Journal of the	Vol. 42, Issue 2, pp. 96 - 110, 2023
Nigerian Mathematical Society	©Nigerian Mathematical Society

ALGEBRAIC POINTS OF DEGRRE AT MOST 14 ON THE FERMAT SEPTIC

MOUSSA FALL¹, MOUSTAPHA CAMARA² AND OUMAR SALL³

ABSTRACT. In this paper, we study the algebraic points of degree at most 14 over \mathbb{Q} on the Fermat septic curve F_7 of projective equation $X^7 + Y^7 + Z^7 = 0$. Tzermias determined in 1998 in ([11]) all algebraic points of degree at most 5 over \mathbb{Q} on F_7 and O. Sall improved the result of Tzermias by determining in 2003 in ([9]), the algebraic points of degree at most 10 over \mathbb{Q} . Using their results and Abel Jacobi's theorem, we extend their work by giving a geometric description of algebraic points of degree at most 14 over \mathbb{Q} on F_7 .

Keywords and phrases: Algebraic points, Galois conjugates, Mordell-Weil group, Divisor, Linear systems. 2010 Mathematical Subject Classification: 14H50: 11D41: 11C05:

2010 Mathematical Subject Classification: 14H50; 11D41; 11G05; 14C20; 14C17.

1. INTRODUCTION

Let \mathcal{C} be a smooth projective plane curve of degree d defined over \mathbb{Q} . The degree of an algebraic point on \mathcal{C} is the degree of its field of definition over \mathbb{Q} . A theorem of Debarre and Klassen ([5]) asserts that

- (1) If $d \ge 7$, then the set of algebraic points on C of degree at most d-2 over \mathbb{Q} is finite.
- (2) If $d \geq 8$, then, with a finite number of exceptions, the set of algebraic points on \mathcal{C} of degree at most d-1 over \mathbb{Q} arise as the intersection of \mathcal{C} with a rational line through a rational point of \mathcal{C} .

We denote by F_7 the Fermat septic, i.e., the smooth plane curve of degree 7 with projective equation

 $F_7 = \{ (X, Y, Z) \in \mathbb{P}^2(\overline{\mathbb{Q}}) : X^7 + Y^7 + Z^7 = 0 \}.$

Received by the editors August 18, 2022; Revised: October 05, 2022; Accepted: May 09, 2023

www.nigerianmathematicalsociety.org; Journal available online at https://ojs.ictp. it/jnms/

We denote by J_7 the Jacobian of F_7 and its genus is 15. According to (1), the set of algebraic points on F_7 of degree at most 5 over \mathbb{Q} is finite. Tzermias ([11]) has completely described this set. There are exactly five algebraic points of degree at most 5 on F_7 , namely a = (0, -1, 1), b = (-1, 0, 1), $\infty = (-1, 1, 0)$, $P = (-\eta, -\overline{\eta}, 1)$ and $\overline{P} = (-\overline{\eta}, -\eta, 1)$ where η is a primitive 6-th root of unity in $\overline{\mathbb{Q}}$ and $\overline{\eta}$ is the complex conjugate of η .

Sall ([9], [10]) has pushed this description by determining the algebraic points on F_7 of degree at most 10 over \mathbb{Q} , and he has established the following theorem :

Theorem 1.

- (1) The algebraic points on F_7 of degree 6 over \mathbb{Q} are obtained as intersection of F_7 with a line defined over \mathbb{Q} passing through a, b or ∞ .
- (2) The algebraic points on F_7 of degree 7 over \mathbb{Q} are obtained as intersection of F_7 with a line defined over \mathbb{Q} .
- (3) There are no algebraic points on F_7 of degree 8 or 9 over \mathbb{Q} .
- (4) The algebraic points on F_7 of degree 10 over \mathbb{Q} are obtained as residual intersection of F_7 with a conic \mathcal{C} defined over \mathbb{Q} having a contact point of order 2 at $\{a, b\}$ or $\{a, \infty\}$ or $\{b, \infty\}$.

In this note, we propose to extend this geometric description of algebraic points on F_7 of degree at most 14 over \mathbb{Q} .

2. Main Result

Our main result is the following theorem :

Theorem 2 : Let F_7 be the Fermat septic.

- (1) The algebraic points on F_7 of degree 11 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞ and tangent to one of the other two.
- (2) The algebraic points on F_7 of degree 12 over \mathbb{Q} are obtained either as intersection of F_7 with
 - (a) a conic defined over $\mathbb Q$
 - (i) passing through two of the points a, b, ∞ or through P and \overline{P} ,
 - (ii) tangent to F_7 at one of the points a, b, ∞ ,
 - (b) a cubic defined over \mathbb{Q} having a, b and ∞ as contact points of order 3 at each of its points,
 - (c) a quartic defined over \mathbb{Q} having P and \overline{P} as contact points of order 8 at each of its points.
- (3) The algebraic points on F_7 of degree 13 over \mathbb{Q} are obtained either as intersection of F_7 with

- (a) a conic defined over Q passing through one of the points a, b, ∞,
- (b) a cubic defined over \mathbb{Q} tangent to F_7 at one of the points a, b, ∞ , and having a point of contact of order 3 with the other two.
- (4) The algebraic points on F_7 of degree 14 over \mathbb{Q} are obtained either as intersection of F_7 with
 - (a) a conic defined over \mathbb{Q} ,
 - (b) a cubic defined over \mathbb{Q}
 - (i) passing through one of the points a, b, ∞ and having a contact point of order 3 with other two,
 - (ii) tangent to F_7 at two of the points a, b, ∞ and having a contact point of order 3 with the other,
 - (c) a quartic defined over \mathbb{Q} having P and \overline{P} as contact points of order 7 at each of its points,
 - (d) a quintic defined over \mathbb{Q} having a contact point of order 5 at one of the points a, b, ∞ and of order 8 at each of its points P and \overline{P} ,
 - (e) a sextic defined over Q having two contact points of order 6 among the points a, b, ∞ and of order 8 at each of its points P and P.

