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MORE ENCOMPASSING ALGORITHM FOR APPROXIMATE
SOLUTIONS OF SOME NONLINEAR OPERATOR
EQUATIONS

G. N. ECHEZONA !, S. C. OKOYEHZ, N. N. ARAKA 3, E. U. OFOEDU |

ABSTRACT. Whenever a closed form solution for a given problem
is not readily available, it is of interest to seek for means of obtaining
approximate solution through well-defined iterative approach. This
work focuses on provision of an iterative method for approximating
a common element of set of fixed points of continuous pseudocon-
tractive mapping, set of zeros of inverse strongly monotone map-
ping, set of solutions of equilibrium problem, and set of common
fixed points of countable infinite family of nonexpansive mappings
which is a unique solution of a variational inequality problem in
the framework of Hilbert space. The iterative method introduced
extends, generalizes, improves and unifies some existing results.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and its induced
norm ||.||. A linear map A : D(A) C H — R(A) C H is said to be y-
strongly positive if and only if there exists a constant ¥ > 0 such that

¥ x € D(A), {x,Ax) > 7}x[|*.

Amap T :D(T) CH — R(T) C H is called nonexpansive if and only
if

v,y € D(T), |[Tx=Ty| < [x—yl.
Amap T : D(T) CH — R(T) C H is called a strict contraction (or
simply a contraction) if and only if there exists a constant A € [0,1)
such that

Vx,y € D(T), |[Tx =Tyl < Alx—yl|
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It is obvious that every contraction is nonexpansive. A map T : D(T) C
H — R(T) C H is called pseudocontractive if and only if

vxay GD(T)a <X—y,TX—Ty> S ||X—y||2

It can easily be verified that every nonexpansive map is pseudocontrac-
tive. Amap B: D(B) C H — R(B) C H is called monotone if and only
if

Vx,y € D(B), {x—y,Bx—By) > 0.

The map B is called n-inverse strongly monotone if and only if there
exists a constant 11 > 0 such that

¥V x,y € D(B), (x—y,Bx—By) > n|Bx— By||*.

It is obvious that every n-inverse strongly monotone map is monotone.

Examples abound to show that not every nonexpansive map is a con-
traction; not every pseudocontractive map is nonexpansive; and not ev-
ery monotone map is 1-strongly monotone. It is worthy to remark that
theory of pseudocontractive maps and that of monotone maps are inti-
mately connected in the sense that a map T is pseudocontractive if and
one if the map A := 1 — T is monotone. This can be shown easily. Note
that here, I denotes the identity map on H.

LetT:D(T)CH—R(T)CHandA:D(A) CH — R(A) C H be two
maps. A point x* € D(T) is called a fixed point of the map T if and
only if T (x*) = x*; while a point u* € D(A) is called a zero of the map
A if and only if A(#*) = 0. In what follows, the set of fixed points of a
map 7 shall be denoted by Fix(T), while the set of zeros of a map A
shall be denoted by A~!(0). Note that Fix(T) = {x € D(T) : Tx = x}
and A=1(0) = {u € D(A) : Au=0}.

Let C be a closed convex nonempty subset of a real Hilbert space H and
let A: C — H be a map. A variational inequality problem for A is a
problem of finding x* € C such that for all y € C,

(Ax*,y —x*) > 0.

The set of solutions of the variational inequality problem for A denoted
by VI(A,C) is the set

VI(A,C)={xeC: (Ax,y—x) >0V ye C}.

Let f: C x C — R be a bifunction, that is, the map f is such that for any
x € C, f(x,x) = 0. An equilibrium problem (EP) for f (see Blum and
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Oettli [8]) is to find u* € C such that for all y € C,

fu*,y) >0. (1.1)

The set of solutions of the equilibrium problem for f denoted by EP(f)
is the set
EP(f)={ucC: f(u,y) >0VyeC}.

Due to numerous applications of fixed point techniques, theory of zeros
of nonlinear maps, and the fact that many physically significant prob-
lems can be expressed as equilibrium problem or variational inequality
problem, it has been of great research interest to introduce iterative al-
gorithms for approximation of solutions of fixed point, equilibrium and
variational inequality problems; and to find out under what control con-
ditions the sequences generated by the algorithms converge. Several
authors had studied various kinds of iterative algorithms and approx-
imation techniques for approximate solutions of nonlinear problems
that are intimately connected with equilibrium problems, fixed point
problems and variational inequality problems (see, for example, [1]]-
(7], [L7]-[201, [231], [24], [26], [31] and [37]).

Yamada [34]] proved the following theorem:

Theorem 1.1. (Yamada [34]) Let T : H — H be a nonexpansive map
with Fix(T) # 0. Suppose that a map A : H — H is L-Lipschitzian and

n-strongly monotone with constant 11 > 0. Then, for any u € (0, %’})
and any sequence {A, }n,>1 C (0,1] satisfying
. . . .. . . 2
(i) }E‘;)‘" =0 (i) ng‘lk,, = oo (ii) nh_r>r°1°(7tn — A1) A, 5 =0,
the sequence {x, },>0 generated by
xo €H, xp11="Tx,— purA(Tx,),n>0 (1.2)

converges strongly to the unique solution x' € Fix(T) of the variational
inequality
(AX,y—x') >0, ye F(T).

Since Yamada’s hybrid steepest descent method (1.2)), several researchers
(see for example [9, [16} 20, 211 26/ 30, 33, 40, 41]) have developed it-
erative methods for solving variational inequality problems.

In 2006, Marino and Xu [21]], proved the following theorem:

Theorem 1.2 (Marino and Xu [21]). Let H be a real Hilbert space.
Consider a nonexpansive mapping T : H — H with Fix(T) # 0, let g :
H — H be a strict contraction with coefficient o € (0,1) and A be a
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Y*-strongly positive linear bounded operator. Let 0 <y < %. Then, for
any sequence {, },>0 C (0,1) satisfying the control conditions:

)

(i) lim o, =0, (i) ) o4 =oo and (iii) Y. |0y — 01| < oo,

noree n=0 n=0
the sequence {x,},>1 generated iteratively by
X0 €EH, xpi1 = 0pYg(xy)+ (I — 0,A)Txy,n >0 (1.3)

converges strongly to the unique solution x' € F(T) of the variational
inequality

((yg—A)X,y—x') <0,y F(T).

