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SOME ALGEBRAIC PROPERTIES OF GENERALISED
CENTRAL LOOPS

J. O. ADENIRAN1, T. O. ALAKOYA2

ABSTRACT. Generalised central loops (GCL) are loops satisfying
the identity
x(z · zσ y) = (xz · zσ )y. In this work, three generalised identities cor-
responding to three of the four left central identities are newly in-
troduced and all of these three generalised identities together with
identity z(zσ · xy) = (z · zσ x)y, which was introduced in [14] are
shown to be equivalent in any loop. It is shown that every GCL
(G, ·,σ) = (G, ·) is a σ−central square loop. Furthermore, it is
established that a loop (G, ·,σ) = (G, ·) is a GCL if and only if
Lzσ Lz and RzRzσ are crypto-automorphisms of (G, ·,σ) = (G, ·) with
companions c1 = (zzσ )−1 and c2 = e, and companions d1 = e and
d2 = (zzσ )−1 respectively. The necessary and sufficient conditions
for a GCL to be isomorphic to its principal isotopes are also formu-
lated. Every pseudo-automorphism of a GCL (G, ·,σ) = (G, ·) with
companion zzσ is shown to be a semi-automorphism. Lastly, a GCL
was constructed using a group together with an arbitrary subgroup
of it.

1. INTRODUCTION

’Central-identity’ as named by Ferenc Fenyves [11] and [12] in 1968
and 1969 respectively is one of the 60 identities of Bol-Moufang type.
Loops of Bol-Moufang type are variety of loops defined by a single
identity that satisfy: (i) involves three distinct variables on both sides,
(ii) contains variables in the same order on both sides, (iii) exactly one
of the variables appears twice on both sides. Loops satisfying the cen-
tral identity are called ‘central loops’. Closely related to the central
identity are the extra, left central (LC) and right central (RC) identities.
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In 2005, Phillips and Vojtechovsky [19] revisiting the work of Fenyves
in [11] and [12] obtained four equivalent identities that define LC-loops
and four equivalent identities that define RC-loops. Three of these four
identities given by Phillips and Vojtechovsky are the same as the three
already given by Fenyves. Stated below are the C-loops-, extra loops-,
LC-loops- and RC-loops- identities as found in [12].

(yx · x)z = y(x · xz) central identity (1)
(xy · z)x = x(y · zx) extra identity (2)

(xy) · (xz) = x(yx · z) extra identity (3)
(yx) · (zx) = (y · xz)x extra identity (4)

(xx) · (yz) = (x · xy)z le f t central identity (5)
(x · xy)z = x(x · yz) le f t central identity (6)
(xx · y)z = x(x · yz) le f t central identity (7)
z(x · xy) = (z · xx)y le f t central identity (8)

(yz) · (xx) = y(zx · x) right central identity (9)
(yz · x)x = y(zx · x) right central identity (10)
(yz · x)x = y(z · xx) right central identity (11)
y(xx · z) = (yx · x)z right central identity (12)

In any loop, there is equivalence between any two of the identities cor-
responding to each of the equation numbers in each of the triples {2, 3,
4}, {5, 6, 7, 8} and {9, 10, 11, 12}. These facts are found in [11] and
[12]. Furthermore, for a given loop, any one of (5), (6), (7, 8) and any
one of (9), (10), (11, 12) together is equivalent to (1) and vice versa. Al-
though in a loop, any one of (2), (3), (4) implies (1) but the converse is
not true. Loops that satisfy (1) are called central loops or C-loops as the
short form while loops that satisfy (5) and (9) or their equivalent forms
are called left central and right central loops, or LC-loops and RC-loops
respectively as the short forms.

Right and left Bol loops, Moufang loops and extra loops are the most
studied varieties of loops of Bol-Moufang type. The studies of these
loops have also been generalised. Sharma and Sabinin in 1976 intro-
duced the generalised form of left Bol loops which they called half-Bol
loops and later in 1979 studied their algebraic properties ([22], [23]).
Within this time period, Ajimal [7] introduced the generalised form of
right Bol loops which was called generalised Bol loops, its algebraic
properties and relationship with generalised Moufang loops were stud-
ied. Thereafter, Adeniran [1], Adeniran and Akinleye [2], Adeniran,
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Jaiyeola and Idowu [4], [5], Adeniran and Solarin [6] studied the alge-
braic properties of generalised Bol loops.

In 2014, Jaiyeola [14] introduced and studied four generalised identi-
ties corresponding to the four right central identities in loop. It was
shown that the four new identities are equivalent in a loop. Also, one
generalised form each of the central identity and the left central identity
were introduced. Furthermore, he investigated the algebraic properties
of generalised right central loops (GRCL) (G, ·,σ) and some equivalent
characterizing forms of the selfmap σ were found.

The following definitions were given in [14].

Definition 1.1. (L, ·) is called a generalised 1st right central loop (GRC1L)
or σ1st right central loop (σ1st −RCL) if it satisfies the identity:

x(yz · zσ ) = (xy · z)zσ (13)

Definition 1.2. (L, ·) is called a generalised 2nd right central loop (GRC2L)
or σ2nd right central loop (σ2nd −RCL) if it satisfies the identity:

x(yz · zσ ) = (xy · zzσ ) (14)

Definition 1.3. (L, ·) is called a generalised 3rd right central loop (GRC3L)
or σ3rd right central loop (σ3rd −RCL) if it satisfies the identity:

x(y · zzσ ) = (xy · z)zσ (15)

Definition 1.4. (L, ·) is called a generalised 4th right central loop (GRC4L)
or σ4th right central loop (σ4th −RCL) if it satisfies the identity:

x(zzσ · y) = (xz · zσ )y (16)

Definition 1.5. (L, ·) is called a generalised 1st left central loop (GLC1L)
or σ1st left central loop (σ1st −LCL) if it satisfies the identity:

z(zσ · xy) = (z · zσ x)y (17)

Definition 1.6. (L, ·) is called a generalised 1st central loop (GC1L) or
σ1st central loop (σ1st −CL) if it satisfies the identity:

x(z · zσ y) = (xz · zσ )y (18)

Observe that the identities of the σ1st−,σ2nd−,σ3rd− and σ4th−right
central loop all of which have been proved to be equivalent in any loop
are the generalised forms of the right central loop identities while the
identities of the σ1st−left central loop and σ1st−central loop are the
generalised forms of the left central loop and central loop identities re-
spectively. Hence, the σ1st−,σ2nd−,σ3rd− and σ4th−right central loop
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are generally referred to as generalised right central loops (GRCLs)
or σ−right central loops (σ −RCLs) while the σ1st−left central loop
is called generalised left central loop (GLCL) or σ−left central loop
(σ −LCL) and the σ1st−central loop is called generalised central loop
(GCL) or σ−central loop (σ −CL).

In this work, three generalised identities corresponding to three of the
four left central identities are newly introduced and all of these three
generalised identities together with identity z(zσ ·xy) = (z ·zσ x)y, which
was introduced in [14] are shown to be equivalent in any loop. It is
shown that every generalised central loop (GCL) (G, ·,σ) is a σ−central
square loop. Furthermore, it is established that a loop (G, ·,σ) is a GCL
if and only if Lzσ Lz and RzRzσ are crypto-automorphisms of (G, ·,σ)
with companions c1 = (zzσ )−1 and c2 = e, and companions d1 = e and
d2 = (zzσ )−1 respectively. The necessary and sufficient conditions for
a GCL to be isomorphic to its principal isotopes are also formulated.
Every pseudo-automorphism of a GCL (G, ·,σ) with companion zzσ is
shown to be a semi-automorphism. Lastly, a GCL was constructed us-
ing a group together with an arbitrary subgroup of it.