3. Preliminary

3.1. Linear systems.

98

Let D be a divisor on F_7 . The vector space $\mathcal{L}(D)$ is defined to be the set of rational functions

$$\mathcal{L}(D) = \{ f \in \overline{\mathbb{Q}}(F_7)^* : \operatorname{div}(f) \ge -D \} \cup \{0\}.$$

The dimension of $\mathcal{L}(D)$ as a $\overline{\mathbb{Q}}$ -vector space is denoted by l(D). Consider the rational functions x and y on F_7 given by

$$x(X, Y, Z) = \frac{X}{Z}$$
 and $y(X, Y, Z) = \frac{Y}{Z}$.

Let ε be a primitive 14-th root of unity in $\overline{\mathbb{Q}}$. The cusps on F_7 are the points

$$a_j = (0, \varepsilon^{2j+1}, 1), \quad b_j = (\varepsilon^{2j+1}, 0, 1), \quad c_j = (\varepsilon^{2j+1}, 1, 0),$$

for $0 \leq j \leq 6$. Observe that $a = a_3$, $b = b_3$ and $\infty = c_3$.

Lemma 1 : [Rohrlich, [8]] We have :

- (1) $\operatorname{div}(x) = (a_0 + \dots + a_6) (c_0 + \dots + c_6)$
- (2) $\operatorname{div}(x+y) = 7\infty (c_0 + \dots + c_6).$

Lemma 2 : If $k \in \{4, 6\}$, the rational functions f_{rs} defined by

$$f_{rs}(x, y) = \frac{x^r}{(x+y)^s}, \quad \text{with} \quad 0 \le r \le s \le k,$$

form a basis for the vector space $\mathcal{L}(7k\infty)$.

Proof :

(1) For k = 4: According to Lemma 1, we have

$$div(f_{rs}(x, y)) = r div(x) - s div(x + y)$$

= $r(a_0 + \dots + a_6) + (s - r)(c_0 + c_1 + c_2 + c_4 + c_5 + c_6) - (6s + r)\infty.$

Since $0 \leq r \leq s \leq 4$, $6s + r \leq 28$, so $f_{rs}(x, y) \in \mathcal{L}(28\infty)$. Furthermore, if 6s + r = 6s' + r' with $0 \leq r \leq s \leq 4$ and $0 \leq r' \leq s' \leq 4$ then $r \equiv r' \pmod{6}$. Since $0 \leq r, r' \leq 4$, then r = r', which implies that s = s'. Therefore, the functions f_{rs} with $0 \leq r \leq s \leq 4$ are linearly independent. As the genus of F_7 is 15, 28∞ is a canonical divisor on F_7 , hence $l(28\infty) = 15 = \#\{f_{rs}, 0 \leq r \leq s \leq 4\}$.

(2) For k = 6:

As for k = 4, we show that the functions $f_{rs}(x, y)$ are in $\mathcal{L}(42\infty)$ and that they are linearly independent. Then, we compute the dimension of $\mathcal{L}(42\infty)$ using the Riemann-Roch theorem (see [4]) which says that $l(d\infty) = d - 14$ as soon as $d \ge 29$. Finally, we have $l(42\infty) = \#\{f_{rs}, 0 \le r \le s \le 6\}$.

3.2. Mordell-Weil Group.

We denote by $J_7(\mathbb{Q})$ the Mordell-Weil group of rational points of the jacobian J_7 of the curve F_7 . For an integer s with $1 \le s \le 5$, C_s denotes the affine equation curve $v^7 = u(1-u)^s$ and J_s its jacobian. Consider the rational map defined by

$$f_s: F_7 \longrightarrow C_s, \quad (x, y) \longmapsto (-x^7, (-1)^{s+1} x y^s).$$

This map induces a morphism (also denoted by f_s) $f_s : J_7 \longrightarrow J_s$ and its dual $f_s^* : J_s \longrightarrow J_7$.

Let A and B be the automorphisms of F_7 given by

$$A(X, Y, Z) = (\zeta X, Y, Z)$$
 and $B(X, Y, Z) = (X, \zeta Y, Z),$

where ζ is a primitive 7-th root of unity such that $\varepsilon^2 = \zeta$. Since $f_s: F_7 \longrightarrow C_s$ is Galois covering whose Galois group is generated by $A^{-s}B$, then for a divisor D of degree zero on F_7 , we have

$$f_s^* \circ f_s(D) = \sum_{j=0}^{0} (A^{-s}B)^j(D)$$

on J_7 (see [1]).