Tian [30], introduced the iterative sequence {x,}’;_, given by
x0o €H, xp11=,yg(xn)+ (I — 1n0uA)Tx,,n >0 (1.4)

He proved that if g : H — H is a contraction with coefficient @ € (0, 1),
A : H — H is an n-strongly monotone and k—Lipschitzian map, T :
H — H a nonexpansive mapping, i and Yy are two constants such that
u e (0, i—g) and 0 <y<E(n- “Tkz) and the sequence {0, },> satis-
fies appropriate conditions, then the iterative sequence converges
strongly to a unique solution x’ € Fix(T) of the variational inequality

((yg—nA)X',y—x") <0 forally € Fix(T).

We observe that the iterative algorithms (1.2), (I.3) and (I.4)) converge
to an element which is in the fixed point set of a single nonexpansive
map 7.

Definition 1.3. (See [29]) Let C be a convex nonempty subset of a real
Banach space. Let {7} ;> be a countable infinite family of nonexpan-
sive mappings of C into itself and let {A;};>; be a sequence of real
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numbers such that A; € (0,1) for all j € N. For all n € N, define a map-
ping W, : C — C by

Un,n—l—l = I,
Un,n = AnTnUn,n+1 + (1 - A‘71)17
Un,n—l — ;Ln—lTn—lUn,n‘f‘(l_ln—l)I;

Uk = MTUppr+ (1= M),

)

Unk—1 = M1Tim1Upp+ (1 — A1),

Wo = Ui =MT1U2+(1-M)1, (1.5)
The mapping W,,n € N is called the W — mapping generated by the
countable infinite family of nonexpansive mappings 71,1, 73, - , Tj, - -+

With W,,n € N as in definition Yao et al. [35] introduced an it-
erative sequence which converges to a common element of the fixed
point sets of an infinite family of nonexpansive mappings in real Hilbert
space. They proved the following theorem:

Theorem 1.4. (Yao et al. [35]) Let H be a real Hilbert space, let
{T,}n>1 be an infinite family of nonexpansive mappings on H such that
the common fixed points set F = (| Fix(T,) # 0. Let A be a strongly

n>1
positive bounded linear operator on H and f : H — H be a contrac-
tion with a contractive constant & € [0,1). Let {a,} and {B,} be two

sequences in (0, 1) satisfying the control conditions:
N 1 _ .. o . <1
(i) nh_r)r; o, =0, (ii) ,,Zban and (iii) 0 < 11’51_1>1£1an < hflrl_>s::p[3n <1,
then the sequence {x,},> defined by
x1 €H, xy11 = Yf(xn) + Buxn+ (1 = )l — A)Wyx,,  (1.6)

(where ¥ > 0 is some constant) converges strongly to some x* € F,
which is a unique solution of the variational inequality

(A=7yf)x"x"—y) <0, y€F.
Colao and Marino [14]] established that if {x,},>1 and {u,},>1 are se-

quences generated by x; € H,

1
G(un,y)+ - (y— ttn,un —xn) >0,y € H;

n
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Xnt1 = &Yf () + Buxn + (1 — ) — €,A)Wyup,n > 1, (1.7)
where f is a strict contraction with coefficient @ € (0, 1), A is a strongly
positive bounded linear operator with coefficient y* > 0 and G is an
equilibrium function. Let 0 < ¥ < y* o and the sequences {&,},{B,} and {r,}
satisfy appropriate conditions, then both {x, },> and {u,},>1 converge

strongly to an element x* € ﬂ Fix(Tj)NEP(G), which is also the unique
j=1
solution of the variational inequality

(A—yf)x",y—x*) >0Vye () Fix(T)) NEP(G)
j=1

The result obtained in [[14] extended the corresponding result of [35] in
the sense that the iterative sequence converges to a common el-
ement of the fixed point of countable infinite family of nonexpansive
maps and a solution set of an equilibrium problem while the iterative
sequence (I.6) converges to a common element of fixed point set of
countable infinite family of nonexpansive maps.

Chamnarnpan and Kuman [10] obtained strong convergence result for
finding a common element of the set of fixed points for a continuous
pseudo-contractive mapping and the solution set of a variational in-
equality problem governed by continuous monotone mappings. They
proved the following theorem:

Theorem 1.5. (Chamnarnpan and Kumam [10]) Let C be a nonempty
closed convex subset of a real Hilbert space H. Let T : C — C be a con-
tinuous pseudocontractive mapping, A : C — H is a continuous mono-
tone mapping such that F = Fix(T)NVI(C,A) #0, f:H — H is a
contraction with a contraction constant 3 € [0,1) and B: H — H is an

inverse strongly monotone mapping. For eachn € N, let T,, and F,, be
defined for each x € H by

T'n

T,(x) = {zec:<y—z,Tz>—i<y—z,<1—rn>z—x>so,wec},

1
F.(x) = {ZGC: (y—z,A7)+—(y—2z,2—x) >0, VyEC},

I'n
then the sequence {x,},>1 generated iteratively from arbitrary x| € C
by
o = F.x,
Xnt1 = OYf(xn) 4 Opxn+ (1 = 8)1 — 0,B) T}, vy, n>1,(1.8)
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converges strongly to an element x* € Fix(T)NVI(C,A) which is the
unique solution of the variational inequality

(B=yf)x",x—x") >0VxeFix(T)NVI(C,A),

where oy, € [0,1]; r, € (0,00) and 8, € [0, 1] are such that

8

(C) lima, =0, Y oy =,

n—=

—_

(CZ) r}gl;losn - O, nz:] |6n+1 - 5n| < oo,

(C3) liminfr, >0, Y [rwy1 —ra| <oo.

n=1

The iterative sequence generated in [10] converges strongly to a
common element of the set of fixed points of a continuous pseudo-
contractive map and the solution set of the variational inequality prob-
lem. The result obtained in [[10]] extended that of [21]] from the class of
nonexpansive mappings to that of continuous pseudo-contractive map-

pings.

Motivated by the results of the authors mentioned above and others such
as [[11} 19, 22, 136]], an iterative scheme which is more general than the
schemes studied by [10} 14} 21} 30, 34, 35] is studied. The theorem ob-
tained extends, generalizes, improves, unifies the corresponding results
of these authors.

