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COMPARISON OF BLOCK IMPLICIT ALGORITHMS AND
RUNGE KUTTA METHODS FOR THE SOLUTION OF NON
LINEAR FIRST ORDER PROBLEMS WITH LEGENDRE
POLYNOMIAL BASIC FUNCTIONS

A.M.BADMUS !, A. O. SUBAIR ?

ABSTRACT. A family of uniform and non-uniform order Linear
Multistep Block Methods was developed using Legendre Polyno-
mial as the basic functions and reconstructed to its equivalent Runge
— Kutta type Methods. The implicit block method at k = 3 gives a
uniform order 6 while implicit block method at k = 4 gives non uni-
form order 6 < x <9 . The continuous formulation of the method
were evaluated at some grid and off grid points to obtain the im-
plicit block methods. Also both methods were demonstrated on
non-linear first order initial value problems (IVPs) and the results
obtained compared favorably with the analytic solution.

1. INTRODUCTION

Most life and physical problems arising from engineering, biology, math-
ematics, physics, and many other branches of science, are naturally non-
linear in nature. This paper concerned with the derivation and the analy-
sis of numerical solutions for non-linear first order Ordinary Differential
Equations (ODE's) of the form.

v = f(x,y), y(xp) =yo fora<x<b (1.1)

where y' = d_)y( and f is a given real valued function of two variables.
Since most non-linear differential equations do not have close form so-
lutions. Hence there is a great need for suitable numerical computations
to handle such class of problems.

Many numerical techniques are available for the solution of (I.1]) such
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as Adams-Moulton, Runge Kutta, Euler’s rule etc. they all have their
permanent characteristic advantages and disadvantages. The Euler’s
method is known explicit one step method and it requires no additional
starting values. Its low order makes it of low practical value. Linear
multi-step method (LMM) achieves higher order with respect to y,4; ,
fn+j Many authors have worked extensively on Block linear Multi-step
methods among them are [1], [2],[3]],[4] and [6] worked on some im-
plicit K-step hybrid block methods for solutions of using power
series as the basic functions. The aim of this paper is to derive some
implicit block LMM using Legendre polynomial as basis (basic) func-
tions, reformulate them into equivalent Runge — Kutta type methods and
use both methods to obtain the numerical solution of non-linear prob-
lems of first order odes

Linear Multi-step method

Definition 1.0 Linear Multi-step method: A LMM with k-step size
have the form;

k k
Yn = Zajyn+j+hZijn+j (12)
j=0 j=0

where ; and B j are constants, y, is the numerical solution at x = x;,
fn=f(xn,yn). If Br # 0, the LMM becomes implicit scheme, otherwise
explicit [8]

Definition 1.1 Zero Stability: The LMM is said to satisfy the
root conditions if all the roots of the first characteristics polynomial
have modulus less than or equal to unity and those of modulus unity are
simple.

Definition 1.2 Runge - Kutta: This method is a family of implicit and
explicit iterative methods used in temporal discretization for the approx-
imate solution of ODEs. They are single step methods however, with
multistep stages per step. They do not require derivatives or the right
hand side functions f in the code, and are therefore general purpose
IVPs solvers. The Runge-Kutta integration method for (1.1) is given

by;
S
Yn+1 :yn+h Z bjkj
j=1
where

S
ki=f(x+ciy+ Y bjkj) i=1.2,--
j=1



BLOCK IMPLICIT ALGORITHMS AND RUNGE KUTTA METHODS... 17

This method can be expressed in a tableau form (Butcher tableau) as
follows

C | A

¢ |ailr a2 -+ -t Als
C2 |dz1 4z -+ ot Al
Cs | Q51 Ag2 -+ -+ g
bT\bl by -+ -+ b

where A = (a;j), i =1,2,---,s is an § x § Matrix, bl =by,by,-- by

and
s—1
C,' = Z a,-j
Jj=0

2. LEGENDRE POLYNOMIAL

The Legendre polynomials are obtained from expansion of a single
cosine rule for triangles or from a solution of Legendre’s differential
equation. The starting point is by differentiating

1 oo
(Z,l) m n;)pn( )

with respect to ¢ and after extracting the coefficients we used some as-
sumptions to produce

Pue) = - dn<2 1)" @.1)

)= S g '
2nz d"