It is well-known (see [2], [3], [6]) that these maps induce an isogeny defined over \mathbb{Q}

$$f = \prod_{s=1}^{5} f_s : J_7 \longrightarrow \prod_{s=1}^{5} J_s$$

and the dual isogeny

$$f^* = \sum_{s=1}^5 f_s^* : \prod_{s=1}^5 J_s \longrightarrow J_7$$

such that $f^* \circ f = 7$ on J_7 .

Lemma 3 : $J_7(\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2 \times (\mathbb{Z}/7\mathbb{Z})^2$.

Proof : According to Faddeev ([2], [3]), $J_7(\mathbb{Q})$ is finite. In [11], Tzermias concludes that the following facts :

- (1) For a prime $l \neq 2$, 7, the group $J_7[l^{\infty}](\mathbb{Q})$ is trivial.
- (2) The group $J_7[7^{\infty}](\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/7\mathbb{Z})^2$ and is generated by $[a \infty]$ and $[b \infty]$.

It remains to compute the 2-primary part of $J_7(\mathbb{Q})$. Since there exists an isogeny $f : J_7 \longrightarrow \prod_{s=1}^5 J_s$, then this amounts to computing the 2-primary part of each $J_s(\mathbb{Q})$. But now a result of Gross and Rohrlich in [1] states that

$$J_s(\mathbb{Q})_{\text{tors}} \cong \begin{cases} \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & \text{if } 1 \equiv s^3 \equiv (6-s)^3 \pmod{7} \\ \mathbb{Z}/7\mathbb{Z} & \text{otherwise,} \end{cases}$$

but the only $s \leq 5$ such that $1 \equiv s^3 \equiv (6-s)^3 \pmod{7}$ are s = 2 or s = 4, which gives two copies of $\mathbb{Z}/2\mathbb{Z}$ and so

$$J_7[2^\infty](\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2.$$

Now put $x_0 = -P - \overline{P} + 2\infty$, $x_1 = f_4^* \circ f_4(x_0)$ and $x_2 = f_2^* \circ f_2(x_0)$. Referring to the works of Gross and Rohrlich ([1]) and of Sall ([9], [10]), we have the properties given by the following proposition:

Proposition 1 :

- (P1) The disivor x_0 is of order 14. We show that $-2x_1$ is the divisor of $y^3 + x + x^3y$. Thus, x_1 is a point of order 2 on $J_7(\mathbb{Q})$.
- (P2) $f_4^* \circ f_4(x_1) = 7x_1$ and $f_2^* \circ f_2(x_2) = 7x_2$.
- (P3) $(\mathbb{Z}/2\mathbb{Z})^2 = \langle x_1, x_2 \rangle.$
- (P4) $f_s(a \infty)$ and $f_s(b \infty)$ are of order 7.
- (P5) $J_s(\mathbb{Q})_{\text{tors}} \subseteq \ker(f_s^*).$
- (P6) $\ker(f_s^* \circ f_s) \subseteq J_7[7].$

Corollary : We have

$$J_7(\mathbb{Q}) = \left\{ m[\infty - a] + n[\infty - b] + kx_0 + lx_2, \text{ with } 0 \le m, n \le 6 \\ \text{and } 0 \le k, l \le 1 \right\}, \text{ or}$$

$$J_7(\mathbb{Q}) = \left\{ m[\infty - a] + n[\infty - b] + kx_0 + lx_1, \text{ with } 0 \le m, n \le 6 \\ \text{and } 0 \le k, l \le 1 \right\}$$

Proof: Combining Lemma 3 and (P3), we have

$$J_7(\mathbb{Q}) = \Big\{ m_1[\infty - a] + n_1[\infty - b] + kx_1 + lx_2, \text{ with } 0 \le m_1, n_1 \le 6$$

and $0 \le k, l \le 1 \Big\}.$

Then (P1) and (P2) give $f_4^* \circ f_4(x_1) = x_1 = f_4^* \circ f_4(x_0)$. Thus, according to (P6), we have $x_1 - x_0 \in \ker(f_4^* \circ f_4) \subseteq J_7[7]$, so $x_1 - x_0 = m_2[\infty - a] + n_2[\infty - b]$ with $0 \le m_2, n_2 \le 6$. Therefore,

$$J_7(\mathbb{Q}) = \Big\{ m[\infty - a] + n[\infty - b] + kx_0 + lx_2, \text{ with } 0 \le m, n \le 6 \\ \text{and } 0 \le k, l \le 1 \Big\}.$$

Similarly, using $f_2^* \circ f_2$, we find the other expression of $J_7(\mathbb{Q})$.

3.3. Geometric lemmas.

Lemma 4 : Let L_a , L_b and L_∞ be the tangent lines to F_7 at a, b and ∞ , respectively.

- (1) The lines L_a , L_b and L_∞ have a point of contact of order 7 with F_7 at a, b and ∞ , respectively.
- (2) If a plane algebraic curve Γ of degree ≤ 6 has a contact point of order > deg(Γ) with F_7 at a, b or ∞ , then Γ is reducible and contains L_a, L_b or L_∞ , respectively.

Proof :

(1) In affine, we have $F_7: x^7 + y^7 + 1 = 0$. The tangent line to F_7 at a is $L_a: y + 1 = 0$. It is clear that a is the only point of intersection of the line L_a and the curve F_7 . Thus, by Bezout's theorem, we have

$$L_a.F_7 = (\deg L_a \times \deg F_7)a = 7a = \operatorname{mult}_a(L_a \cap F_7)a.$$

We show the same for L_b and L_{∞} .

