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1. INTRODUCTION 

 

In Lagrangian classical mechanics, a well-known result obtained 

by Henri Poincaré in 1901 concerns the fact that when a Lie 

algebra g  acts locally transitively on the configuration space of the 

system, the Euler-Lagrange equations are equivalent to a new  
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ABSTRACT. Let G be a Lie group and ( , ) :g t s  GR R be its 

corresponding map where t and s are independent variables. A 

G -strand gives rise to dynamical equations for a map R R  

into G  that follows from the standard Hamilton's principle. It 

is believed that a good number of important dynamical 

equations arising in different fields of sciences can be written 

as the Euler-Poisson equations on a matrix Lie algebra g of 

G . This picture was extended in literature to the higher-order 

derivatives case through different contexts in particular when 

the original configuration space is a configuration manifold Q  

on which a Lie group G  acts appropriately. The goal of this 

paper is to extend G -strand equations on matrix Lie algebra to 

the higher-order derivatives case through a different approach 

and more precisely by means of non-standard Lagrangians 

where higher-order derivatives occur naturally although the 

Lagrangian holds 1
st
 order derivative terms. Some 

consequences are discussed accordingly. 
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system of differential equations known as the Euler-Poincaré 

equations defined on the product of the configuration space with 

g . This result is very important as many important partial 

differential equations arising in sciences such as the Korteweg-de 

Vries and the Camassa-Holm equations can be written as the 

Euler-Poincaré equations on matrix Lie algebra g of G [18-27].  

The extension of this problem for the case of higher-order 

derivatives was explored in literature through different contexts, 

e.g. higher-order variational problems that are invariant under Lie 

group transformations [16], higher-order variational problem with 

a Lagrangian function defined on thk -order tangent bundle 
( )kT Q and hence depends on the first thk -order time derivatives of 

the curve [6,17] and so on. These higher-order derivatives 

extensions are very important in sciences mainly in optimal control 

[8,28]. 

The goal of this paper is to explore G -strand higher-order 

derivatives equations on matrix Lie algebra through a totally 

different aspect which is related to the notation of non-standard 

Lagrangians (NSL) or non-natural Lagrangians as entitled by 

Arnold [1]. In fact NSL which are characterized by a deformed 

kinetic energy and potential energy terms have proved to have a 

wide class of applications in the theory of nonlinear differential 

equations [3-6] and dynamical systems [29-32,34]. In a recent 

work [10] we have introduced two different types of NSL: 

exponentially Lagrangians and power-law Lagrangians. It was 

observed that in such types of Lagrangians, higher-order 

derivatives arise naturally whereas the Lagrangian functional 

contains up to a 1
st
-order derivative term. A good number of 

interesting equations arising in classical theories were obtained 

using this formalism [11-14] and accordingly represent our basic 

motivation to deal with NSL. Through this paper, we will deal with 

exponentially NSL.  

 

The paper is organized as follows: In Sec. 2, we setup the basic 

ingredients of the theory; in particular we derive the G -strand 

higher-order derivatives equations on matrix Lie algebra, the 

modified Euler-Poisson equations in terms of momentum and the  
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extended G -strand partial differential equations for Diff ( )G R ; in 

Sec. 3, we illustrate by discussing some special examples and 

finally conclusions are given in Sec. 4. 

 

2. BASIC INGREDIENTS: EULER-POINCARE THEORY FOR 

LEFT G -INVARIANT NON-STANDARD LARANGIANS 

 

2. A: Extended G -strand equations on matrix Lie algebras 

We start by the following definition: 

 

Definition 2.1 [10,26]: Let G  be a Lie group for the map 

( , ) :g t s  GR R characterized by two types of tangent vectors 

: tg g  GT and : sg g   GT . We define the left G -invariant 

exponentially non-standard Lagrangian density function by 
( , , )g g ge

L and the associated exponentially non-standard Lagrangian 

:  L g g R  by 
1 1( , )g g g ge
  L  where  is a free parameter.  