2. PRELIMINARY

The following will be helpful in the actualization of the main result of
this paper:

Recall that a real normed linear space E is said to be uniformly con-
vex if and only if for any € € (0,2], there exists a & € (0,1] such
that for all x,y € E with ||x|| = 1 = ||y||, |[x —y|| > €, we have that
H%(x +y) || < 1 — 6. It is well known that every real Hilbert space is
uniformly convex (see, for example, [[12]] and [39]).

Let C be a closed convex nonempty subset of a uniformly convex real
Banach space E. Given a bounded sequence {x,}; _, in C, define (for
each m € N)

rm(y) = sup{|lxx —y|| : k> m},y € E,
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then it is shown in [[15]] that there exists unique ¢, € C such that
rm(cm) =inf{r,(y):yeC}=rp,VmeN,

Tl < rpmand 0 < r, Vm €N, so that n%lglo T = 1nf ry, exists. Edel-

stein [[15] showed that if lim r,, = inf r,, = 0, then the sequence {x, }
m—ro0 meN
converges.

If the sequence {c;, }»>1 converges, then ¢o = lim ¢, is called the as-
= m—oo

ymptotic center of {x, },>; (with respect to C).

Proposition 2.1 (Sahani and Bose [23]). A point co € C is asymptotic
center of {x, }n>1 (with respect to C) if and only if
limsup ||x,, — co|| = inf limsup ||x, —z| -
n—oo 2€C p—eo
Lemma 2.2 (Edelstein [[15]). Let C be a closed convex nonempty subset
of a uniformly convex real Banach space E, Let {x,},>1 be a bounded

sequence in C and {cy }ym>1 be as in Remark |2} then ¢ = lim c,, exists.
= m—soo

In other words, the asymptotic center c of the sequence {x,},>1 (with
respect to C) exists and is unique.

Lemma 2.3 (Shimoji and Takahashi [27]). Let C be a closed convex
nonempty subset of a strictly convex real Banach space. Let {T;} j>1 be
a countable infinite family of nonexpansive mappings of C into itself and
let {A;}j>1 be a real sequence such that 0 < A; <b < 1 forall j €N,
for some constants b € (0,1). Then, for all x € C and k € N’,}Eﬂ, Upk(x)

exists, where Uy is as in definition[I.3|
For k =1 in Lemma[2.3] we define a mapping W : C — C by
W(x) = ,}LHLU"J (x) = ,}LII}OW”()C)’

then, by Lemma the map W is well-defined; moreover, W has the
following property:

Lemma 2.4 (Shimoji and Takahashi [27]). Let C be a closed convex
nonempty subset of a strictly convex real Banach space. Let {T;}>1
be a countable infinite family of nonexpansive mappings of C into itself

such that ﬂ F(T;j) # 0 and {A;} j>1 be a real sequence such that 0 <

j=1
A <b<1 forall j €N for some constant b € (0,1). Let W, and W be

as in Remark 2| respectively, then F(W) = ﬂ F(T;) = ﬂ F(W,)
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Lemma 2.5 (Colao and Marino [14]). Let C be a closed convex nonempty
subset of a strictly convex real Banach space. Let {T;} ;>1 be a count-
able infinite family of nonexpansive mappings of C into itself such that

ﬂ F(Tj) # 0 and {A;} j>1 be a real sequence such that 0 < A; < b <

1 forall J € N for some constant b € (0,1). Let W,,: C — C be as in
Remark|2] then

W1 (x) — H<2H7L |lx—pl| VxeC,pe ﬂF
j=1
Lemma 2.6. Let H be a real Hilbert space, then the following inequality
holds:
e+ 217 < [l +2 (vx+y) Y,y € H.

Lemma 2.7 (Xu [32]). Let {A,}n>0 be a sequence of nonnegative real
numbers satisfying the following conditions:

}Ln—o—l < (1 - an)ln‘i‘on,n > 0;
where {04, },>0 and {Gn}n>0 are sequences of real numbers such that

{0 }n>0 C[0,1] and Z 0, = -+oo. Suppose that 6, = o(at,),n > 0 (i.e. lim On _

n=0 n—ree Oy

) or Z |on| < +<>oor11msup— <0, then A, — 0 asn — oo.

n=0 n—o0 an
Lemma 2.8 (Suzuki [28]). Let {t, }n>0 and {yn}n>0 be two bounded se-
quences in a real Banach space such that y, 1 = Bpyn+ (1= Bn)tn, foralln>
0, where { By }n>0 is a real sequence satisfying the condition 0 < lirg inf 3, <
n—soo
limsup B, < 1. Suppose that

n—soo

limsup([|t+1 —tall = [[yn+1 —yall) <0

n—soo

then, lim [[t, —y,|| =0
n—oo

Lemma 2.9 (Blum and Oettli [8]]). Let C be a closed convex nonempty
subset of a real Hilbert space H. Let f:C x C — R be a function
satisfying the following conditions:

(Al) f(x,x) =0 forall x € C (that is, f is a bifunction);

(A2) f is monotone, in the sense that f(x,y)+ f(y,x) <0V x,y € C;

(A3) limsup f(rz+ (1= 1)x,y) < f(x,y) Vx,y,2 € Cr € [0, 1];

t—0
(A4) the functiony — f(x,y) is convex and lower semicontinuous for

all x € C,
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then for all r > 0 and x € H there exists u € C such that
f(u7y)+%<y—u,u—x> >0VyeC.
Moreover, if we define a mapping G, : H — 2€ by
G,(x) = {u eC: f(u,y)—l—%(y—u,u—x} >0Vye C} Jorallx € H,

then the following hold:
(1) G, is single valued for all r > 0
(2) G, is firmly nonexpansive, that is, for all x,z € H
IGrx— Gral|* < (Grx—Grz,x—2)
(3) Fix(G,) = EP(f) forallr >0
(4) EP(f) is closed and convex.

Lemma 2.10 (Zegeye [38]). Let C be a nonempty closed convex subset
of a real Hilbert space H. Let T' : C — H be a continuous pseudocon-
tractive mapping, then for all r > 0 and x € H, there exists 7 € C such
that

1
(r=2T2) ——y—z(1+nz—x) <OVyeC.

Lemma 2.11 (Zegeye [38]). Let C be a nonempty closed convex subset
of a real Hilbert space H. Let T' : C — C be a continuous pseudocon-
tractive mapping, then for all r > 0 define a mapping F, : H — C by

1
F,(x):{zEC: <y—z,T’z>—;(y—z,(l+r)z—x> SO‘V’yEC},xEH,

then the following hold:
(1) F, is single valued
(2) F; is firmly nonexpansive type mapping, that isV x,y € H,
||Frx—Fry||2 < (Fx—Fy,x—y)
(3) Fix(F,) is closed and convex and Fix(F,) = Fix(T') ¥ x > 0.