(2) Let H, G and F be plane curves. Assume that H is irreducible and is neither a component of G nor of F. Let \mathcal{O} be a nonsingular point of H. Then, according to Lemma 2.3.2 in [7], we have:

 $\min\{\operatorname{mult}_{\mathcal{O}}(H \cap F), \operatorname{mult}_{\mathcal{O}}(H \cap G)\} \leq \operatorname{mult}_{\mathcal{O}}(F \cap G).$

Thus, to obtain the desired result, it suffices to take $\mathcal{O} \in \{a, b, \infty\}$, $H = L_{\mathcal{O}}, G = \Gamma$ and $F = F_7$ taking into account (1).

Lemma 5 : Let *L* be the line with equation X + Y + Z = 0. Then $L.F_7 = a + b + \infty + 2P + 2\overline{P}$.

Proof: In affine, L: x + y + 1 = 0 and $F_7: x^7 + y^7 + 1 = 0$. According to Gross and Rohrlich ([1]), we have $L \cap F_7 = \{a, b, \infty, P, \overline{P}\}$; then there exist strictly positive integers n_1, n_2, n_3, n_4, n_5 such that $L.F_7 = n_1a + n_2b + n_3\infty + n_4P + n_5\overline{P}$ with $n_1 + n_2 + n_3 + n_4 + n_5 = 7$. Since P and \overline{P} are conjugates, so $n_4 = n_5$. The tangent line to F_7 at P is $T_P: x+y+1=0$, hence $n_4 \geq 2$; thus $n_1 = n_2 = n_3 = 1$ and $n_4 = n_5 = 2$.

4. PROOF OF THE MAIN RESULT

Let R be an algebraic point on F_7 of degree $d \leq 14$ over \mathbb{Q} ; if $d \leq 5$ these points are described by Tzermias ([11]); if $6 \leq d \leq 10$ these points are given by Theorem 1. Thus, we can assume that $11 \leq d \leq 14$. Let R_1, \dots, R_d be the Galois conjugates of R. Put $t = [R_1 + \dots + R_d - dP_\infty] \in J_7(\mathbb{Q})$.

According to the corollary, we can consider the following four cases :

Case 1: $t = m[\infty - a] + n[\infty - b]$ with $0 \le m, n \le 6$.

Then we have $[R_1 + \cdots + R_d - d\infty] = m[\infty - a] + n[\infty - b]$, hence $[R_1 + \cdots + R_d + ma + nb - (d + m + n)\infty] = 0$. Since $d + m + n \le 28$, Lemma 2 leads to the existence of a quartic polynomial f(x, y) such that

$$\operatorname{div}(f(x,y)/(x+y)^4) = R_1 + \dots + R_d + ma + nb - (d+m+n)\infty.$$

Thus, by Lemma 1,

$$\operatorname{div}(f(x,y)) = R_1 + \dots + R_d + ma + nb + (28 - d - m - n)\infty - 4(c_0 + \dots + c_6).$$

Using the homogenized f^* of f, we have

$$f^*(X, Y, Z) = Z^4 f(\frac{X}{Z}, \frac{Y}{Z}),$$

where $f^*(X, Y, Z)$ defines a curve Γ_4 of degree 4; which shows the existence of a quartic Γ_4 defined over \mathbb{Q} . As the curve F_7 is smooth, hence $\operatorname{div}(f(x, y)) = \Gamma_4 \cdot F_7 - 4(c_0 + \cdots + c_6)$. Therefore,

$$\Gamma_4 \cdot F_7 = R_1 + \dots + R_d + ma + nb + (28 - d - m - n)\infty.$$

If $m \geq 5$, then, by Lemma 4, Γ_4 is reducible and contains L_a . Moreover, since $m \leq 6$, one of the points R_i is a, which is absurd because R_i and a are not of the same degree. Hence $m \leq 4$. Similarly, we have $n \leq 4$. Therefore $6 \leq 28 - d - m - n \leq 17$. The Lemma 4 also shows that Γ_4 contains L_{∞} , there exists a cubic Γ_3 such that

$$\Gamma_3.F_7 = R_1 + \dots + R_d + ma + nb + (21 - d - m - n)\infty.$$
(*)

We must have $0 \le m, n \le 3$ and so $1 \le 21 - d - m - n \le 10$. The sum of the coefficients of a, b and ∞ equals 21 - d.

1.1 Suppose that $1 \leq 21 - d - m - n \leq 3$. Then, the sum of the coefficients of a, b and ∞ is ≤ 9 , i.e., $21 - d \leq 9$, therefore $d \geq 12$. Let m_1, m_2 and m_3 be the coefficients of a, b and ∞ respectively. We have $0 \leq m_1, m_2 \leq 3, 1 \leq m_3 \leq 3$ and $m_1 + m_2 + m_3 = 21 - d$. Thus, we obtain :

1.1.a for d = 12, the relation (*) becomes

 $\Gamma_3.F_7 = R_1 + \dots + R_{12} + 3a + 3b + 3\infty,$

which shows that algebraic points on F_7 of degree 12 over \mathbb{Q} are obtained as intersection of F_7 with a cubic defined over \mathbb{Q} having a, b and ∞ as contact points of order 3 at each of its points.