/ _ Y2 qyn—1

Pn(z) C2np) dxt (Z 1)

The (2.1)) is known as the Rodrigues formula which is used to generate
the basis as

Py(z) =1
Pi(z) =1z
Py(z) = %(35—1)
1

P3(z) = 5(5z3 —3z)

1
Py(z) = g(35z4 —3022 +3)



18 A. M. BADMUS AND A. O. SUBAIR

1
P5(z) = <(632° — 707> + 15z)

8
1
Ps(z) = E(231z6 —31574 +10522 = 5)
1
Pi(z) = 6 (42977 — 693z +315z> — 3z5)

3. DERIVATIVE OF THE METHOD

For derivation of block method at k = 3, given a Legendre polynomial
series of the form

p+c—1

yx) =Y 0Pi(z) = yar; (3.1)
j=0
p+c—1

yx) =Y BiPli(z) = fas, (3.2)
j=1

(3.1)is interpolated at x = x,,4;,j = (0,1,2) and collocate (3.2)) at j =

(%,2, %, 3) to form our non linear equations of the form

ptc—1
Y 0Pi(z) =yutj ,j=0,1,2 (3.3)
j=0
p+c—1 3 5
Z ijlj(z):fnﬂ 7j:(§,2>§,3) (3.4)
=1

When using Maple 17 mathematical software to obtain the values of «;
and B; in (3.3) and (3.4) and substituting the values into (3.5) to obtain

our continuous formulation as

Yx = 0oYn +0Yni1 + oYni2 = hIBs f 3+ Bafura+Bs Sy s + Bsfuis]
(3.5)
where
1 67844h05 +111951h* +19257h> +232 3 (39690h° + 243814 + 1404h)x
%= { 67844 76 33922 I

1 (33583h* +82530h% 4 1160) (3x2 — 3)
_|_
101766 hS
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1 (1044973 +936h) (3% — 3x) 6

19

_ (10087h% +232) (¥x* — a2+ 3)
7269 h3 186571 3
4 RO B om B R e
16961 h4 559713 3
wd ! 569268h* +152355h% +2216 12 (57960h° + 8164143 4-6204h)x
'~ 116961 e 16961 1S
4 (853902h* +326475h" + 5540)(3x2 - 1) N 8 (34989h° +4136h)(3x> — 3x)
50883 3 7269 s
24 (79805K* +2216)(Fx — P +3) 66176 §x° — P’ + Px
186571 3 50883 h#
35456 2136 35x4 4 15,2 5
559713 h3
o] L 2165 121h*4-590163h> +8632 3 (423990k° + 628747h> + 48228h)x
>7 67844 1o 33922 s
N 1 (6495363h* +2529270h% +43160)(3x> — 1) 1 (2694631 +32152h)(3x° — 3x)
101766 3 7269 hS
L6 (3091334 +8632) (Fx* — P2 +3) 64304 o — 3 + P
186571 s 50883 h4
| 34528 BLyo 334 1052 3
559713 s
B — —8  396080/k* +117723h% + 1518 8  (1035300/° + 1689975k + 138735)x
371109035 3 254415 h3
16 (554512h* +235446h% 4+ 4235)(3x2 — 1) N 16 (241425h% +30830h) (3x° — 3x)
152649 s 109035 s
64 (3924172 +1155) (Pt — ¥ +3) | 197312 §° — i+ P
254415 h3 152649 s

o 0B e )

21807 h3

By —1 —77535h* —909931* — 2280 N 1 (33075h° — 412188k —71520h)x
2773690 S 84305 s
N 1 (1085491 + 181986h* 4 5320)(3x* — 3) 4 (883264 4-23840h) (3x° — 3x)
50883 "3 109035 h
N 4 (33364117 +15960)(Px* — x2 + 2) 38144 85— 35x3 4 By
932855 s

152649 h*
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1216 W.X — WX + KX — 76
79959 hd

By — —8  88200h* 4-40341h> 4 885 N 8  (26460h° 4 67137h% + 8205h)x

37\ 254415 5 84305 5

16 (17640h* + 11526h%295) (3x> — 1) N 16 (28773h% + 5470h) (3% — 3x)
50883 s 109035 s

231,6 _ 315.4 , 105.2 5 }

Evaluating 1| atx =Xxpyj,j= %, %, 3 and it’s first derivative evaluated
at x = x, 4,7 = 0,1 .We obtain the following five discrete schemes as
our Block method.