                                

Definition 2.2 [26]: For any ( , ) :u v  L g g Rwe can also define a 

left G -invariant function :  G GT T RL  and a map ( , ) :g t s  GR R  

such that 1( , ) ( , )u t s g g t s and 1( , ) ( , )v t s g g t s  . 

 

Due to the fact that ts stg g , it follows that adt s uv u v    where 

:tv v t   and :su u s   . 

 

Theorem 2.1: For the NSL ( ( , ), ( , ), ( , ))g t s g t s g t se
L  and ( ( , ), ( , ))u t s v t seL we 

associate respectively the actions functionals 
( ( , ), ( , ), ( , ))2

1

t g t s g t s g t s
t

e dsdt


 S L  on G GT T  and ( ( , ), ( , ))2

1

t u t s v t s
t

e dsdt  
LS on 

g g . The following statements are equivalent: 

 

i-For 0 S , ( , )g t s satisfies the following modified Euler-Lagrange 

equation for t  and s explicitly independent Lagrangian [10]: 
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t tt s ss
t s t t s s

d d
g g g g

g dt g ds g g g g g g g
 

               
            

               

L L L L L L L L L
, (1) 

 

where : ttg g  GT and : ssg g   GT are the higher-order derivatives 

terms.  

j-For 0 S , the following modified Euler-Poincaré equation or G -

strand equations holds on  g g  

 

                              

ad adu v

d d d d

dt u u ds v v dt u ds v

     
 

     

    
        

   

L L L L L L L L
,               (2) 

 

and [ , ] ads t uu v u v v    where  

                                                      adu t

d
u u

dt u u

 

 

 
L L L

, 

                                             adv s

d
v v

ds v v

 

 

 
L L L

, 

 

are the total derivative operators, aduu w w   , advv w w   , 
1

1 2( , ) : ( , ) ( , ) 0w t s w t s w t s    g g g and ad :    g g g  is defined by 

means of ad :  g g g  in the dual pairing ,    by  
 

                                                      ad , ,adu u

g g

v v
u u

 

 

 
L L

. 

Proof: The proof is classical [10,26]. 

 

Corollary 2.1: Let : u  Lm and : v  Ln in g . The modified G -

strand equations for t  and s explicitly independent Lagrangians on 
 g g are: 

 

     ad 1 ad 1 0t s u v t su v u v          m n m m n n mm nn ,             (3) 

                

                           ad 0s t uu v v    .                                               (4) 

 

Proof: It follows directly from the standard Euler-Lagrange 

equation: 
 

                                       ad ad 0u v

d d

dt u u ds v v

   

   

    
      

   

L L L L
, 
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After replacing ( , )( , ) u vu v e LL .                                                     ▅ 

 

2. B: Lie-Poisson Hamiltonian formulation and the Modified 

Euler-Poisson Equations 

For the case of exponentially NSL, the Legendre transformation of 

the NSL ( , ) :u v  L g g R  yields the non-standard Hamiltonian 

( , ) , ( , )v u u v  = LH m m . The modified partial derivatives are then 

given by [10]: 

 

                                       
u






L
m ,                                                  (5) 

                                 u





H

m
,                                                 (6) 

                              v
v v

 

 
  

H L
.                                           (7) 

 

 

We can now rewrite equations (3) and (4) as:  

                        

ad 1 +ad 1 0t s v t s
v v v v




     
  

     

      
              

     
H
m

H H H H H H
m m m n mm nn

m m
 (8)      

 

                       adt sv v





    H

m

H

m
.                                                (9)   

   

or in the following matrix form: 
          

1 ad ( ) ad 1

00
+ad 0

s vv

v
s v

v
t t sv

 




 
 

   

                         
                            

HH H
mm
H

H H
m m nm

mm nn m

                                                                                                                          (10) 

 

where (ad ( ) ) advv  m m for vg  and m g [10]. It is obvious that for 

negligible value of the parameter  , equation (10) is reduced to the 

standard Lie-Poisson Hamiltonian matrix. 