The following Lemmas whose proofs can easily be obtained shall also
be needed in what follows

Lemma 2.12. Let C be a closed convex nonempty subset of a real
Hilbert space H. Let f:C x C — R be a bifunction satisfying con-
ditions (A1) to (A4); y : C — RU{+oo} be a proper lower semicontin-
uous convex function and 0 : C — H be a monotone mapping. Let r > 0
and let G, be the mapping in Lemma then for all p,q > 0 and for
all x € H, we have

GGl < L= (G + 1)
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Lemma 2.13. Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T' : C — C be a continuous pseudocontractive
mapping. Forr> 0, let F,: H — C be the mapping in Lemma([2.11} then
for any x € H and for any p,q >0

I ) < 22+ 1 ).

3. MAIN RESULT

In the sequel, the following assumptions are used:

Assumptions: H is a real Hilbert space; T’ : H — H is a continuous
pseudocontractive map; T : H — H, j=1,2,3--- is a countable infinite
family of nonexpansive maps; f : H x H — R is a bifunction satisfying
conditions (Al)-(A4); g: H — H is a contraction map with constant
k€[0,1); A: H— H is a strongly positive bounded linear operator
with coefficient y; B : H — H is an 1n-inverse strongly monotone map-
ping; the sequences {ry }n>1, {0 }n>1,{Bn}n>1 and {A},>1 are real se-
quences such that r, > 0 for all n € N,F}LII; r,=ro>0,0<ao, <1 for

alln €N, lim 0, =0, Y oy =+00,0< 11152@[3” <limsupfB, < 1;0 <

n=1 n—oo
A, < b < 1 for all n € N and for some constant b € (0,1). & is a real
constant such that 0 < & < 2n, where n > 0. Q = Fix(T")NEP(f)N

B~1(0)N (") Fix(Tj) # 0. For r > 0,G, and F; are as in Lemma [2.9/and
j=1

[2.T1] respectively.

Strong convergence of the sequence {x, },> generated iteratively from
arbitrary x; € H by

Xnt1 = 0 Y8 (Xn) + Buxn + (1 = Bu)l — ayA)Wy (I — EB)F,, Gy xXny n > 1
(3.1)
to a unique solution x’ € Q of the variational inequality problem
(yg(x') —AX ,y—x) <0 VyeQ (3.2)
is proved. The following is the main theorem of this paper:
Theorem 3.1. Let {x,},> be given by (3.1). Suppose that Assumptions

above hold, then {x,},>1 converges strongly to a unique solution x' € Q
of the variational inequality problem (3.2).

Proof. This is broken into several steps:
STEP 1: We show that the sequence {x, },>1 given by (3.1) is bounded.
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Observe that for all x,y € H,

I(x—&Bx) — (y— &By)| |(x—y) = & (Bx—By)|I?

lx—yl* —&(2n — &) |Bx— Byl

Since 0 < £ <21 we get
|(x—EBx) — (y=EBy)|| < [lx—yl| Vx,y € H,

Thus, for p € Q,

(= EB)F, Gt —plI* = ||(I = EB)F;, Gy — (1= EB)p|?
< IE,Gra = plI* < Ml — plI?

Since lim o, = 0, let us (without loss of generality) assume that for all
n—soo

neN, o, <||A]|71 (1= B,). So, for each x € H such that [[x|| = 1, we
have

(1= = 0 A)x,x) = (1 —PBy) — 0t (Ax,x)
2 (l_ﬁn)_anHAH
(1= Ba) = IA] =" (1= Ba) Al =0.

Thus, for all n € N, the operator (1 — f3,)I — ;A is a positive bounded
linear operator, so that

V

(=Bl — Al = Hshlgl (((1 = Ba)l — aA)x, x)

- Hshlfl(l = B — 0w (Ax,x))

< 1-Bi—ony

Next, we show by mathematical induction that

o=l < ¢ = max s = pll - e = apl | G

Observe that for n = 1, the inequality (3.4) clearly holds. Suppose that
the inequality is true for n = ¢ > 1, we show that it holds forn =c+1.

le—y1* = 2& (Bx— By,x— y) + & || Bx — By||*
2 2 2
< |le=ylI* —2&n |[Bx — By||* + &* || Bx— By|

(3.3)
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To see this, observe that for p € Q and using (3.1]) we obtain that

[xe+1 = pll

|acyg(xe) + Bexe + ((1 = Be) — 0tA) X We(I — fB)FrCGerC 4l
||((1 - ﬁc)l_ acA)(WC(I - éB)FrCGerC - p) + ac('}/g(xc) —Ap)
+Bc(xc_p)||

(1= Be — ac))[|We(I = EB)F, Gy xc — pl| + Bellxe — pll
+acl|yg(x.) — Ap|

= (1=Bc—0c))[We(l = EB)F, Gy xe — pl| + Bellxc — pl|
+acl|lvg(xe) — ve(p) + ve(p) — Apl|

(1= Be = aey)|[We(I = EB)F;, Gy xc — pl| + Bellxe — p|
+acylg(xe) —g(p)ll + aellve(p) — Ap|

(1= Be — acy)|We(I = EB)F;, Gy xc — pl| + Bellxe — p|
+acvkl|lxe — pll + oc|lve(p) — Apl|

(1 —aey+ocyk) xe — pll + o [lvg(p) — Apl|

= (I—oey(1=k))[lxc— pll + o ||yg(p) — Apl|

= (1= (1 =) e pl +- 01 = K)o () A

(1 —oy(1—k))M+ o y(1 —k)M = M.

IN

IN

IN

IA

IN

So, (3.4) holds for all n € N. Hence, {x, },>1 is bounded. So, the follow-

ing {g(xn)}nzla{Wn(l_éB)FrnGrnxn}nzlv {(1_ éB)FrnGrn'xn}n217{FrnGrnxn}nzl
and {G, x, },>1 are bounded.
STEP 2: We show that lim,,_,c ||x,,1+1 — x,|| = 0.