281 5859 178227
155072°" ~ 38768° "1  Yn+3 T 15507272
159 675 24111 7119
= 3876873 To3gan+i T 775362 T 1034 s
297 4675 173475
155072”" 38768 " T 155072712 Vn+ 3
375 4335 25425 3075
= 38768 /73 19384 s T 7753672 T o384 3
7 351 2079

378 1728 270 384

= 200 e 20, T Bt h
24033 T 53 ey + ga e+ 53

8505y, — 99360y, 1 + 90855y,+2
= 24231, +945h 12 — 1100Afy+3 + 78880, 3 +6048h, 5

13365y,42 — 45y, — 13320y,41
= 242301fy + 2418hfys2 = Thfoss +8608h, , 3 — 32, s

(3.6)

The order of the hybrid block method (3.6)) at k = 3 gives uniform order
6 with the following error constants

2379 95 111 2103 4l T
86840320° 2481152° 1356880° 112° 168




BLOCK IMPLICIT ALGORITHMS AND RUNGE KUTTA METHODS... 21

3.1. Derivation of second method at k = 4. Equation (3.1) is interpo-
lated at x = x,, and equatlon is collocated at x = xnﬂ, Jj= (0, 1, %,3 4)
to form Non-linear system of the form

p+c—1

Y, ajPi(z) =yntj, Jj=0 (3.7)
=0

Y, aPri(z) = fayj, j=0,1,5,2,5,3,4 (3.8)
= 272

The continuous formulation of (3.7 and (3.8)) are of the form

Yx+ 0oyn = hlBofu+ Bifuwir + B3 Sy i3 + Bafuia+ Bsfy s + Bafurs + Bafral
(3.9)

Following the same procedures used in (3.5)) ,we obtain our continuous
formulation and then evaluated at x = x4, j =1 3.2,3,3,4 to have

the following six discrete schemes below e
Va1 =3 = et e fus — SRS,y 2
_196Tlszhf 3?2(3) s = 3024 hfoa
Yniy ~In = f76932hf 141()46za101hf”+ b ggihf ngmghf” 2
g -
Ytz = yn = égf)hfn e ilshf,,+ ks
Syt s~ s
_%hf +294817952 s = 4;84 hfoa
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Vs =3 = ot o bt — aehfy 3+ S hfass
To M5 pet s — goshuss
Vaia Y= St S i~ 5 Ry s
St S s+
(3.10)

The order of the hybrid block LMM (3.10) at k = 4 gives non constant
uniform order [7,7,7,7,7,8]" with error constant as

9 25 1 25 9 23 T
8960° 229376’ 1008’ 229376’ 8960’ 56700

4. REFORMULATION INTO RUNGE-KUTTA TYPE METHOD

By Butcher array as:

Cl A
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We reformulate equation(3.6)) in the Butcher array as

23

C | A
1 11 673 —104 211 -32 43
3 120 1080 135 360 135 1080
1 ‘ 35 441 -7 351 =9 I3
2 384 640 120 640 40 1920
2 37 92 =224 29 =32 16
3 405 135 405 45 135 405
5 35 2375 —125 875 -35 125
6 384 3456 216 1152 216 3456
1 ‘ 11 21 ot 21 0 1L
120 40 1 40 120
1 ‘ 11 27 =8 27 0 A1
20 40 I 40 120

We obtain an implicit 6 — Stage Runge — Kutta Type method for first

Yn+

where
ki=f
ky=f
ks=f

ka=f

]

order ODE:s as follows
127 8 27 1
4.1)
(xnayn):|
o 104 211 243
R y”+h(120 1080 T 1350 T 3605 T 13555 T 1080
[ 77 351 9 73
x”+2h Int h(384 _120k3+640k4_%k5+1920k )}
2 37 24 29 3216
R, yn+h T Tk~ ks k
xX+3 Int (405 2052 735" 135" T 45" )}
5 2375 125 875 35 125
hoyn+h( >k ks — ky— "k k
gt (384 134562 216 T 11524 216 ' 3456 6)}
i 1. 27 8 27 11
cth, yn+h(mk1+Ek2—gk3+4ok4+0k5+mk6ﬂ
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Also, following the same procedure to reformulate (3.10) of method
k = 4 into it equivalent Runge-Kutta type, as