1.1.b for d = 13, the relation (*) becomes

$$\Gamma_3.F_7 = R_1 + \dots + R_{13} + m_1a + m_2b + m_3\infty$$

with $m_i \in \{2, 3\}$ and $m_1 + m_2 + m_3 = 8$,

which shows that algebraic points on F_7 of degree 13 over \mathbb{Q} are obtained as intersection of F_7 with a cubic defined over \mathbb{Q} tangent to F_7 at one of the points a, b, ∞ and having a point of contact of order 3 with the other two.

1.1.c for d = 14, the relation (*) becomes

$$\Gamma_3.F_7 = R_1 + \dots + R_{14} + m_1a + m_2b + m_3\infty$$

with $m_i \in \{1, 2, 3\}$ and $m_1 + m_2 + m_3 = 7$,

which shows that algebraic points on F_7 of degree 14 over \mathbb{Q} are obtained as intersection of F_7 with a cubic defined over \mathbb{Q}

- passing through one of the points a, b, ∞ and having a contact point of order 3 with other two,
- tangent to F_7 at two of the points a, b, ∞ and having a contact point of order 3 with the other.

1.2 Suppose that $21 - d - m - n \ge 4$.

Then, by Lemma 4, Γ_3 contains L_{∞} . Then there exists a conic Γ_2 such that

 $\Gamma_2.F_7 = R_1 + \cdots + R_d + ma + nb + (14 - d - m - n)\infty.$ (**). We must have $0 \le m, n \le 2$ and $0 \le 14 - d - m - n \le 2$. The sum of the coefficients of a, b and ∞ is equal to 14 - d. Let m_1, m_2 and m_3 be the coefficients of a, b and ∞ respectively. We have $0 \le m_i \le 2$ and $m_1 + m_2 + m_3 = 14 - d$. If the $m_i \ne 0$ then, according to, Lemma 5, Γ_2 contains L, which is absurd otherwise one of the R_i would be equal to P or \overline{P} . Hence, at least one of m_i is zero. Thus, we obtain :

1.2.a. for d = 11, the relation (**) becomes

$$\Gamma_2 \cdot F_7 = R_1 + \dots + R_{11} + m_1 a + m_2 b + m_3 \infty$$

with $m_i \neq m_j \in \{0, 1, 2\}$ and $m_1 + m_2 + m_3 = 3$, thus, algebraic points on F_7 of degree 11 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞ and tangent to one of the other two.

1.2.b. for d = 12, the relation (**) becomes

$$\Gamma_2 \cdot F_7 = R_1 + \dots + R_{12} + m_1 a + m_2 b + m_3 \infty$$

with $m_i \in \{0, 1, 2\}$ and $m_1 + m_2 + m_3 = 2$,

thus, algebraic points on F_7 of degree 12 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q}

– passing through two of the points a, b, ∞ ,

- tangent to F_7 at one of the points a, b, ∞ .

1.2.c. for d = 13, the relation (**) becomes

$$\Gamma_2 \cdot F_7 = R_1 + \dots + R_{13} + m_1 a + m_2 b + m_3 \infty$$

with $m_i \in \{0, 1\}$ and $m_1 + m_2 + m_3 = 1$,

thus, algebraic points on F_7 of degree 13 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞ .

1.2.d. for d = 14, the relation (**) becomes

$$\Gamma_2 \cdot F_7 = R_1 + \dots + R_{14},$$

thus, algebraic points on F_7 of degree 14 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q} .

Case 2 : $t = m[\infty - a] + n[\infty - b] + x_0$ with $0 \le m, n \le 6$. Then we have

$$[R_1 + \dots + R_d + ma + nb + P + \overline{P} - (d + m + n + 2)\infty] = 0.$$

Since $d + m + n + 2 \le 28$, Lemmas 2 and 1 ensure the existence of a quartic polynomial f(x, y) such that:

$$\operatorname{div}(f(x,y)) = R_1 + \dots + R_d + ma + nb + P + \overline{P} + (26 - d - m - n)\infty - 4(c_0 + \dots + c_6).$$

Since the curve F_7 is smooth, there exists a quartic Γ_4 such that $\operatorname{div}(f(x, y)) = \Gamma_4 \cdot F_7 - 4(c_0 + \cdots + c_6)$. As a result,

$$\Gamma_4 \cdot F_7 = R_1 + \dots + R_d + ma + nb + P + P + (26 - d - m - n)\infty.$$

We must have $0 \le m, n \le 4$ and so $4 \le 26 - d - m - n \le 15$.

- 2.1 If 26 d m n = 4, i.e., d = 14, m = n = 4, then $\Gamma_4 \cdot F_7 = R_1 + \cdots + R_{14} + 4a + 4b + P + \overline{P} + 4\infty$. We see that Γ_4 contains L, which is absurd otherwise one of the R_i 's to equal P or \overline{P} .
- 2.2 If $26 d m n \ge 5$, then Γ_4 contains L_{∞} . There exists a cubic Γ_3 such that

$$\Gamma_3.F_7 = R_1 + \dots + R_d + ma + nb + P + \overline{P} + (19 - d - m - n)\infty.$$

We must have $0 \le m, n \le 3$ and $19 - d - m - n \ge 0$.