Now set ¢, =

Iny1—Ih =

1_llgn (xn+1 - ﬁnxn), then x, 1 = Buxn + (1 — ,Bn>ln Thus,

1 1
1— Buet (%42 = B 1Xn41) — W (%n+1 = Bnxn)

1
1— Bn+1
+ ((1 - ﬁnﬂ)l - O‘nHA)WnH (1 - gB)Frth Grn+1xn+1)

1 —lﬁn (an'yg(xn) + ((1 - ﬁn)l - anA)Wn(I - gB)FrnGrnxn)

O+ 1
1— ﬁn—i—l

(0
1 n'B (vg(x,) — AW, (I — éB)FrnG,-nxn)
— Pn
+Wat1 (I - ‘:B)Frn+1Grn+1xn+l - Wn(l - éB)FrnGr,,xn

+Wn+1 (I - gB)FrnGrnxn - WVH-l (I - éB)F”n Grnx”'

(01 178(Xns1)

(yg(xn+1) _AWYH‘] (I - éB)FrnJrl Gr11+1xn+l)
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Thus, we obtain (for some constant My > 0) the following:

1_Bn+1 l_ﬁn
+ [ Wog 1 (I — gB)FrnGrnxn — W, (I — gB)FrnGrnan

+[[Wai1 (I = EB)F, rust Oropi Xnt 1 — W (I - éB)F’nG’nx”H

o (04
st —tall = st —xal] - < [ w1, O ]Mo

— %01 — Xn||
Ot 1 o/ }
< + My
1_ﬁn+1 1_ﬁn
+2H2’ || éB FrnGrnxn p||+|| Tnt-1 rn+1xn+1
Fr,hq Grnan + || Fntl Gr,lxn - FrnGrnan
— [xn-+1 — xa|
O+1
< + Mo+2| | A;||F.,Grx
A JHI I, Grta—
+HGrn+1xn+l Grnan_'_H rnHGrnxn_Fr,,Grnan
— [ 41 — x|
0/ |
< + Mo+2| | Ajl|F,Grxn—p
T e LA GRS

+ HG”n-Hx”JFI - Grn+1an + HGron” B Grnx"H

+H rn+1Grn'x”_FrnGrnxn||_|’xn+1_xn|’
041
< + Mo+2| | A ||F,Grx
St 13 B Gt — ]

Fpel — T
LI, Gl 2 Gl + e
Since 0 < /l < b < 1 forall n € N and for some constant b € (0, 1), we

have hm H/l =0. So, we obtain that limsup(||t,+1 — t|| — [[Xn4+1 — xn||) <

n—oo

“j=
0. Therefore, lim |ty — xx|| = 0 by Lemma and we know that

X1 —Xp = (1= By) (¢t — x). Hence,

nlgl{)lo l|%n4+1 — xa]| = 0. (3.5)
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STEP 3: In this step, the following equalities are established:
lim [|W,(I — EB)F,, Gy xp —xn|| = lim |Gy, xy — F, Gy, x|
n—oo n—oco
= lim ||BF,, G, x,||
n—oo
= lim ||x;, — Gy, x|
n—oo

= ,}grolo ||‘xn _FrnGrnan

= r}grolo ||Wn(1 - gB)FrnGrnxn o FrnGrn‘an =0.
To see this, we have that for some constant M > 0,
[0 — Wi (1 — gB)FrnGrnxn” < e = Xt |+ = Wa (1 — gB)FrnGrnan
= [lxn —Xnt1 |

|0t Y8 (xn) + Brxn + [(1 — Bn)I — A
XWu(I — EB)F,, Gy xn — Wy (I — EB)F,, G, x|

< X1 — Xl
+0, || Y8 (xn) — AW, (I — EB)F,, Gy, x|
+ By |20 — Wi (I — gB)Frn GranH

< X1 — Xl 4 oMy

+ﬁn H'xn - Wn(I_ éB)FrnGrnan

Thus,
Wi~ EB)F, G =i < = (lsn e[ +0udh) (36
Using and the fact that nlgg o, = 0, we obtain that
B [[Wa (1 — EB)F;, Gyt —3l| = 0. (3.7)

Using (2) of Lemma [2.9]and for fixed p € Q we have
HGrnxn_p”2 < (G %n—PsXn— D)
1
= 3 [1Gnza =PI+ llta =PI = lltn = Gl ]

So,
”Grnxn _PH2 < Hxn _pH2 - Hxn - Gr,,xn\|2~ (3.8)

Also, using (2) of Lemma[2.T1] we have
||FrnGrnxn_p||2 < <Fi’nGrnxn_pyGrnxn_p>

1
= B [HFrnGrnxn _P||2 + ||Grnxn —p||2 - HGrnxn _FrnGrnanz] .
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So,
||FrnGrnxn _pH2 < ||Grnxn —p||2 - ||Grnxn - FrnGrnanz- (3.9)

Using the recursion formula (3.1), Lemma 2.6/ and convexity of ||. |?,
we obtain

| X1 —PH2 = |l yg(xa) + Buxn 4 ((1 = Bu)I — 0,A)W, (I — EB)F,, G/, x _PHZ

< ﬁn||xn_l7||2+(1_ﬁn)HWnU_éB)FrnGrnxn_sz
+2a Wg(xn) _AWn(I_ éB)FrnGrnxnaan - P>
2 2
< Ballxast — pI™+2Bn [1x0r1 — Pl xn — Xn1 |+ Bu [l X011 — Xl

+(I_ B”l) H(I_ éB)FrnGrn‘xn _I)H2
+204:(Yg(xXn) — AW (I — EB)Fy,, G, Xn, Xn 1 — P)-
Thus, using (3.3)
i1 =plI? < (1T —&B)F, G — plI?

