n−2k)∞.

Γ5 contains L which is absurd otherwise one of the Ri is a.

3.3. 2 ≤ m,n ≤ 6

3.3.a. If 28− d−m− n− 2k = 0, i.e., d = 14, m = n = 6 and k = 1,
then

Γ6.F7 = R1 + · · ·+R14 + 6a+ 6b+ 8P + 8P ,

which proves that algebraic points on F7 of degree 14 over Q
are obtained as intersection of F7 with a sextic defined over Q
having a contact point of order 6 at a and b and of order 8 at
each of its points P and P .

3.3.b If 28 − d −m − n − 2k ≥ 1, then Γ6 contains L, there exists a
quintic Γ5 such that

Γ5.F7 = R1 + · · ·+Rd + (m− 1)a(n− 1)b+ (5 + k)P

+ (5 + k)P + (27− d−m− n− 2k)∞.

We see that Γ5 contains L, there exists a quartic Γ4 such that

Γ4.F7 = R1 + · · ·+Rd + (m− 2)a+ (n− 2)b+ (3 + k)P+

(3 + k)P + (26− d−m− n− 2k)∞.

Since, the coefficients of a, b and ∞ are not simultaneously zero,
then Γ4 contains L, there exists a cubic Γ3 such that Γ3.F7 =
R1 + · · · + Rd + (m − 3)a + (n − 3)b + (1 + k)P + (1 + k)P +
(25− d−m− n− 2k)∞.
We must have 3 ≤ m,n ≤ 6 and 25− d−m− n− 2k ≥ 0.

3.3.b.i. If m = n = 3, then

Γ3.F7 = R1 + · · ·+Rd + (1 + k)P + (1 + k)P + (19− d− 2k)∞
with 3 ≤ 19− d− 2k ≤ 8.

– If 19− d− 2k = 3, i.e., d = 14 and k = 1, then

Γ3.F7 = R1 + · · ·+R14 + 2P + 2P + 3∞.

We see that Γ3 contains L, which is absurd.
– If 19−d−2k ≥ 4, then Γ3 contains L∞, there exists a conic
Γ2 such that

Γ2.F7 = R1 + · · ·+Rd + (1 + k)P + (1 + k)P + (12− d− 2k)∞.

We must have 12 − d − 2k = 0, i.e., d = 12 and k = 0 so
Γ2.F7 = R1 + · · ·+R12 +P +P . Thus, algebraic points on
F7 of degree 12 over Q are obtained as intersection of F7

with a conic defined over Q passing through P and P .
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3.3.b.ii. If m ̸= 3 or n ̸= 3, then Γ3 contains L, there exists a conic Γ2

such that

Γ2.F7 = R1 + · · ·+Rd + (m− 4)a+ (n− 4)b+ (−1 + k)P

+ (−1 + k)P + (24− d−m− n− 2k)∞.

We must have
4 ≤ m,n ≤ 6, k = 1 and 0 ≤ 24− d−m− n− 2k ≤ 2.
The sum of the coefficients of a, b and ∞ is equal to 14− d. We
have

– Γ2.F7 = R1 + · · · + R11 + m1a + m2b + m3∞ with mi ̸=
mj ∈ {0, 1, 2} and m1+m2+m3 = 3, thus, algebraic points
on F7 of degree 11 over Q are obtained as intersection of
F7 with a conic defined over Q passing through one of the
points a, b, ∞ and tangent to one of the other two.

– Γ2.F7 = R1 + · · · + R12 + m1a + m2b + m3∞ with mi ∈
{0, 1, 2} and m1 +m2 +m3 = 2, thus, algebraic points on
F7 of degree 12 over Q are obtained as intersection of F7

with a conic defined over Q
* passing through two of the points a, b, ∞,
* tangent to F7 at one of the points a, b, ∞.

– Γ2.F7 = R1 + · · · + R13 + m1a + m2b + m3∞ with mi ∈
{0, 1} and m1 +m2 +m3 = 1, thus, algebraic points on F7

of degree 13 over Q are obtained as intersection of F7 with
a conic defined over Q passing through one of the points a,
b, ∞.

– Γ2.F7 = R1 + · · · + R14, thus, algebraic points on F7 of
degree 14 over Q are obtained as intersection of F7 with a
conic defined over Q.

Case 4 : t = m[∞− a] + n[∞− b] + kx0 + x2 with 0 ≤ m,n ≤ 6 and
0 ≤ k ≤ 1.
Composing by f∗

2 ◦ f2 and using the properties (P2), (P4), (P5) and
(P6), we find exactly the same expression as in the Case 3 and therefore
we obtain the same results.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referees for their comments
and suggestions which have improved the quality of this paper.

REFERENCES

[1] B. Gross and D. Rohrlich, Some results on the Mordell-Weil group of the jacobian
of the Fermat curve, Invent. Math. 44 (1978), 201− 224.



110 MOUSSA FALL, MOUSTAPHA CAMARA AND OUMAR SALL

[2] D. K. Faddeev, On the divisor class groups of some algebraic curves, Dokl. Tom
136 pp. 296− 298 = Sov. Math. Vol. 2 (1961) pp. 67− 69.

[3] D. K. Faddeev, Invariants of divisor classes for the curves xk(1−x) = yl in l−adic
cyclotomic fields, Trudy Math. Inst. Steklov 64 (1961) pp. 284− 293.

[4] M. Hindry and J. H. Silverman, Diophantine geometry, an introduction, volume
201 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.

[5] O. Debarre and M. Klassen, Points of low degree on smooth plane curves, J. Reine
Angew. Math. 446, 81− 87 (1994).

[6] S. Lang, Introduction to algebraic and abelian functions (2nd edition), GTM 89,
Springer-Verlag, New York-Heidelberg-Berlin.

[7] M. Namba, Families of meromorphic functions on compact Riemann surfaces,
Lecture Notes in Math. 767, Berlin : Springer-Verlag, 1979.

[8] D. Rohrlich, Points at infinity on the Fermat curves, Invent. Math. 39, 95− 127
(1977)
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