2.2.a. If m = n = 0, then $\Gamma_3 \cdot F_7 = R_1 + \cdots + R_d + P + \overline{P} + (19 - d)\infty$. We have $19 - d \ge 5$, hence Γ_3 contains L_∞ . There exists a conic Γ_2 such that

$$\Gamma_2 \cdot F_7 = R_1 + \dots + R_d + P + \overline{P} + (12 - d)\infty,$$

which gives d = 12, hence

$$\Gamma_2.F_7 = R_1 + \dots + R_{12} + P + P,$$

thus, algebraic points on F_7 of degree 12 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q} passing through P and \overline{P} .

2.2.b. If $m \neq 0$ or $n \neq 0$, then at least two of the coefficients of a, b and ∞ are non-zero. Consequently Γ_3 contains L, which is absurd otherwise one of the R_i 's to equal P or \overline{P} .

Case 3: $t = m[\infty - a] + n[\infty - b] + kx_0 + x_1$ with $0 \le m, n \le 6$ and $0 \le k \le 1$.

Then we have $[R_1 + \cdots + R_d - d\infty] = m[\infty - a] + n[\infty - b] + kx_0 + x_1$. Composing by $f_4^* \circ f_4$ and using (P4) and (P5), we have

$$f_4^* \circ f_4([R_1 + \dots + R_d - d\infty]) = f_4^* \circ f_4(kx_0) + f_4^* \circ f_4(x_1).$$

Then, combining (P2) and the definition of x_1 , we have

$$f_4^* \circ f_4([R_1 + \dots + R_d - d\infty]) = f_4^* \circ f_4(kx_0) + f_4^* \circ f_4(7x_0).$$

Thus,

$$f_4^* \circ f_4([R_1 + \dots + R_d - (7+k)x_0 - d\infty]) = 0.$$

From (P6), we obtain

$$[R_1 + \dots + R_d - (7+k)x_0 - d\infty] = m[\infty - a] + n[\infty - b].$$

What is also written

 $[R_1 + \cdots + R_d + ma + nb + (7+k)P + (7+k)\overline{P} - (14+d+m+n+2k)\infty] = 0.$ Since $14 + d + m + n + 2k \leq 42$, Lemmas 2 and 1 ensure the existence of a sextic polynomial f(x, y) such that

$$\operatorname{div}(f(x,y)) = R_1 + \dots + R_d + ma + nb + (7+k)P + (7+k)\overline{P} + (28 - d - m - n - 2k)\infty - 6(c_0 + \dots + c_6).$$

As the plane curve F_7 is smooth, there exists a sextic Γ_6 such that $\operatorname{div}(f(x,y)) = \Gamma_6 \cdot F_7 - 6(c_0 + \cdots + c_6)$. Therefore,

$$\Gamma_6.F_7 = R_1 + \dots + R_d + ma + nb + (7+k)P + (7+k)\overline{P} + (28 - d - m - n - 2k)\infty.$$

3.1. m = 0 or n = 0

3.1.a. If m = n = 0, then

$$\Gamma_6.F_7 = R_1 + \dots + R_d + (7+k)P + (7+k)\overline{P} + (28-d-2k)\infty$$

with $12 \leq 28 - d - 2k \leq 17$. The curve Γ_6 contains L_{∞} , there exists a quintic Γ_5 such that

$$\Gamma_5 \cdot F_7 = R_1 + \dots + R_d + (7+k)P + (7+k)\overline{P} + (21-d-2k)\infty$$

with $5 \le 21 - d - 2k \le 10$.

3.1.a.i. If 21 - d - 2k = 5, i.e., d = 14 and k = 1, then

$$\Gamma_5 \cdot F_7 = R_1 + \dots + R_{14} + 8P + 8P + 5\infty,$$

that is, algebraic points on F_7 of degree 14 over \mathbb{Q} are obtained as intersection of F_7 with a quintic defined over \mathbb{Q} having a contact point of order 5 at ∞ and of order 8 at each of its points P and \overline{P} .

3.1.a.ii. If $21 - d - 2k \ge 6$, then Γ_5 contains L_{∞} , there exists a quartic Γ_4 such that

$$\Gamma_4 \cdot F_7 = R_1 + \dots + R_d + (7+k)P + (7+k)P + (14-d-2k)\infty$$

with $0 \le 14 - d - 2k \le 3$. We see that the coefficient of ∞ must be zero otherwise one of R_i should be equal to a or b. Thus 14 - d - 2k = 0, i.e., we have (d = 14 and k = 0) or (d = 12 and k = 1). As a result,

$$\Gamma_4.F_7 = R_1 + \dots + R_{14} + 7P + 7\overline{P},$$

in other words, algebraic points on F_7 of degree 14 over \mathbb{Q} are obtained as intersection of F_7 with a quartic defined over Q

having P and \overline{P} as contact points of order 7 at each of its points; or

 $\Gamma_4.F_7 = R_1 + \dots + R_{12} + 8P + 8\overline{P},$

in other words, algebraic points on F_7 of degree 12 over \mathbb{Q} are obtained as intersection of F_7 with a quartic defined over \mathbb{Q} having P and \overline{P} as contact points of order 8 at each of its points.

3.1.b. If
$$m = 0$$
 and $n \ge 1$ (resp. $m \ge 1$ and $n = 0$), then

$$\Gamma_6.F_7 = R_1 + \dots + R_d + nb + (7+k)P + (7+k)\overline{P} + (28 - d - n - 2k)\infty$$

with $6 \le 28 - d - n - 2k \le 16$.