B
+1_nB 2 llxn+1 = Pl + 41 = xall) 11 — x|
n
20
=+ 1— B <yg(xn) _AWn(I - éB)Fr,,Gr,,xnvxn—l—l —P>
n
S ”FrnGrnxn_pH2_é(2n_g)HBFrnGrnxnuz
B
+#(2 %41 = Pl %001 = 2Xall) X X011 — 2]
20,
+ 1—B (v8(xn) — AW, (I — EB)F;, Gy, Xn, Xn i1 — D)
n
< xa _P”z —[|Grxn — FrnGrnanZ -&(2n—-¢) HBFrnGrnan2
B
+1 .y (2 [Int1 = Pl [xn+1 = Xnll) 01— Xa|
n
20,
+ 1—B (vg(xn) — AW, (I — EB)F;, Gy Xn, Xn i1 — p) . (3.10)

So, for some real constant M> > 0 we have
|G, xn _FrnGrnanZ + &(2n-¢) HBFrnGrnanZ

2 2
< o= pl" = g1 = p

B
+ " 211 — Pl a1 = xalD) 101 — x|
1- B,
2,
+1 ﬁ <yg(xn) _AWn(I_ gB)FrnGrnxnaxn+l —p>
— Pn

IN

(an + Hxn—o—l _an)MZ'
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Therefore,

lim (HGrnxn - FrnGrnxn||2 +& (2n — é) HBFrnGrnanz) =0.

n—oo

since &(2n — &) > 0, applying sandwich theorem we obtain
lim |Gy, xp — F, Gy, xu] = 0 (3.11)
n—oo

and
lim ||BF,, G, x,|| = 0.
n—soo

From the second line of inequality (3.10), using (3.8]) and the fact that
F,, is firmly nonexpansive (thus nonexpansive), we obtain that for some
constant M3z > 0,

”Xn+1 - PH2 < HFrnGrnxn - PHZ - 5(277 - 5) HBFrnGrnxnuz

B
+1 _"B (2 %041 = Pl 101 = Xal[) X X041 — x|
n

Oy
1=Pn
1G5 = PI” + (1 = x| + 002 M3
e =PI = 120 = Giial” + [ln1 = 2l + )5

_|_

X (Y8 (xn) — AW, (I — EB)F,, Gy, X, Xn11 — P)

IA A

So, for some constant M4 > 0,
I = Grall < [ = plI” = a1 — PUI” + [1%ng1 — Xl + 0] M3
< 1 — X[ Ma + [ X001 — Xl + 0] M.

Hence,
lim ||x, — G,nxn|| =0. (3.12)
n—roo

Observe that
lxp — F,,Gr,xn|| = %0 — Gr,xn + G xn — Fy, G, Xn ||
< len = Gl + G n — B, G|
Using (3.11)) and (3.12) we have
,}g{}o [xn — Fr, Gr,xa|| = 0. (3.13)

Furthermore, observe that
|WaI = EB)F,, Gy xn — Fr,GrXnll < ||Wa(I —EB)F,, Gy X0 — X4
+ [ — Fr, Gr, % | -
Using and (3.13)), we have
1im [|W, (1 = EB)F;, Gr, % — F, G| = 0.
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STEP 4: We show that
r}l_{{}o (W (1 — gB)FrnGrnxn —(I— gB)FrnGrnan =0.
To see this, let p € Q be fixed. Then,
(71— gB)FrnGrnxn _PH2 = “FrnGrnxn - gBFrnGrnxn _PHZ
2
= ||(FrnGrnxn_§BFrnGrnxn)_(p_éBp)H
1

= E[” (£, Gr,xn — 5BFrnGran> —(p—¢&Bp) ||2
+||(I - EB)F, Gr,xu — p|°
—||((F,, G, xn — §BF;,, G, xn) — (p — EBp))
—((I— gB)FrnGrnxn —p) Hz]
1 2
S 15, Gr —pl>+ (I = EB)F,, G, xa — p) |
~|(F,Gr,xn — p) — (I = EB)E,, Grotn — p) I
+2& (F,, Gy x, — (I — EB) x Fy, Gy, Xy, BE;, Gy, Xy,)
—&?||BF,, Gy, xa|’]

IN

which implies that

|(I — EB)F;,,Gr,xn _pHZ < xn _P||2 — |, Grxn — (I — gB)FrnGrnanZ

+26 ||y, Gr,xn — (I = GB)F;, Gy, x|

% ||BF;, Gy, xa| — || BF;, G, x| (3.14)
bon =117 4+ 2 g1 = Pl X (g1 —

+ a1 = plI* = 1, Grin — (1= EB)F, G
+28 ||F, Gr,xn — (I — SB)Fy, Gy, xn| X || BF;,, Gy, x| -

IN

But from the first line of inequality (3.10), we have

2
st =PI < (I —&B)E, Grxn—p|

B
+ 1 _nﬁ (2 Hxn—b—l _pH + Hxn—i-l _an) X Hxn—H _an
20,
+ 1 _I’)) X <yg(xn) _AWn<I_ éB)FrnGrnxn7xn+1 _p> .
n

So, for some real constant M5 > 0, we obtain

i1 =PI < [[(1 = EB)E;, Grin = P> + (0 + |1 — %a ) M.
(3.15)
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Now, using (3.15)) in (3.14)and rearranging the terms, we obtain (for
some real constants Mg > 0) that

1Er, Grn — (1 — gB)FrnGrnanZ < (O +[|Xn+1 — X[+ |BF, G, x| ) M6
which implies that
1im [|F, Gy, 0 — (1 EB)F, G| = 0.
But,
(I = EB)F;,,Gr,xn — xnl| < ||(I = EB)F,, Gy X — Fr,, G, |
+||E, Gr, Xn — Xp|| — 0asn— oo

and

Wa(I = EB)F;,, G, xn — (I = EB)F, Grxn|| < ||Wa(l — SB)EF,, G, xn — i
+|lxn — (I = EB)F, Gy, x| -

The last inequality implies

r}g{}o Wa(I — EB)F,, G, xn — (I — EB)F;,,Gr, x| = 0.

We note that, since every real Hilbert space H is a uniformly convex

real Banach space and {x,},> is a bounded sequence in H, then we

obtain by Lemma that there exists a unique x* € H such that x* is

the asymptotic center of the sequence {x,;};>1, (where {x,;};>1 is a
subsequence of {x, },>1).