For definition of concepts in theory of loops readers may consult [9]
and [17].

2. PRELIMINARIES

Definition 2.1. Let (L, ·) be a loop with a single valued self-map σ :
x → xσ .
A loop (L, ·) is called a σ -right alternative property loop (σ −RAPL)
if it satisfies the σ -right alternative property (σ −RAP)

xz · zσ = x · zzσ (19)

A loop (L, ·) is called a σ -left alternative property loop (σ −LAPL) if
it satisfies the σ -left alternative property (σ −LAP)

zzσ · x = z · zσ x (20)

A loop (L, ·) is called a σ -alternative property loop (σ −APL) if it is a
σ −RAPL and a σ −LAPL.

Definition 2.2. Let (G, ·) be a loop, the group of all permutations on
(G, ·) is called the symmetric group of G and denoted by SY M(G, ·)
while the group of all automorphisms of (G, ·) is denoted by AUM(G, ·)
where V ∈ AUM(G, ·)⇔ (xy)V = xV · yV ∀ x,y ∈ G.
i. U ∈ SY M(G, ·) is called autotopic if there exists (U,V,W )∈AUT (G, ·);
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the set of all such mappings forms a group Σ(G, ·).
ii. U ∈ SY M(G, ·) is called ρ-regular if there exists (I,U,U)∈AUT (G, ·);
the set of all such mappings forms a group ρ(G, ·).
iii. U ∈ SY M(G, ·) is called λ -regular if there exists (U, I,U)∈AUT (G, ·);
the set of all such mappings forms a group Λ(G, ·).
iv. U ∈ SY M(G, ·) is called µ-regular if there exists U ′ ∈ SY M(G, ·)
such that (U,U ′−1, I) ∈ AUT (G, ·). U ′ is called the adjoint of U . The
set of all µ-regular mappings forms a group Φ(G, ·)≤ Σ(G, ·). The set
of all adjoint mapping forms a group Ψ(G, ·).
v. If there exists c, d ∈ G such that (A,ARc,ARc) and (V Ld,V,V Ld) are
elements of AUT (G, ·), then A,V ∈ SY M(G, ·) are respectively called
right pseudo-automorphism of (G, ·) with companion c and left pseudo-
automorphism of (G, ·) with companion d. The set of all right pseudo-
automorphisms of G forms a group called the right pseudo-automorphism
group of (G, ·) and denoted by PρAUM(G, ·) and the set of all left
pseudo-automorphisms of G forms a group called the left pseudo-automorphism
group of (G, ·) and denoted by Pλ AUM(G, ·).
vi. If there exists c1,c2 ∈ G such that (ARc1,ALc2,A) ∈ AUT (G, ·), then
A ∈ SY M(G, ·) is called a crypto-automorphism of (G, ·) with compan-
ions c1 and c2. The set of such permutations on G forms a group called
the cryto-automorphism group of (G, ·) and denoted by CAUM(G, ·).

Definition 2.3. Let (G, ·) be a loop.
The left nucleus of (G, ·) denoted by

Nλ (G, ·) = {a ∈ G : a · xy = ax · y ∀ x,y ∈ G}
The right nucleus of (G, ·) denoted by

Nρ(G, ·) = {a ∈ G : xy ·a = x · ya ∀ x,y ∈ G}
The middle nucleus of (G, ·) denoted by

Nµ(G, ·) = {a ∈ G : xa · y = x ·ay ∀ x,y ∈ G}
The nucleus of (G, ·) denoted by

N(G, ·) = Nλ (G, ·)
⋂

Nρ(G, ·)
⋂

Nµ(G, ·)
The centrum of (G, ·) denoted by

C(G, ·) = {a ∈ G : ax = xa ∀ x ∈ G}
The center of (G, ·) denoted by

Z(G, ·) = N(G, ·)
⋂

C(G, ·)

Definition 2.4. Let a and b be two elements of a loop L. The loop
commutator of a and b is the unique element [a,b] of L which satisfies

ab = ba · [a,b]
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Below are some of the results obtained in [14] which will be employed
in this work.

Theorem 2.5. Let (G, ·,σ) = (G, ·) be a σ1st −RCL. Then
i. (G, ·,σ) has the σ −RAP.
ii. a. RxRxσ = Rxxσ .
b. xλ · xxσ = xσ ; σ -self left inverse property(σ −SLIP).
iii. eσ ∈ Nρ(G, ·).
iv. (G, ·) has the RIP.
v. xρ = xλ = x−1 i.e. Jρ = Jλ = J.
vi. Nρ(G, ·) = Nµ(G, ·)
vii. xxσ ∈ Nρ(G, ·) = Nµ(G, ·); σ -right square property.
viii. there exists nσ ∈ Nρ(G, ·) such that σ = Ln−1

σ
J;xσ = (n−1

σ x)−1.
ix. σ(nσ ) = e,σ(e) = nσ .
x. (yz · x)(n−1

σ x)−1 = y[zx · (n−1
σ x)−1].

Theorem 2.6. Let (G, ·,σ) = (G, ·) be a loop. (G, ·,σ) is a σ1st −RCL
if and only if any of the following is true.
i. (I,RxRxσ ,RxRxσ ) ∈ AUT (G, ·).
ii. RxRxσ ∈ ρ(G, ·).
iii. RzRxRxσ = Rzx·xσ .
iv. [Ly,RxRxσ ] = I .
v. (RxRxσ ,L−1

xxσ , I) ∈ AUT (G, ·).
vi. RxRxσ ∈ Φ(G, ·) and Lxxσ ∈ Ψ(G, ·).

Theorem 2.7. Let (G, ·,σ) = (G, ·) be a σ1st −LCL. Then
i. (G, ·) is an LIPL.
ii. Nλ (G, ·) = Nµ(G, ·).
iii. (G, ·) is a σ −LAPL.
iv. xσ = x−1nσ ,σ = JRnσ and (xnσ )

−1 = n−1
σ x−1 for all x ∈G and some

n ∈ Nµ(G, ·).

Theorem 2.8. Let (G, ·,σ) = (G, ·) be a σ1st −CL. Then
i. (G, ·) is an IPL.
ii. Nρ(G, ·) = Nλ (G, ·) = Nµ(G, ·) = N(G, ·).
iii. (G, ·) is a σ −APL.
iv. xσ = x−1n,σ = JRn and (xn)−1 = n−1x−1 for all x ∈ G and some
n ∈ Nµ(G, ·).
v. (G, ·) is a σ1st −RCL and a σ1st −LCL.

Theorem 2.9. Let (G, ·) be a loop. The following are equivalent.
i. (G, ·,σ) is a σ1st −CL.
ii. (G, ·,σ) is a σ1st −RCL and a LIPL.
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iii. (G, ·,σ) is a σ1st −LCL and a RIPL.
iv. (G, ·,σ) is a σ1st −RCL and a σ1st −LCL.