3.1.b.i. If 28 - d - n - 2k = 6, i.e., d = 14, n = 6 and k = 1, then

 $\Gamma_6.F_7 = R_1 + \dots + R_{14} + 6b + 8P + 8\overline{P} + 6\infty,$

which proves that algebraic points on F_7 of degree 14 over \mathbb{Q} are obtained as intersection of F_7 with a sextic defined over \mathbb{Q} having a contact point of order 6 at b and ∞ and of order 8 at each of its points P and \overline{P} .

3.1.b.ii. If $28 - d - n - 2k \ge 7$, then Γ_6 contains L_{∞} , there exists a quintic Γ_5 such that

$$\begin{split} \Gamma_5.F_7 &= R_1 + \dots + R_d + nb + (7+k)P + (7+k)\overline{P} + (21-d-n-2k)\infty \\ \text{with } 0 \leq 21-d-n-2k \leq 9. \text{ Since } n \neq 0, \text{ the coefficient of } \\ \infty \text{ must be zero, i.e., } 21-d-n-2k = 0, \text{ in this case, we have } \\ (d = 13, n = 6 \text{ and } k = 1) \text{ or } (d = 14, n = 5 \text{ and } k = 1). \\ \text{Thus, } \Gamma_5.F_7 = R_1 + \dots + R_{13} + 6b + 8P + 8\overline{P}, \text{ this case is absurd } \\ \text{otherwise one of the } R_i\text{'s to equal } b \text{ or } \end{split}$$

$$\Gamma_5.F_7 = R_1 + \dots + R_{14} + 5b + 8P + 8\overline{P},$$

that is, algebraic points on F_7 of degree 14 over \mathbb{Q} are obtained as intersection of F_7 with a quintic defined over \mathbb{Q} having a contact point of order 5 at b and of order 8 at each of its points P and \overline{P} .

3.2. m = 1 or n = 1

3.2.a. If m = n = 1, then

$$\Gamma_6 \cdot F_7 = R_1 + \dots + R_d + a + b + (7+k)P + (7+k)P + (26-d-2k)\infty.$$

The curve Γ_6 contains L, there exists a quintic Γ_5 such that

 $\Gamma_5.F_7 = R_1 + \dots + R_d + (5+k)P + (5+k)\overline{P} + (25-d-2k)\infty$

with $9 \leq 25 - d - 2k \leq 14$. The curve Γ_5 contains L_{∞} , there exists a quartic Γ_4 such that

 $\Gamma_4 \cdot F_7 = R_1 + \dots + R_d + (5+k)P + (5+k)\overline{P} + (18-d-2k)\infty$

with $2 \leq 18 - d - 2k \leq 7$. As the coefficient of ∞ is non-zero, then Γ_4 contains L which is absurd otherwise one of the R_i is a or b.

3.2.b If m = 1 and $n \ge 2$ (resp. $m \ge 2$ and n = 1), then

$$\Gamma_6.F_7 = R_1 + \dots + R_d + a + nb + (7+k)P + (7+k)\overline{P} + (27-d-n-2k)\infty.$$

We see that Γ_6 contains L, there exists a quintic Γ_5 such that

$$\Gamma_5.F_7 = R_1 + \dots + R_d + (n-1)b + (7+k)P + (7+k)P + (26-d-n-2k)\infty.$$

 Γ_5 contains L which is absurd otherwise one of the R_i is a.

- 3.3. $2 \le m, n \le 6$
- 3.3.a. If 28 d m n 2k = 0, i.e., d = 14, m = n = 6 and k = 1, then

 $\Gamma_6.F_7 = R_1 + \dots + R_{14} + 6a + 6b + 8P + 8\overline{P},$

which proves that algebraic points on F_7 of degree 14 over \mathbb{Q} are obtained as intersection of F_7 with a sextic defined over \mathbb{Q} having a contact point of order 6 at a and b and of order 8 at each of its points P and \overline{P} .

3.3.b If $28 - d - m - n - 2k \ge 1$, then Γ_6 contains L, there exists a quintic Γ_5 such that

$$\Gamma_5 \cdot F_7 = R_1 + \dots + R_d + (m-1)a(n-1)b + (5+k)P + (5+k)\overline{P} + (27 - d - m - n - 2k)\infty.$$

We see that Γ_5 contains L, there exists a quartic Γ_4 such that

$$\Gamma_4 \cdot F_7 = R_1 + \dots + R_d + (m-2)a + (n-2)b + (3+k)P +$$

 $(3+k)\overline{P} + (26-d-m-n-2k)\infty.$

Since, the coefficients of a, b and ∞ are not simultaneously zero, then Γ_4 contains L, there exists a cubic Γ_3 such that $\Gamma_3.F_7 = R_1 + \cdots + R_d + (m-3)a + (n-3)b + (1+k)P + (1+k)P + (25-d-m-n-2k)\infty$.

We must have $3 \le m, n \le 6$ and $25 - d - m - n - 2k \ge 0$.

3.3.b.i. If m = n = 3, then

$$\Gamma_3.F_7 = R_1 + \dots + R_d + (1+k)P + (1+k)\overline{P} + (19-d-2k)\infty$$

with $3 \le 19 - d - 2k \le 8$.