STEP 5: In this step, we show that the asymptotic center of {x,},>]
belongs to Q. Recall that li_r>n rn =ro > 0 and by Lemma 2.3 Wx =
n—soo
lim W,x exists for all x € H. Furthermore, we have by Lemma [2.4| that
n—oo
Fix(W) = M, Fix(W,) = N7_, Fix(T;). Thus, if x* is the asymptotic
center of {x, },>1, then
H'xnj _WX*H < Hxnj-i-l _'xnjH + Hanjyg(xnj) +anxnj + ((1 _ﬁnj)l_ anjA)
X W, (I — éB)Frnj Gr, Xn; — Wx*||

< ngr =2, | B [0, = W[ 4 (1 = B))
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W =W ) 0 )~ AW 1 EB)F, G|
< a1 = |+ B i, — W

#1-8) (10~ €I, Gy 3|+ 1~

| W, 5" — W' ||) + 00, |78 () — AWi (I — EB)F;, G, |- Thus,

we obtain
* 1 *
1%, — W] e ;41 =X || + | (I = EB)Fy, G, Xny — X || =+ |30, — X7
nj
o
+{[Wax™ = W™ + 1— ljanj 178 (xn,;) — AWy, (1 — éB)FranrnjxnjH-
So that

limsup [|x,,; — Wx"|| < limsup [|x,; —x"|

Jeo Jreo
This implies by Proposition (with C = H) and uniqueness of x* that
Wx* =x*, thatis x* € ﬂ Fix(Tj). Next,

Jj=1

||xnj_Fr0x*|| < ”xnj—l—l_xnj||+||anjyg(xnj)+ﬁnjxnj+[(1_ﬁnj)l_anjA]
X W, (1 — §B)Frnj Gr, Xn; — Fro x|

< gt — iyl + By, — ol (1~ )
(191~ €I, G 5 B G|
1P, Gty — Fo i | 4+ |y — i ]
I3 = o) + 15~ AW, (1~ GBI G|
< gt =yl + By, — P’ (1~ )

X (Hwnj (I=&B)F,, Gy, xn; = Fy, Gy, Xu]|

* |rnj_r0‘
|Gy iny = g | 4 o, = "+ ==

I+ 131
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So that we obtain

||xnj_Fr0x*|| S ﬁn ||xnj+1 xnj||+HW ( _gB)Franrnjxnj_Franrnj'xnj”
J
|7

)
+mexM+MﬁHH—%—“%W+WM

_|_

o .
78 () — AW, (I = EB)E,, G, i .
_ﬁnj J J

Thus,

limsup |x,; — Frpx*[| < limsup ||, — x|
n—oo Nn—yoco

So, by Proposition [2.1} we obtain that F,,x* = x* which means 7’x* =
x*, that is, x* € Fix(T"). Moreover,

Hxnj - Grox*H < Hxnj—i—l _xnjH + ||O‘njyg(xnj) +ﬁnj‘xnj + [(1 - an)l_ OanA]
X Wy, (I — éB)Frnj Gr, Xn; = Gy x|

< Hxnj-i-l _xnj” +an||xnj - Grox*H + (1 _an)
X (Han (71— éB)Frnj Gr, Xn; = Fr,, GrnjxnjH
1, Gry oy = i |+ [Py = Gy 2,1+ |G, ;= G ¥
“‘”Gran* - Grox*H) + 0|8 (X)) — AW, (1 — &B)FranrnjxnjH
< ||xnj+1 _xnjH +ﬁ”lj||xnj - G"ox*H + (1 _ﬁnj)

+||Franrnjxnj _xnjH + ||x7’lj - Grnjxnj” + ”xnj - Grnj |

* ‘r"j - r0| * *
oy = |+ (1G] + )
—|—anjH’yg<xnj) —Aan(I— gB)FranrannjH-

Thus, we obtain

[y = GroX”[| < [y = X [ 4+ [Wa; (I = SB)Fy, G,

Bn]
_FranrnjxnjH + ||Franrnjxnj _xnjH + ||x”lj - Grnjxnj”

|rn, — 1o
o = |+ = (1G] + 1)

_|_

Q.
1—;3 Hyg(xnf)_AW"J(I_éB)FVn/‘G’n;‘x”j”-
nj o J
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Thus,

limsup [|x,; — Grx*[| < limsup ||, — x*|.
joe jres

By Proposition[2.1]again we have G, x* = x*. Hence, x* € EP(f). Hav-
ing shown that G, x* = x* = F, ,x*, using this fact and Lemma we
have

o, — (5 = EBXY| < gt =+ 10, 78 i)+ B + [(1 = By ) — 0 4]
XWy, (1= EB)F, Gy, o, — (x" — EBx")|

< 1 = 4 B, — (" = EB) [+ (1= By,)
% (IWay (1 = EB)F, Gy, 0, — (1= EB)F, G, 3|
(= EB)F, Gy, o, — (" = EBx)])
T 0y ”Vg(xnj> — AW, (1 — éB)Franrnjxnj |

< 1 = 4 B, — (" = EB) [+ (1= By)
< ([IWay (1 = EB)F, G o, = (I = EB)F, G, |
+1Fr,, Gr, i, — 511
400, 1| 78 (Xn;) — AWy, (1 — éB)Fran}’njxl’lj |

< 1 = 4 B, — (" = EB) [+ (1= Bo)
% ([IWiy (1~ EB)F,, G, o, — (I = EB)F, Gr, |
H1Fr,, Gy i, = Fry Gog* | 4 |1, GroX* = Fiy Gt
+ 0t || V8 (xn; ) — AW, (1 — §B>Franrnjxnj|’

< et =, |+ B o, — (5 = EB) [+ (1= By,)

X <an (I=EB)F,, Gy, X, — (I = EB)F,, Gy, x|

|G, i, = G |+ 1F, G = Fry G
00| Y8 (k) — AW, (I = EB)E, G, i
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which implies that

[l = (" = SBX) | < 1 =2 | 4 Bl — (6" = EBxT) [ + (1 = By)

which gives

(19,1 = EBYE G, — (1= EB)E, G |
+\|Grnjxnj — G,njx* |+ ||G,njx* — G X" + ||F,nj Grx*
—Fn G| ) + 00 |78 (51,) — AWy, (1 = EB)E,, G i |
1= g |+ B o, — (5 = EB) [+ (1= B)
(IWo, (1 = EB)E, Gy, 0, — (I~ EB)F, Gy, 3|

IN

[7n; — 10

Hlben; =7+ X ([[Fro Grox”|l

201G [+ 18°1)) + i [1V8() — AW, (1 — EB)E, G, 3

1

iy = (" =SB < gl
B,

Thus, we have

limsup [|x,; — (x* — EBx")[| < limsup [|x,; —x

jveo

O
g, — ]+ e 0
ro

o)

"l

Jj—reo

So that Proposition gives x* — EBx* = x* and this implies x* €
B~1(0). Hence, x* € Q. STEP 6: Here, we show that if X' € Q is

the unique solution of the variational inequality (3.2)), then

limsup(yg(x') — Ax',x, —x') <0.

n—eo

Now let {x,,} j>1 be the subsequence of {x,},>1 such that

limsup(7g(x,) —A¥,x, =) = lim (7(x,,) —AY ox,, —).

n—so0

Lett € (0,1),x €

H be arbitrary and x* be the asymptotic center of

{xn;}j>1, where {x,,};>1 is as given by (3.I), then using Lemma
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we have

o, =" — 1 —x") |2

Xp, —x*||? =20 (x —x* xy, — X —t(x—x*
J J

[Ey —x*|P 42t (e — Xt X (x—x") — Xp;)-

Since x* is the asymptotic center of {x,,};>1, then using Proposition

2.1] we see that

limsup [|x,; — x
j—roo

*

Thus,

I”?

limsup [|x,; —x* —#(x —x")
jreo

I

limsup [|x,,; —x* 12
jroe

+2¢limsup(x — x*, x" +1(x —x") —xy).