Stated below are also some existing results in literatures used in this
work:

Theorem 2.10. (Pflugfelder [17]) Let (G, ·) be a quasigroup, then the
following hold:
i. L−1

a = La−1 for all a ∈ Nµ

ii. R−1
a = Ra−1 for all a ∈ Nµ

Theorem 2.11. (Pflugfelder [17]) If A = (U,V,W ) is an autotopism
of an inverse property loop (IPL) (G, ·), then Aρ = (V,U,JWJ),Aµ =
(W,JV J,U),Aλ = (JUJ,W,V ) are also autotopisms of (G, ·).
Remark 2.12. It has been established in [14] that a loop is a σ −CL if
and only if it is both a σ −LCL and a σ −RCL (Theorem 2.5). Hence,
we shall prove results for σ −CL by combining those that are true
for σ − LCL and σ −RCL. The identity element is represented with
e throughout this work except otherwise stated.

3. MAIN RESULTS

Theorem 3.1. Let (G, ·) be a σ −LCL, then the following conditions
hold in (G, ·) :
(i) Lzσ Lz = Lzzσ

(ii) z = zzσ .(zσ )ρ

(iii) eσ ∈ Nλ (G, ·) = Nµ(G, ·)
(iv) zzσ ∈ Nλ (G, ·) = Nµ(G, ·) [σ -left nuclear square property]

Proof. (i) (G, ·) is a σ −LAPL, i.e. (G, ·) satisfies identity (20). Writing
(20) in translation form, we have:
xLzσ Lz = xLzzσ ⇔ Lzσ Lz = Lzzσ .
(ii) Setting x = (zσ )ρ in (20), we have:
z · zσ (zσ )ρ = zzσ · (zσ )ρ ⇒ z = zzσ · (zσ )ρ .
(iii) Setting z = e in (17), we have:
e(eσ · xy) = (e · eσ x)y
⇒ eσ · xy = eσ x · y for all x,y ∈ (G, ·)
⇒ eσ ∈ Nλ = Nµ .
(iv) Applying the σ −LAP to both sides of (17), we have:
zzσ · xy = z(zσ · xy) = (z · zσ x)y = (zzσ · x)y
⇒ zzσ · xy = (zzσ · x)y for all x,y ∈ (G, ·)
⇒ zzσ ∈ Nλ = Nµ . □

Remark 3.2. The dual of the above results have been obtained in [14]
(2.5) for σ −RCL. Hence, the following results hold for a σ −CL.
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Let (G, ·) be a σ −CL, then the following hold in (G, ·) :
(i) Lzσ Lz = Lzzσ

(ii) RzRzσ = Rzzσ

(iii) z = zzσ .(zσ )ρ

(iv) zσ = zλ · zzσ

(v) eσ ∈ N(G, ·)
(vi) zzσ ∈ N(G, ·) [σ -nuclear square property]

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇔ it is both a σ −LCL and
a σ −RCL. Hence, the proof of (i) - (vi) follows from Theorem 2.5 and
Theorem 3.1, and the fact that the three nuclei coincide for an inverse
property loop (IPL). □

Remark 3.3. The above result shows that zzσ is in the intersection of
the three nuclei, and in particular lies in the middle nucleus. This prop-
erty is called the σ -nuclear square property. Hence, it follows from
theorem 2.10 that L−1

zzσ = L(zzσ )−1 and R−1
zzσ = R(zzσ )−1.

Theorem 3.4. If (G, ·) is a σ −LCL, then (G, ·) satisfies the following
conditions
(i) (z · zσ x)−1 = (zzσ · x)−1 = x−1 · zσ−1

z−1

(ii) (zzσ )−1 = zσ−1
z−1

Proof. (i) (zzσ · x)(x−1 · zσ−1
z−1)

= (z · zσ x)(x−1 · zσ−1
z−1) (By the σ −LAP)

= z[zσ · x(x−1 · zσ−1
z−1)] (By identity (17))

= z[zσ · zσ−1
z−1] (By the LIP)

= zz−1 = e (By the LIP)
(ii) Set x = e in (i), then the result holds. □

Theorem 3.5. If (G, ·) is a σ −RCL, then (G, ·) satisfies the following
conditions
(i) (x · zzσ )−1 = (xz · zσ )−1 = zσ−1

z−1 · x−1

(ii) (zzσ )−1 = zσ−1
z−1

Proof. (i) (zσ−1
z−1 · x−1)(x · zzσ )

= (zσ−1
z−1 · x−1)(xz · zσ ) (By the σ −RAP)

= [[[(zσ−1
z−1 · x−1)x]z]zσ ] (By identity (13))

= (zσ−1
z−1 · z)zσ (By the RIP)

= zσ−1
zσ = e (By the RIP)

(ii) Set x = e in (i), then the result holds. □

If (G, ·) is a σ −CL, then the following conditions hold in (G, ·)
(i) (z · zσ x)−1 = (zzσ · x)−1 = x−1 · zσ−1

z−1
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(ii) (x · zzσ )−1 = (xz · zσ )−1 = zσ−1
z−1 · x−1

(iii) (zzσ )−1 = zσ−1
z−1

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇔ it is both a σ −LCL and
a σ −RCL. The proof of (i) - (iii) then follows by combining Theorem
3.4 and Theorem 3.5. □

Theorem 3.6. For a loop (G, ·) the following identities are equivalent:

(L1) : (z · zσ y)x = z(zσ · yx) (21)

(L2) : (z · zσ y)x = zzσ · yx (22)

(L3) : (zzσ · y)x = z(zσ · yx) (23)

(L4) : y(z · zσ x) = (y · zzσ )x (24)

Proof. (L1) ⇒ (L2): Assume (L1) holds in (G, ·). In [14], it has been
shown that a loop (G, ·) satisfying (L1) is both an LIPL and a σ −LAPL.
So, applying the σ −LAP to the right hand side (RHS) of (L1) we have:

(z · zσ y)x = zzσ · yx

(L2)⇒ (L3): Assume (L2) holds in (G, ·), setting x = e in (L2) we have:

z · zσ y = zzσ · y

which is the σ −LAP. Now, applying the σ −LAP to both sides of (L2)
we have:

(zzσ · y)x = z(zσ · yx)

(L3)⇒ (L1): Assume (L3) holds in (G, ·), setting x = e in (L3) we have:

zzσ · y = z · zσ y

which is the σ −LAP. Now, applying the σ −LAP to the left hand side
LHS of (L3) we have:

(z · zσ y)x = z(zσ · yx)

(L1) ⇔ (L4): Suppose (L1) holds in (G, ·), then writing (L1) in auto-
topic form we have:

(Lzσ Lz, I,Lzσ Lz) = (Lzzσ , I,Lzσ Lz) ∈ AUT (G, ·) (By Corollary 3(i))

Since (G, ·) is an LIPL, then the last autotopism implies that:

(JLzzσ J,Lzσ Lz, I) ∈ AUT (G, ·)
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For every x ∈ (G, ·) we have that:
xJLzzσ J = (zzσ · x−1)−1 = x · (zσ )−1z−1 (By Theorem 3.4(i))
= xR(zσ )−1z−1 = xR(zzσ )−1 (By Theorem 3.4(ii))
Hence, JLzzσ J = R(zzσ )−1 and the last autotopism can therefore be re-
written as