2. C: Extended G -strand partial differential equations for 

Diff ( )G R  

In this subsection we derive the extended G -strands partial 

differential equations for Diff ( )G R in particular for the case of a 
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two-parametric group with two tangent vectors ( , , )u t s x and 

( , , )v t s x defined through the composition of functions operator by: 

t g u g   and sg v g  [10]. In this right-invariant case, the G -

strands partial differential equations for ( , )( , ) u vu v e LL are: 

                                    

+ad +adu v

d d d d

dt u u ds v v dt u ds v

     
 

     

    
      

   

L L L L L L L L
,           (11) 

 

and adt s uv u v   . We can now use equation (3) and mainly for 

maps Diff ( )  GR R R in one spatial dimension to obtain directly 

the following system of partial differential equations in ( , , )t s x : 

                                             

    2 2ad 1 ad 1 ( )t s u v t sm n m mu n nv m u n v            

                            
2 2(( ) )(1 ) (( ) )(1 ) ( )x x x x t sum mu mu vn nv nv m u n v           ,       (12) 

 

and      

                        adt s v x xv u u uv vu      .                                    (13) 

 

In matrix form, this system of equations is written as: 

                                        

   2 2 1 ad ( ) 1 ad

0 0 ad 0

ms v

s v v

um u v mu m nv
m n

vt t s n







 
 

                 
                          

H

H
  (14) 

 

The matrix that appears in equation (14) is the extended Lie-

Poisson bracket. In the next section, we will discuss some 

applications of equations obtained.  

 

Remark 2.1: For s  independent solutions, equations (12) and (13) 

are reduced to:  

 
2(( ) )(1 ) (( ) )(1 )t x x x x tm um mu mu vn nv nv m u          ,                        

 

and      

                t x xv uv vu   .  

This case corresponds for a NSL defined on 

0 0
(Diff ( ) ( )) / Diff ( ) : Diff ( ) Diff ( )  T R R R R R  where 

0
Diff ( ) R is the           
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isotropy subgroup of the vector field parameter 0( ) R [10]. 

Equation (14) is then reduced to: 

                            

   2 1 ad ( ) 1 ad

0 ad 0

mv

v v

um u mu m nv
m

vt t n







 


            
                   

H

H
.        

 

This is the modified Lie-Poisson bracket dual to the action of the 

semidirect product   Lie algebra 1( ) (Den)( )  g R R  where ( ) R is 

the space of vector fields and 1(Den)( ) R  is the space of 1-form 

densities on the real line R .  

 

3-ILLUSTRATIONS 

 

3.1: As a starting illustration we consider the case SO(3)G and 
( , ) 3 3:u ve e   L L= R R R in spacetime dimension 1+1. The modified 

Euler-Poincaré equations (2) and (4) become respectively in that 

case: 

 

 +
d d

u v
dt u u ds v v

   

   

   
      

   

L L L L
 

 

                   
2 2

u v
u u v v

u u t u v v s v

     
 

     

           
                                

L L L L L L
,  (15) 

and 

 

                            
v u

v u
t s

 
  

 
.                                                 (16) 

 

We choose at the beginning the singular Lagrangian 
1
2

( ) ,( , )Cu Dv ds C D  L R. Accordingly, we find: 

 

                           2 2 0
u v

C D
t s

 
 

 
,                                              (17) 

and 

                             0
v u

u v
t s

 
   

 
.                                            (18) 
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When 2 2 1C D   , i.e. complexified singular Lagrangian, we find a 

similar solution of the SO(3) spin chain model derived in [22]. It is 

thus amazing to obtain the same solutions from two different types 

of Lagrangians and in particular form a totally singular Lagrangian 

which is affine in velocities. It is notable that complexified 

Lagrangian mechanics is not new and it was discussed in literature 

through different aspects [2,15,33]. This gives us a hope to obtain 

integrable systems from non-standard singular Lagrangians.  