- If 19 - d - 2k = 3, i.e., d = 14 and k = 1, then

 $\Gamma_3.F_7 = R_1 + \dots + R_{14} + 2P + 2\overline{P} + 3\infty.$

We see that Γ_3 contains L, which is absurd.

– If $19-d-2k \ge 4$, then Γ_3 contains L_{∞} , there exists a conic Γ_2 such that

$$\Gamma_2 \cdot F_7 = R_1 + \dots + R_d + (1+k)P + (1+k)P + (12-d-2k)\infty.$$

We must have 12 - d - 2k = 0, i.e., d = 12 and k = 0 so $\Gamma_2 \cdot F_7 = R_1 + \cdots + R_{12} + P + \overline{P}$. Thus, algebraic points on F_7 of degree 12 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q} passing through P and \overline{P} .

3.3.b.ii. If $m \neq 3$ or $n \neq 3$, then Γ_3 contains L, there exists a conic Γ_2 such that

$$\Gamma_2 \cdot F_7 = R_1 + \dots + R_d + (m-4)a + (n-4)b + (-1+k)P + (-1+k)\overline{P} + (24 - d - m - n - 2k)\infty.$$

We must have

 $4 \le m, n \le 6, k = 1$ and $0 \le 24 - d - m - n - 2k \le 2$.

The sum of the coefficients of a, b and ∞ is equal to 14 - d. We have

- $-\Gamma_2.F_7 = R_1 + \cdots + R_{11} + m_1a + m_2b + m_3\infty$ with $m_i \neq m_j \in \{0, 1, 2\}$ and $m_1 + m_2 + m_3 = 3$, thus, algebraic points on F_7 of degree 11 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞ and tangent to one of the other two.
- $\Gamma_2.F_7 = R_1 + \cdots + R_{12} + m_1a + m_2b + m_3\infty$ with $m_i \in \{0, 1, 2\}$ and $m_1 + m_2 + m_3 = 2$, thus, algebraic points on F_7 of degree 12 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q}
 - * passing through two of the points a, b, ∞ ,
 - * tangent to F_7 at one of the points a, b, ∞ .
- $\Gamma_2.F_7 = R_1 + \cdots + R_{13} + m_1a + m_2b + m_3\infty$ with $m_i \in \{0, 1\}$ and $m_1 + m_2 + m_3 = 1$, thus, algebraic points on F_7 of degree 13 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q} passing through one of the points a, b, ∞ .
- $-\Gamma_2 \cdot F_7 = R_1 + \cdots + R_{14}$, thus, algebraic points on F_7 of degree 14 over \mathbb{Q} are obtained as intersection of F_7 with a conic defined over \mathbb{Q} .

Case 4 : $t = m[\infty - a] + n[\infty - b] + kx_0 + x_2$ with $0 \le m, n \le 6$ and $0 \le k \le 1$.

Composing by $f_2^* \circ f_2$ and using the properties (P2), (P4), (P5) and (P6), we find exactly the same expression as in the Case 3 and therefore we obtain the same results.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referees for their comments and suggestions which have improved the quality of this paper.

REFERENCES

B. Gross and D. Rohrlich, Some results on the Mordell-Weil group of the jacobian of the Fermat curve, Invent. Math. 44 (1978), 201 - 224.

- [2] D. K. Faddeev, On the divisor class groups of some algebraic curves, Dokl. Tom 136 pp. 296 - 298 = Sov. Math. Vol. 2 (1961) pp. 67 - 69.
- [3] D. K. Faddeev, Invariants of divisor classes for the curves $x^k(1-x) = y^l$ in l-adic cyclotomic fields, Trudy Math. Inst. Steklov 64 (1961) pp. 284 293.
- [4] M. Hindry and J. H. Silverman, Diophantine geometry, an introduction, volume 201 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.
- [5] O. Debarre and M. Klassen, Points of low degree on smooth plane curves, J. Reine Angew. Math. 446, 81 – 87 (1994).
- [6] S. Lang, Introduction to algebraic and abelian functions (2nd edition), GTM 89, Springer-Verlag, New York-Heidelberg-Berlin.
- [7] M. Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math. 767, Berlin : Springer-Verlag, 1979.
- [8] D. Rohrlich, Points at infinity on the Fermat curves, Invent. Math. 39, 95 127 (1977)
- [9] O. Sall, Points algébriques de degré au plus 10 sur la septique de Fermat, Afrika mathematika, serie 3, volume 15(2003) 49 55.
- [10] O. Sall, Points algébriques de petits degrés sur les courbes de Fermat, C. R. Acad. Sci. Paris, t.330, série I, p 67 - 70, 2000.
- P. Tzermias, Algebraic points of low degree on the Fermat curve of degree seven, Manusc. Math. 97 (4) 1998, 483 - 488.

¹Moussa FALL DEPARTMENT OF MATHEMATICS, ASSANE SECK UNIVERSITY, ZIGUINCHOR, SENEGAL *E-mail address*: m.fall@univ-zig.sn
²Moustapha CAMARA

DEPARTMENT OF MATHEMATICS, ASSANE SECK UNIVERSITY, ZIGUINCHOR, SENEGAL

E-mail addresses: m.camara5367@zig.univ.sn

³Oumar SALL DEPARTMENT OF MATHEMATICS, ASSANE SECK UNIVERSITY, ZIGUINCHOR, SENEGAL *E-mail addresses*: o.sall@univ-zig.sn