(R(zzσ )−1,Lzσ Lz, I) ∈ AUT (G, ·)

By Corollary 3(vi) and Theorem 2.10(ii), the last autotopism is equiva-
lent to

(R−1
(zzσ )

,Lzσ Lz, I) ∈ AUT (G, ·)

Applying the last autotopism to the product ty, we have:
tR−1

(zzσ )
· yLzσ Lz = (ty)I = ty

⇒ tR−1
(zzσ )

(z · zσ y) = ty
Setting t = xRzzσ , we have:

x(z · zσ y) = xRzzσ · y
⇒ x(z · zσ y) = (x · zzσ )y

which is identity (L4).
Conversely, suppose that (L4) holds in (G, ·), then setting y = e in (L4)
we have:

z · zσ x = zzσ · x

which is the σ −LAP. Now, applying the σ −LAP to the LHS of (L4),
we have:

y(zzσ · x) = (y · zzσ )x

which implies that zzσ ∈ Nµ .By applying (L4), we have that:
e= xσ (xσ )ρ = [(xσ/xxσ )xxσ ](xσ )ρ =(xσ/xxσ )[x ·xσ (xσ )ρ ] = (xσ/xxσ )x
Hence xσ/xxσ = xλ ⇒ xσ = xλ · xxσ .
Again, applying (L4), we have that:
xλ · xy = xλ · x[xσ (xσ\y)] = (xλ · xxσ )(xσ\y) = xσ (xσ\y) = y.
This implies that (G, ·) has the LIP. Hence, if identity (L4) holds in
(G, ·) then it implies that (G, ·) is both a σ −LAPL and an LIPL, and
zzσ ∈ Nµ = Nλ . Now, writing (L4) in autotopic form we have:

(R−1
(zzσ )

,Lzσ Lz, I) ∈ AUT (G, ·)

By Corollary 3(iv) and Theorem 2.10(ii), the last autotopism can be
re-written as

(R(zzσ )−1,Lzσ Lz, I) ∈ AUT (G, ·)
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Since (G, ·) is an LIPL, then we have that:

(JR(zzσ )−1J, I,Lzσ Lz) ∈ AUT (G, ·)

Recall that JLzzσ J = R−1
zzσ , then JR(zzσ )−1J = JR−1

zzσ J = Lzzσ

So, the last autotopism implies that

(Lzzσ , I,Lzσ Lz) ∈ AUT (G, ·)

By the σ −LAP, the above autotopism is equivalent to

⇒ (Lzσ Lz, I,Lzσ Lz) ∈ AUT (G, ·)

But the last autotopism is the autotopic form of (L1). Hence, this com-
pletes the proof. □

Remark 3.7. Henceforth, we call a loop (G, ·) satisfying any of the
(equivalent) identities (21), (22), (23), (24) a generalised left central
loop (GLCL) or σ−left central loop (σ −LCL).

Theorem 3.8. A loop (G, ·) is a σ − LCL if and only if, for all z ∈
G,(G, ·) satisfies any of the following (equivalent) conditions:

(i) (Lzσ Lz, I,Lzσ Lz) ∈ AUT (G, ·) (25)

(ii) (Lzσ Lz, I,Lzzσ ) ∈ AUT (G, ·) (26)

(iii) (Lzzσ , I,Lzσ Lz) ∈ AUT (G, ·) (27)

(iv) (R−1
zzσ ,Lzσ Lz, I) ∈ AUT (G, ·) (28)

Proof. The proof of (i) - (iv) follows by writing each of the σ − LCL
identities (21), (22), (23), (24) in autotopic form. □

Theorem 3.9. A loop (G, ·) is a σ − RCL if and only if, for all z ∈
G,(G, ·) satisfies any of the following (equivalent) conditions:

(i) (I,RzRzσ ,RzRzσ ) ∈ AUT (G, ·) (29)

(ii) (I,RzRzσ ,Rzzσ ) ∈ AUT (G, ·) (30)

(iii) (I,Rzzσ ,RzRzσ ) ∈ AUT (G, ·) (31)

(iv) (R−1
zσ R−1

z ,Lzzσ , I) ∈ AUT (G, ·) (32)

Proof. The proof of (i) - (iv) follows by writing each of the σ −RCL
identities (13), (14), (15), (16) in autotopic form. □

Theorem 3.10. A loop (G, ·) is a σ −CL if and only if, for all z ∈
G,(R−1

zσ R−1
z ,Lzσ Lz, I) ∈ AUT (G, ·)
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Proof. The proof of this follows by writing the σ −CL identity (18) in
autotopic form. □

Theorem 3.11. Every σ−central loop (σ −CL) (G, ·) is a σ−central
square loop (σ −CSL) (i.e. zzσ ∈ Z(G, ·) for all z ∈ (G, ·)).

Proof. Suppose (G, ·) is a σ−central loop (σ −CL), then by Theorem
3.10 (R−1

zσ R−1
z ,Lzσ Lz, I) ∈ AUT (G, ·) for all z ∈ G. Applying 2.11, we

have that:

Aρ = (Lzσ Lz,R−1
zσ R−1

z ,JIJ) = (Lzσ Lz,R−1
zσ R−1

z , I) ∈ AUT (G, ·) for all
z ∈ G

Applying the last autotopism to the product xy, we have:

xLzσ Lz · yR−1
zσ R−1

z = (xy)I = xy

By setting y = yRzRzσ in the last equation we have:
xLzσ Lz · y = x · yRzRzσ

⇒ (z · zσ x)y = x(yz · zσ )
Applying the σ−left alternative property and the σ−right alternative
property to the LHS and RHS respectively of the last equation we have:
(zzσ · x)y = x(y · zzσ )
Setting y = e in the last equation we have that:
zzσ · x = x · zzσ for all x ∈ (G, ·)
⇒ zzσ ∈C(G, ·) for all z ∈ (G, ·).
But by Corollary 3(vi), zzσ ∈ N(G, ·) for all z ∈ (G, ·). Hence, this
implies that zzσ ∈ Z(G, ·) = N(G, ·)

⋂
C(G, ·) for all z ∈ (G, ·). Thus,

(G, ·) is a σ−central square loop. □

If (G, ·) is a σ−central loop, then the following conditions hold in
(G, ·):
(i) eσ ∈ Z(G, ·)
(ii) Rzzσ = Lzzσ for all z ∈ (G, ·).

Proof. (i) By Theorem 3.11 zzσ ∈ Z(G, ·), setting z = e in this result,
we have that eσ ∈ Z(G, ·).
(ii)By Theorem 3.11, zzσ ∈ Z(G, ·)⇒ zzσ ∈C(G, ·)⇒ x ·zzσ = zzσ ·x⇒
Rzzσ = Lzzσ for all z ∈ (G, ·). □

Theorem 3.12. A loop (G, ·) is a σ − LCL if and only if any of the
following is true:
(i) Lzσ Lz ∈

∧
(G, ·)

(ii) Lz·zσ y = LyLzσ Lz
(iii) [Rx,Lzσ Lz] = I
(iv)Rzzσ ∈ Φ(G, ·) and Lzσ Lz ∈ Ψ(G, ·)
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Proof. (i) By Theorem 3.8, we have that (G, ·) is a σ −LCL if and only
if

(Lzσ Lz, I,Lzσ Lz) ∈ AUT (G, ·)

Hence, by Definition 2.2(iii), it follows from the last autotopism that
Lzσ Lz ∈

∧
(G, ·).