 

If for instance we choose the NSL 
1
2 2

( ) ( ) ,( , , )u u v v ds u Av v Bu ds A B


         L R, we find: 

                           

+
2 2 2 2

d d
u Av u u Av v Bu v v Bu

dt ds

          
                

       
  

                  

2 2 2 2
u u u Av u Av v v v Bu v Bu

   
 
             

                      
             

 

 

          
2 2

2 2

u v
u Av v Bu

t s

 
 
    

       
    

,                                   (19) 

and 

                        0
v u

u v
t s

 
   

 
.                                                 (20) 

 

After arrangement and in particular for 2A B  , we can simplify 

equation (19) to: 

        2 2 2 21 1t t s su u v v u v v u u v u v                 . (21) 

Making use of equation (20), we can rewrite the system of 

equations as: 
 

 

      2 22 2 2 21 (1 ( )) (1 ( )) 1 0t t s su u v u v v u v u v v u                     (22) 

 

                         0t sv u u v    .                                                  (23) 

 

This system of equations belongs to the class of non-integrable 

Hamiltonian systems which play an important role in chaos since  
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non-integrable systems can exhibit chaos [9]. In case 

1  and 1  , we find the SO(3) spin chain model obtained in [22]. 

Hence equations (22) and (23) correspond to a perturbed SO(3) spin 

chain model.  

 

3.2: We consider now the case Diff ( )G R  where xu dx



 L  with 

vanishing boundary conditions at infinity ( x  ) and we set 

1  for convenience. From the variational principle, we have: 

 

               :xxe dt e u udxdt e m udxdt      
L L L ,                           (24) 

 

and hence xxm u  . From equation (12) we find: 

 

                     2(( ) )(1 )t x x tm um mu mu m u     .                             (25) 

 

and hence the equation of motion is: 

                                                           

                   2 (1 )( 2 ) 0xxt xx t xx xxx xx xu u u uu uu u u     .                      (26) 

 

We consider now 21
2

u dx



 L with vanishing boundary conditions 

at infinity. In such a case, we have  

 

                      :e dt e u udxdt e m udxdt     
L L L ,                        (27) 

 

and hence m u and hence using equation (12) we find the PDE:  

 

                            2 2(1 ) 3(1 ) 0t xu u u uu    .                                 (28) 

 

For , { 1}u dx 



   L R  with vanishing boundary conditions at 

infinity, we find 1m u  and the corresponding PDE 

                                                   

 2 2 2( 1) 1( 1) (1 )( 1)t xu u u u u u                .                     (29) 

 

In particular when 1  , we find 1m  and the following 1
st
-order 

PDE: 

                                    2 (1 ) 0x tu u u   .                                      (30) 
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The partial differential equations (28) and (30) require certain 

initial conditions and are similar to the Cauchy problem discussed 

in nonlinear 1
st
 order PDE. Numerical simulations are required, yet 

our main aim was to prove that a number of interesting PDE may 

be obtained from NSL.  

 

4. CONCLUDING REMARKS 

 

In this paper, we have introduced the basic concepts of higher-

order G -strand equations on matrix Lie algebra based on the 

notion of non-standard Lagrangians or Arnold’s non-natural 

Lagrangians. We have set up the basic modified dynamical 

equations mainly the modified Euler-Poincaré and the modified 

Euler-Poisson equations in terms of momentum through the 

Hamiltonian formulation. We have illustrated our results by 

discussing some specific examples. It was observed that for 

complex singular Lagrangians which are affine in velocities, we 

find the same integrable solution for the SO(3) spin chain model 

derived from the standard approach. This gives us the optimism 

that for matrix Lie groups based on NSL, we can find on G -strand 

integrable systems. For the case of Diff ( )G R , a number of 

interesting PDE were obtained as well similar to the Cauchy 

problem found in 1
st
-order nonlinear PDE. The next step is to solve 

numerically some of the equations obtained in this work and to 

compare the results obtained with the solution behavior for the 

PDE obtained in the standard formalism.  
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