J—reo

0 <limsup(x —x",x" +£(x —x") — xp;).

But,
(x —x",x" —x,

So,

J—ree

J

limsup{x —x*, x" —x,,)

=

>

)= (=X (e —xT) — X)) —t]]x —x*||2.

limsup((x —x*,x" +1(x —x") — xp;) —t]lx—x*|?)
jes |

limsup (x —x*, x* +£(x —x") —x) —t]lx —x*|?
jres

—t||x—x*||2.

Since ¢ € (0, 1) is arbitrary, we obtain

limsup{x —x",x" —x,;) >0Vx € H

J

—»00

In particular, for x = x* 4 yg(x’) — Ax’ € H, also using the fact that x* €

Q. we obtain

0 < limsup(yg(x') —Ax',x" —x,,)

Jre

< <yg(xl) _AXI7X* _xl> +hmsup<yg(xl) _Axlaxl _xnj>

J—ree

= () —AY ¥ —x) & lim (g() — AY ¥ )

Jree

which implies that

< lim (yg(x') =AY, x' — x,;)

lim (yg(x') — Ax',x,; — ) <O0.

e
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Hence,

limsup(yg(x') — Ax,x, —x') = lim (yg(x) — Ax’,xnj—x') <0.

n—yoo J—roe

STEP 7: Finally, we show that {x,},>; converges strongly to x’, the
unique solution of (3.2). Observe that from the iterative sequence (3.1)
and Lemma [2.6] we have

[[%n+1 _lez = [0 yg(xn) +[(1 = Bu)l — 0nA] X Wy (I — EB)F;, Gr, xn + Bun _lez
= (1= B — 0wA] x (Wa(I = EB)F,, Gy, X = x') + P (x — ')
+04(78(xa) — AX)||?

< (1= Bl — 0uA] X (Wl = EB)F, Gy, X — ') + B0 — ) |2
+204 (Y8 (xn) — AX' X1 —X)

< (1= Bu— 0¥+ B on —'[|> + 205 | v8 (xa) — AX'||> + 205, (1 = By)
x (vg(xn) —Axl,Wn(I— EB)F, G, Xn — Xn)
+204,(1 — Bo) (vg(xn) — AxX ,x — X) + 2B, 04, (u — Ax' x, — X)
—204; (Y8 (xn) — AX',A(Wo(I = EB)F;, G, 3 — X))

= [1 =207l — x>+ 0 Vllxn — X[ + 205 |78 (xa) — AX'|?
+204,(1 = By) x (yg(xn) — AX ,W,,(I — EB)F,, G, xp — Xn)
—202(yg(xn) — AX, AW, (I — EB)F,, Gy, x — X')
+204(vg(xn) — AX' x0 — ')

< [1-2a ]||xn—x H2+O‘n(an+||W( 1 —8EB)F,,, Gy, xn — Xnl|) M7
+204,(yg(x,) — Ax', x, — )

= [1=204,Y][lx0 —X||> + &tu (0 + [|Wi(I = EB)F;, G, Xy — X ) M.
+200, (Y8 (xn) — ¥8(x'), 20 — ') + 206, (yg (x) — Ax', 20, — X)

< [1—2ocn}/]]|xn—xH2+an(an+HW,,(I—§B)FrnGrnxn—an)M7

+20, vk ||x, —x/||2 + 205,,(3/g(x’) —AX x, —x’>

= [1 =20, y(1 —k)]||xx _XIH2 + 0, (0t + [|[Wi (I — EB)F;, G, X — Xn|| ) M7
+204,(yg(x') — Ax', x, — X'),
for some real constant M- > 0. Thus,
X1 —|1* < (1= &) lln — X'[|* + 0,

where 8, =2, Y(1 —k) and 6, = 04, (0, + || Wy (I —EB)F,, Gy, X — X || ) M6 +
204, (yg(x') —Ax', x, —x'). But using _ Step 6 and the fact that lim o, =
n—roo

0, we see that limsup(o,,/9,) < 0. Hence, we obtain by Lemma|2.7|that

n—yoo



268 G. N. ECHEZONA, S.C. OKOYEH, N. N. ARAKA AND E. U. OFOEDU

the sequence {x,},>1 converges strongly to a unique solution x’ € Q of
(3.2). This completes the proof. []

It is worth to note that Marino and Xu [21] pointed out that the unique
solution x' € F(T) in Theorem 1.2 is the optimality condition for the
minimization problem

1
min | = (Ax,x) —h(x) |, 3.16
min (5 (4v) 4t 316
where £ is a potential function for yg (that is, #’(x) = yg(x) forall x €
H). Thus, the unique solution approximated by the iteratives algorithm
introduced and studied in this paper does not only solve the variational
inequality problem

((vg—A)X,y—x") <0,y € F(T),
but it is also the optimality condition of the minimization problem (3.16).

Algorithm (3.1) is more encompassing and more general than algo-
rithms (1.2)), (I.3), (1.4), (1.6)), and (1.8) in the sense that (3.1)) is
a model for finding approximate solutions of more number of problems
when compared with the others. Thus, Theorem @ extends, general-
izes, improves and unifies the corresponding results of Yamada [34],
Marino and Xu [21]], Tian [30], Yao et al. [35]], Colao and Marino
[14], Chamnarnpan and Kumam [10]. Moreover, the problem of well-
defindness observed in [10] is taken care of. Furthermore, it is worthy
to note that there is no further generalization in considering the so called
generalized mixed equilibrium problem (see, for example, [, 12,13} 23]])
instead of equilibrium problem considered in this paper since methods
employed in handling both are virtually the same; moreover, it could
easily be shown that none of them is a generalization of the other.
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