(ii) The result follows by writing identity (21) in left translation form.
(iii) Writing identity (21) in left and right translation forms, we have:
yLzσ LzRx = yRxLzσ Lz ⇔ Lzσ LzRx = RxLzσ Lz ⇔ [Rx,Lzσ Lz] = I
(iv) From Theorem 3.8, we have that (G, ·) is a σ −LCL if and only if

(R−1
zzσ ,Lzσ Lz, I) ∈ AUT (G, ·)

Taking the inverse of this autotopism, we have:

(R−1
zzσ ,Lzσ Lz, I)−1 = (Rzzσ ,(Lzσ Lz)

−1, I) ∈ AUT (G, ·)

Hence, by Definition 2.2(iv) the last autotopism holds if and only if
Rzzσ ∈ Φ(G, ·) and Lzσ Lz ∈ Ψ(G, ·). □

Remark 3.13. The dual of the above results have been obtained for
σ −RCL in [14] Theorem (2.6). Hence, the following results hold for a
σ −CL.

A loop (G, ·) is a σ −CL if and only if any of the following is true:
(i) Lzσ Lz ∈

∧
(G, ·) and RzRzσ ∈ ρ(G, ·)

(ii) Lz·zσ y = LyLzσ Lz and Ryz·zσ = RyRzRzσ

(iii) [Rx,Lzσ Lz] = I and [Lx,RzRzσ ] = I
(iv) Rzzσ = RzRzσ ∈ Φ(G, ·) and Lzzσ = Lzσ Lz ∈ Ψ(G, ·).

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇔ it is both a σ −LCL and
a σ −RCL. The proof of (i) - (iv) then follows by combining Theorem
2.6 and Theorem 3.9. □

Theorem 3.14. A loop (G, ·) is a σ − LCL if and only if Lzσ Lz is a
crypto-automorphism of (G, ·) with companions c1 = (zzσ )−1 and c2 =
e.

Proof. Let (G, ·) be a σ −LCL, then by Theorem 3.8, we have that:
(Lzσ Lz, I,Lzσ Lz) and (R−1

zzσ ,Lzσ Lz, I) are both autotopisms of (G, ·). But
by Corollary 3(vi) and Theorem 2.10(ii),
(R−1

zzσ ,Lzσ Lz, I) = (R(zzσ )−1,Lzσ Lz, I)
Hence, (G, ·) is a σ −LCL if and only if the product

A = (Lzσ Lz, I,Lzσ Lz)(R(zzσ )−1,Lzσ Lz, I) = (Lzσ LzR(zzσ )−1,Lzσ Lz,Lzσ Lz)

is an autotopism of (G, ·). But the product
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A = (Lzσ LzR(zzσ )−1,Lzσ Lz,Lzσ Lz) = (Lzσ LzR(zzσ )−1,Lzσ LzLe,Lzσ Lz)

Hence, by Definition 2.2(vi), it follows that the product A is an auto-
topism of (G, ·) if and only if Lzσ Lz is a crypto-automorphism of (G, ·)
with companions c1 = (zzσ )−1 and c2 = e. □

Theorem 3.15. A loop (G, ·) is a σ −RCL if and only if RzRzσ is a
crypto-automorphism of (G, ·) with companions c1 = e and c2 =(zzσ )−1.

Proof. Let (G, ·) be a σ −RCL, then by Theorem 3.9, we have that:
(I,RzRzσ ,RzRzσ ) and (R−1

zσ R−1
z ,Lzzσ , I) are both autotopisms of (G, ·).

Taking the inverse of the last autotopism, and applying Corollary 3(vi)
and Theorem 2.10(i), we have that:

(R−1
zσ R−1

z ,Lzzσ , I)−1 = (RzRzσ ,L−1
zzσ , I) = (RzRzσ ,L(zzσ )−1, I)∈AUT (G, ·)

Then (G, ·) is a σ −RCL if and only if the product

B = (I,RzRzσ ,RzRzσ )(RzRzσ ,L(zzσ )−1, I) = (RzRzσ ,RzRzσ L(zzσ )−1,RzRzσ )

is an autotopism of (G, ·). But the product

B = (RzRzσ ,RzRzσ L(zzσ )−1,RzRzσ ) = (RzRzσ Re,RzRzσ L(zzσ )−1,RzRzσ )

Hence, by Definition 2.2(vi), it follows that the product B is an auto-
topism of (G, ·) if and only if RzRzσ is a crypto-automorphism of (G, ·)
with companions c1 = e and c2 = (zzσ )−1. □

A loop (G, ·) is a σ −CL if and only if Lzσ Lz and RzRzσ are crypto-
automorphisms of (G, ·) with companions c1 = (zzσ )−1 and c2 = e, and
companions d1 = e and d2 = (zzσ )−1 respectively.

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇔ it is both a σ −LCL and a
σ −RCL, then the rest of the proof follows by combining Theorem 3.14
and Theorem 3.15. □

Theorem 3.16. If (G, ·) is a σ −LCL, then z∈Nλ if and only if zσ ∈Nλ .

Proof. Let (G, ·) be a σ −LCL. Now, suppose z ∈ Nλ and applying this
condition to the LHS of (21), we have:
z(zσ y · x) = (z · zσ y)x = z(zσ · yx)
⇒ zσ y · x = zσ · yx ∀ x,y ∈ (G, ·)⇒ zσ ∈ Nλ

Conversely, suppose zσ ∈ Nλ and applying this condition to the RHS of
(21), we have:
(z · zσ y)x = z(zσ · yx) = z(zσ y · x)
Setting zσ y = q, we have:
zq · x = z ·qx ∀ q,x ∈ (G, ·)⇒ z ∈ Nλ . □

If (G, ·) is a σ −CL, then z ∈ Nλ if and only if zσ ∈ Nλ .
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Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇒ it is a σ −LCL. Then the
result follows from Theorem 3.16. □

Theorem 3.17. If (G, ·) is a σ −RCL, then z∈Nρ if and only if zσ ∈Nρ .

Proof. Let (G, ·) be a σ −RCL and suppose z ∈ Nρ . Now, applying this
condition to the RHS of (13), we have:
x(yz · zσ ) = (xy · z)zσ = (x · yz)zσ

Setting yz = q, we have:
x ·qzσ = xq · zσ ∀ q,x ∈ (G, ·)⇒ z ∈ Nρ

Conversely, suppose zσ ∈ Nρ and applying this condition to the LHS of
(13), we have:
(x · yz)zσ = x(yz · zσ ) = (xy · z)zσ

⇒ x · yz = xy · z ∀ x,y ∈ (G, ·)⇒ z ∈ Nρ . □

If (G, ·) is a σ −CL, then z ∈ Nρ if and only if zσ ∈ Nρ .

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇒ it is a σ −RCL. Then the
result follows from Theorem 3.17. □

Theorem 3.18. Let (G, ·) be a σ −LCL, and z ∈ G be such that
u◦ v = uR−1

(zzσ )
·V Lzzσ ∀ u,v ∈ G,

that is (G,◦) is a principal isotope of (G, ·). Then (G, ·) and (G,◦) are
isomorphic if and only if ∃ a left pseudo-automorphism of (G, ·) with
companion (zzσ )−1.

Proof. Let (G, ·) be a σ −LCL and (G,◦) its principal isotope. Suppose
(G, ·) and (G,◦) are isomorphic, then ∃ a permutation T of G such that
(u · v)T = uT ◦ vT ∀ u,v ∈ G
⇔ (u · v)T =UT R−1

(zzσ )
· vT Lzzσ ∀ u,v ∈ G

⇔ A = (T R−1
(zzσ )

,T Lzzσ ,T ) ∈ AUT (G, ·)
By Theorem 3.8, we have that

(Lzσ Lz, I,Lzσ Lz) = (Lzzσ , I,Lzzσ ) and (R−1
zzσ ,Lzσ Lz, I) = (R−1

zzσ ,Lzzσ , I)

are autotopisms of (G, ·). The product of these two autotopisms gives:

B = (Lzzσ R−1
zzσ ,Lzzσ ,Lzzσ ) ∈ AUT (G, ·).

Taking the inverse of B, we have:

B−1 = (Rzzσ L−1
(zzσ )

,L−1
(zzσ )

,L−1
(zzσ )

) ∈ AUT (G, ·).

Hence, A is an autotopism of (G, ·) if and only if the product

AB−1 = (T L−1
(zzσ )

,T,T L−1
(zzσ )

)
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is also an autotopism of (G, ·). By Theorem 2.10(i) and 3(vi), AB−1 is
an autotopism of (G, ·) if and only if

C = (T L(zzσ )−1 ,T,T L(zzσ )−1)

is also an autotopism of (G, ·). Hence, this completes the proof. □

Theorem 3.19. Let (G, ·) be a σ −RCL, and z ∈ G be such that
u◦ v = uR−1

(zzσ )
·V Lzzσ ∀ u,v ∈ G,

that is (G,◦) is a principal isotope of (G, ·). Then (G, ·) and (G,◦) are
isomorphic if and only if ∃ a right pseudo-automorphism of (G, ·) with
companion zzσ .

Proof. Let (G, ·) be a σ −RCL and (G,◦) its principal isotope. Suppose
(G, ·) and (G,◦) are isomorphic, then ∃ a permutation T of G such that
(u · v)T = uT ◦ vT ∀ u,v ∈ G
⇔ (u · v)T =UT R−1

(zzσ )
· vT Lzzσ ∀ u,v ∈ G

⇔ A = (T R−1
(zzσ )

,T Lzzσ ,T ) ∈ AUT (G, ·)
By Theorem 3.9, we have that

B = (I,RzRzσ ,RzRzσ ) = (I,Rzzσ ,Rzzσ )

and

C = (R−1
zσ R−1

z ,Lzzσ , I)−1 = (RzRzσ ,L−1
zzσ , I) = (Rzzσ ,L−1

zzσ , I)

are autotopisms of (G, ·). Taking The product of B and C gives:

D = (Rzzσ ,L−1
zzσ Rzzσ ,Rzzσ ) ∈ AUT (G, ·).

Hence, A is an autotopism of (G, ·) if and only if the product

AD = (T,T Rzzσ ,T Rzzσ )

is also an autotopism of (G, ·). This therefore completes the proof. □

Let (G, ·) be a σ −CL, and z ∈ G be such that
u◦ v = uR−1

(zzσ )
·V Lzzσ ∀ u,v ∈ G,

that is (G,◦) is a principal isotope of (G, ·). Then (G, ·) and (G,◦) are
isomorphic if and only if ∃ a left pseudo-automorphism of (G, ·) with
companion (zzσ )−1(or if and only if ∃ a right pseudo-automorphism of
(G, ·) with companion zzσ ).

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇔ it is both a σ −LCL and a
σ −RCL, then the rest of the proof follows by combining Theorem 3.18
and Theorem 3.19. □
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Remark 3.20. Theorem 3.18 and Theorem 3.19 above gave the neces-
sary and sufficient conditions for a σ−LCL and a σ−RCL respectively
to be isomorphic to every of its principal isotopes. Hence, from these
results necessary and sufficient for a σ−CL to be isomorphic to every
of its principal isotopes are deduced.

Theorem 3.21. If (U,V,W ) is an autotopism of a σ −LCL (G, ·) and if
eU = u and eV =(vvσ )−1, then Y =V Lvvσ is a left pseudo-automorphism
of (G, ·) with companion c = (vvσ )u · (vvσ )−1.

Proof. Let (U,V,W ) be an autotopism of a σ −LCL (G, ·) with identity
element e such that eU = u and eV = (vvσ )−1. By Theorem 3.8 and
Theorem 2.10(ii), we have that

(Lvσ Lv, I,Lvσ Lv) = (Lvvσ , I,Lvvσ ) and
(R−1

vvσ ,Lvσ Lv, I) = (R(vvσ )−1 ,Lvvσ , I)

are autotopisms of (G, ·). The product of these two autotopisms:

B = (Lvvσ R(vvσ )−1,Lvvσ ,Lvvσ ).

is also an autotopism of (G, ·) and so is the product:

(X ,Y,Z) = (U,V,W )(Lvvσ R(vvσ )−1,Lvvσ ,Lvvσ )

Hence, we have that: X = ULvvσ R(vvσ )−1,Y = V Lvvσ and Z = WLvvσ .
Applying (X ,Y,Z) to the product xy for any x,y ∈ G, we have:

xX · yY = (xy)Z (33)

Setting y = e in (33), we have: xX · eY = xZ, where eY = eV Lvvσ =
vvσ ·(vvσ )−1 = e. Hence, substituting for eY gives: xX ·e = xZ ⇒ xX =
xZ ⇒ Z = X =ULvvσ R(vvσ )−1 . Now, set x = e in (33), we have:
eX · yY = yZ, where eX = eULvvσ R(vvσ )−1 = (vvσ )u(vvσ )−1. Hence,
substituting for eX gives: yZ = eX ·yY =(vvσ )u(vvσ )−1 ·yY = yY L(vvσ )u(vvσ )−1

⇒ Y L(vvσ )u(vvσ )−1 = Z = X . Hence, the autotopism (X ,Y,Z) is now of
the form (X ,Y,Z) = (Y L(vvσ )u(vvσ )−1,Y,Y L(vvσ )u(vvσ )−1), which implies
that Y =V Lvvσ is a left pseudo-automorphism of (G, ·) with companion
c = (vvσ )u(vvσ )−1. □

If (U,V,W ) is an autotopism of a σ −CL (G, ·) and if eU = u and
eV = (vvσ )−1, then Y = V Lvvσ is a left pseudo-automorphism of (G, ·)
with companion c = (vvσ )u · (vvσ )−1.

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇒ it is a σ −LCL, and the
result then follows. □
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Theorem 3.22. If (U,V,W ) is an autotopism of a σ −RCL (G, ·) and if
eU =(uuσ )−1 and eV = v, then X =URuuσ is a right pseudo-automorphism
of (G, ·) with companion c = (uuσ )−1v · (uuσ ).

Proof. Let (U,V,W ) be an autotopism of a σ −RCL (G, ·) with identity
element e such that eU = (uuσ )−1 and eV = v. By Theorem 2.10(i) and
Theorem 3.9, we have that

A = (I,RuRuσ ,RuRuσ ) = (I,Ruuσ ,Ruuσ )

and

B = (R−1
uσ R−1

u ,Luuσ , I)−1 = (RuRuσ ,L−1
uuσ , I) = (Ruuσ ,L(uuσ )−1 , I)

are autotopisms of (G, ·). The product of these two autotopisms:

BA = (Ruuσ ,L(uuσ )−1Ruuσ ,Ruuσ )

is an autotopism of (G, ·) and so is the product

(X ,Y,Z) = (U,V,W )(Ruuσ ,L(uuσ )−1Ruuσ ,Ruuσ )

Hence, we have that: X = URuuσ ,Y = V L(uuσ )−1Ruuσ and Z = WRuuσ .
Now, applying (X ,Y,Z) to the product xy for any x,y ∈ G, we have:

xX · yY = (xy)Z (34)

Setting x = e in (34), we have: eX · yY = yZ, where eX = eURuuσ =

(uuσ )−1 ·uuσ = e. Substituting for eX gives: e ·yY = yZ ⇒ yY = yZ ⇒
Z = Y = V L(uuσ )−1Ruuσ . Now, set y = e in (34) to give: xX · eY =

xZ, where eY = eV L(uuσ )−1Ruuσ = (uuσ )−1v · (uuσ ). Substituting for
eY gives: xZ = xX · eY = xX · (uuσ )−1v · (uuσ ) = xXR

(uuσ )−1v·(uuσ )
⇒

XR
(uuσ )−1v·(uuσ )

= Z = Y . So the autotopism (X ,Y,Z) is now of the
form (X ,Y,Z) = (X ,XR

(uuσ )−1v·(uuσ )
,XR

(uuσ )−1v·(uuσ )
), which implies

that X = URuuσ is a right pseudo-automorphism of (G, ·) with com-
panion c = (uuσ )−1v · (uuσ ), and this completes the proof. □

If (U,V,W ) is an autotopism of a σ −CL (G, ·) and if eU = (uuσ )−1

and eV = v, then X = URuuσ is a right pseudo-automorphism of (G, ·)
with companion c = (uuσ )−1v · (uuσ ).

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇒ it is a σ −RCL, and the
rest of the result then follows. □

Theorem 3.23. If (G, ·) is a σ −CL, then a bijection U is a right pseudo-
automorphism of (G, ·) with companion zzσ if and only if U is a left
pseudo-automorphism of (G, ·) with companion zzσ .
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Proof. Let (G, ·) be a σ −CL, then a bijection U is a right pseudo-
automorphism of (G, ·) with companion zzσ if and only if A=(U,URzzσ ,URzzσ )∈
AUT (G, ·). Applying the autotopism A to the product xy, then A ∈
AUT (G, ·) if and only if xU · yURzzσ = (xy)URzzσ ⇔ xU(yU · zzσ ) =
(xy)U · zzσ ⇔ (xU · yU)zzσ = (xy)U · zzσ (By zzσ ∈ Nρ ) ⇔ zzσ (xU ·
yU) = zzσ · (xy)U (By zzσ ∈ C(G)) ⇔ (zzσ · xU)yU = zzσ · (xy)U (By
zzσ ∈Nλ ) ⇔ xULzzσ ·yU =(xy)ULzzσ ⇔ (ULzzσ ,U,ULzzσ )∈AUT (G, ·)⇔
U is a left pseudo-automorphism of (G, ·) with companion zzσ . □

Theorem 3.24. Let (G, ·) be a σ − LCL and V a bijection on (G, ·),
then V is an automorphism of (G, ·) if and only if it is a left pseudo-
automorphism of (G, ·) with companion zzσ .

Proof. Let (G, ·) be a σ −LCL, then a bijection V on (G, ·) is an auto-
morphism of (G, ·) if and only if xV ·yV = (xy)V ∀ x,y ∈ G ⇔ zzσ (xV ·
yV )= zzσ ((xy)V ) (pre-multiplying both sides with zzσ ) ⇔ (zzσ ·xV )yV =
zzσ ((xy)V ) (By zzσ ∈Nλ (G))⇔ xV Lzzσ ·yV =(xy)V Lzzσ ⇔ (V Lzzσ ,V,V Lzzσ )∈
AUT (G, ·)⇔V is a left pseudo-automorphism of (G, ·) with companion
zzσ . □

Theorem 3.25. Let (G, ·) be a σ −RCL and V a bijection on (G, ·),
then V is an automorphism of (G, ·) if and only if it is a right pseudo-
automorphism of (G, ·) with companion zzσ .

Proof. Let (G, ·) be a σ −RCL, then a bijection V on (G, ·) is an au-
tomorphism of (G, ·) if and only if xV · yV = (xy)V ∀ x,y ∈ G ⇔ (xV ·
yV )zzσ = ((xy)V )zzσ (post-multiplying both sides with zzσ ) ⇔ xV (yV ·
zzσ ) = ((xy)V )zzσ (By zzσ ∈ Nρ(G))⇔ xV · yV Rzzσ = (xy)V Rzzσ ⇔
(V,V Rzzσ ,V Rzzσ ) ∈ AUT (G, ·)⇔V is a right pseudo-automorphism of
(G, ·) with companion zzσ . □

Let (G, ·) be a σ −CL and V a bijection on (G, ·), then V is an au-
tomorphism of (G, ·) if and only if it is both a left and a right pseudo-
automorphism of (G, ·) with companion zzσ .

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇔ it is both a σ −LCL and
a σ −RCL, then the result follows from Theorem 3.23 and by applying
Theorem 3.24 and Theorem 3.25. □

Theorem 3.26. Let (G, ·) be a σ −LCL, then every left pseudo-automorphism
V of (G, ·) with companion zzσ is a semi-automorphism of (G, ·).

Proof. Let (G, ·) be a σ −LCL and suppose V is a left pseudo-automorphism
of (G, ·) with companion zzσ , then this implies that
(V Lzzσ ,V,V Lzzσ ) ∈ AUT (G, ·)⇒ (zzσ · xV )yV = zzσ · (xy)V ∀ x,y ∈ G.
Now, applying the last autotopism to the product xy · x, we have:
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zzσ · (xy · x)V = (zzσ · (xy)V )xV = (zzσ · xV yV )xV (since V is an auto-
morphism of (G, ·) by Theorem 3.24 ⇒ zzσ · (xy ·x)V = zzσ (xV yV ·xV )
(By zzσ ∈ Nλ ) ⇒ (xy · x)V = (xV · yV )xV ∀ x,y ∈ G. Also, by The-
orem 3.24, V is an automorphism of (G, ·) ⇒ eV = e. Hence, V is a
semi-automorphism of (G, ·). □

Theorem 3.27. Let (G, ·) be a σ −RCL, then every right pseudo-automorphism
V of (G, ·) with companion zzσ is a semi-automorphism of (G, ·).

Proof. Let (G, ·) be a σ −RCL and suppose V is a right pseudo-automorphism
of (G, ·) with companion zzσ , then this implies that
(V,V Rzzσ ,V Rzzσ ) ∈ AUT (G, ·)⇒ xV (yV · zzσ ) = (xy)V · zzσ ∀ x,y ∈ G.
Now, applying the last autotopism to the product xy · x, we have:
(xy ·x)V ·zzσ = (xy)V (xV ·zzσ ) = (xV ·yV )(xV ·zzσ ) (since V is an auto-
morphism of (G, ·) by Theorem 3.25) ⇒ (xy ·x)V ·zzσ = (xV yV ·xV )zzσ

(By zzσ ∈ Nρ ) ⇒ (xy · x)V = (xV · yV )xV ∀ x,y ∈ G. Also, by Theorem
3.25, V is an automorphism of (G, ·) ⇒ eV = e. Hence, V is a semi-
automorphism of (G, ·). □

Let (G, ·) be a σ −CL, then every left (right) pseudo-automorphism
V of (G, ·) with companion zzσ is a semi-automorphism of (G, ·).

Proof. By Theorem 2.9, (G, ·) is a σ −CL ⇔ it is both a σ −LCL and
a σ − RCL, then the result follows by combining Theorem 3.26 and
Theorem 3.27. □

The following theorem shows how a σ −CL can be constructed from a
group G with a subgroup H.

Theorem 3.28. Let H be a subgroup of a group G and let gg2
1 = g−1

2 g1g2
denote the conjugate of g1 by g2. Define ′◦′ on A = H ×G such that for
all x,y ∈ A,x = (h1,g1) and y = (h2,g2),

x◦ y = (h1,g1)◦ (h2,g2) = (h1h2,h2g1h−1
2 g2) (35)

Let σ : A → A ↑ σ(h,g) = (δ1h,δ2g) where δ1,δ2 : G → G are singled
valued mappings and δ1h ∈ Z(G) for all h ∈ H. Then (A,◦,σ) is a
σ −CL if and only if gh = gh′−1hh′ for all g ∈ G and h,h′ ∈ H.

Proof. First, we show that (A,◦,σ) is a loop.
(i) Closure Property: Clearly, the operation ′◦′ is closed on A since for
all x,y ∈ A,x◦ y = (h1,g1)◦ (h2,g2) = (h1h2,h2g1h−1

2 g2), we have that
h1h2 = h ∈ H and h2g1h−1

2 g2 = g ∈ G. Hence, x◦ y = (h,g) ∈ A.
(ii) Existence of a unique identity element: The element (e,e) ∈ A is
the identity element of A where e is the identity element of the group G,
since (h,g)◦ (e,e) = (e,e)◦ (h,g) = (h,g) for all (h,g) ∈ A.
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(iii) Existence of a unique inverse for each element in A : Let x=(h,g)∈
A and let (h′,g′) denote the two sided inverse of (h,g), we will show that
(h′,g′) ∈ A. If (h′,g′) is the two sided inverse of (h,g), then this implies
that
(h,g) ◦ (h′,g′) = (e,e) = (h′,g′) ◦ (h,g) ⇒ (hh′,h′gh′

−1
g′) = (e,e) =

(h′h,hg′h−1g)
⇒ hh′ = e or h′h = e ⇒ h′ = h−1 ∈ H and h′gh′

−1
g′ = e or hg′h−1g = e

⇒ h−1ghg′ = e or hg′h−1g = e ⇒ g′ = h−1g−1h ∈ G. Hence, (h′,g′) =
(h−1,h−1g−1h) ∈ A is the inverse of (h,g) ∈ A.
Next, we show that the σ −CL identity holds in (A,◦,σ). Let x =
(h1,g1),y = (h2,g2) and z = (h3,g3) be elements of A, and given that
σ(h,g) = (δ1h,δ2g) where δ1,δ2 : G −→ G are single valued mappings
such that δ1h ∈ Z(G) for all h ∈ H, then:
y◦ x = (h2,g2)◦ (h1,g1) = (h2h1,h1g2h−1

1 g1)

(y◦x)◦xσ =(h2h1,h1g2h−1
1 g1)◦(h1,g1)

σ =(h2h1,h1g2h−1
1 g1)◦(δ1h1,δ2g1)

= (h2h1δ1h1,(δ1h1)h1g2h−1
1 g1(δ1h1)

−1δ2g1)

[(y◦ x)◦ xσ ]◦ z = (h2h1δ1h1,(δ1h1)h1g2h−1
1 g1(δ1h1)

−1δ2g1)◦ (h3,g3)

= (h2h1(δ1h1)h3,h3(δ1h1)h1g2h−1
1 g1(δ1h1)

−1(δ2g1)h−1
3 g3) (36)

Similarly,
xσ ◦z=(h1,g1)

σ ◦(h3,g3)= (δ1h1,δ2g1)◦(h3,g3)= ((δ1h1)h3,h3(δ2g1)h−1
3 g3)

[x◦ (xσ ◦ z)] = (h1,g1)◦ ((δ1h1)h3,h3(δ2g1)h−1
3 g3)

= (h1(δ1h1)h3,(δ1h1)h3g1((δ1h1)h3)
−1h3(δ2g1)h−1

3 g3)

y◦ [x◦(xσ ◦z)]= (h2,g2)◦(h1(δ1h1)h3,(δ1h1)h3g1((δ1h1)h3)
−1h3(δ2g1)h−1

3 g3)
=(h2h1(δ1h1)h3,h1(δ1h1)h3g2(h1(δ1h1)h3)

−1(δ1h1)h3g1((δ1h1)h3)
−1h3(δ2g1)h−1

3 g3)

= (h2h1(δ1h1)h3,h1(δ1h1)h3g2h−1
3 (δ1h1)

−1h−1
1 (δ1h1)h3g1h−1

3 (δ1h1)
−1h3(δ2g1)h−1

3 g3) (37)
(A,◦,σ) is a σ −CL if and only if (3.36) and (3.37) are equal, and this is true
if and only if
h3(δ1h1)h1g2h−1

1 g1(δ1h1)
−1(δ2g1)h−1

3 g3

= h1(δ1h1)h3g2h−1
3 (δ1h1)

−1h−1
1 (δ1h1)h3g1h−1

3 (δ1h1)
−1h3(δ2g1)h−1

3 g3

⇔ h3(δ1h1)h1g2h−1
1 g1(δ1h1)

−1

= h1(δ1h1)h3g2h−1
3 (δ1h1)

−1h−1
1 (δ1h1)h3g1h−1

3 (δ1h1)
−1h3

⇔ h3(δ1h1)h1g2h−1
1 g1(δ1h1)

−1

= h1(δ1h1)h3g2h−1
3 (δ1h1)

−1(δ1h1)h−1
1 h3g1h−1

3 h3(δ1h1)
−1

⇔ h3(δ1h1)h1g2h−1
1 = h1(δ1h1)h3g2h−1

3 h−1
1 h3

⇔ h1g2h−1
1 = (δ1h1)

−1h−1
3 h1(δ1h1)h3g2h−1

3 h−1
1 h3

⇔ h1g2h−1
1 = (δ1h1)

−1(δ1h1)h−1
3 h1h3g2h−1

3 h−1
1 h3

⇔ h1g2h−1
1 = h−1

3 h1h3g2h−1
3 h−1

1 h3
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⇔ h1g2h−1
1 = (h−1

3 h−1
1 h3)

−1g2h−1
3 h−1

1 h3

⇔ gh−1
1

2 = g
h−1

3 h−1
1 h3

2 ⇔ gh
2 = g

h−1
3 hh3

2 (where h = h−1
1 ). □
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