Lp[23, 6%, 1024 S8 1024, 656 23
Yl = I T 390 M T 94572 T 945 12 T 3574 T 945 0 T ga570 T 378"
4.2)
where
kl—f<xnvyn)

kit ko= k3 550% 3780 ~ 12006~

3923 16483 3124 221 1612 47
60480 30240 3780 280

ki + ko — ks + kg — ks + k

463 10611 809 6723 459 1861 27
47168 11792077 112070 " 8960 ¢ 1120 ° ' 17920 ¢ 7168’

k ko 2%k fa— ke 22k
1t T 120M 756 T 12607~ 7560”7

163 2222 832 116 320 134 29
2520 1378072 1260 ° ' 140

12505 57125 4075 1625 2185 . 9875
193536 ' T 96768 > 6048 - ' 1792 % 6048 ' 96786 °

5
8

725
__193536k7)}

1 29 657 92 243 36 167 0
o=/ [X’“L 3tynth (448kl T 1120% 140" 280~ 140" T 120" 2240k7)]

23 656 1024 58 1024 656 23
k7"f{x”+4“y”+41(378k1*‘945k2_'945 K335k g5 K5 T gashe ™ 378k7)]

5. ANALYSIS OF THE METHODS

The necessary and sufficient conditions for LMM to be convergent
are that it must be consistent and zero stable (Which is the fundamental
theorem of Dhalquist) [7]].

Block method at k = 3 in (3.6) is arranged and defined in matrix form
as
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where;

Then

—1 0 0
N AR 0
0 622001379 0 1 Y n+3 0
prug w2 | =10
0 -2 o o *
24723 Vi s 0
0 90855 0 O 2 0
0 13365 0 0 | L3
0 7119 24111 675 159
19384 77536 19384 38768
0 3075 25425 4335 375
o e i Y
2423 2423 2423 2423
0 78880 945 6048 —1100
2423 8608 2418 —32 -7
0000 O Jny
0000 O fn%
+l0000 0 o
0000 —2424 || f ,
0000 0 fn2
5859 178227
3859 0 0
WP 133%*
o) wE 0 oaqp, Y
AV= 55y 0 —5p3 01
—99369 0 90855 0 O
13320 0 13365 0 O
11 673
0 0 0 96920 8722%0
-1 0 0 — 35 132
(0)71 319}44 15502720
S IO (L 5
0 —1 0 -3 19144 279811296
0 0 1 796920 96920

Now normalized (5.1) by multiplying (A°)~! to obtain

N eNelBaollS

el eNel =)

el e Ne)

el o N

—-_ o O OO

Yn+2
3
Yn+1
1
yn+§
Yn

S OO OO

SO O OO

SO O OO

SO O OO

— e ek ek

SO O oo

SO O OO
SO O O O

fn—H

n+%
fn+2
fn+3

25
281
QB Yn=2
_ 297 Y, 3
155072 5
~ 33 Ym
8505 | | ¥,
45 Vn
(5.1
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F 673 104 211
60 120, 640
Ky, VR
Tl A B g
e g
40 1 40

[0 0 0 O

0 00O

00O0O0

* 00O0O

0 00O

=32

o
a0

=32

135
=35

From definition of zero stability (1.1),

Then
p(R) =det (R
This implies,

p(R) =

SO OO~

oo oo™

SO O~ O

el e Ne)

oo X™MO

N ele N

oo XSO

-0 O OO

O OO O

43 7
1__§,0 fn—i—l
0| | e
ﬁ fn+2
|| ues
120 fn+3

fn—Z

Ta-3

fnfl

fad

Jn
00 O0O01
00 O0O0 1
00 O0O01
00 0 01
000 O0 1
=R -R'=0

(5.2)

Which implies that R = R = R3 = R4 = 0 and R5 = 1 and this implies
the method is zero stable and consistent with order > 1.

Also following the same procedure to analyze (16) of method K = 4,
we found out that Ry = R, = R3 = R4 = R5 = 0 and Rg = 1; hence,both
methods are zero stable and also consistent with order > 1

6.0 Numerical Experiments

Two non-linear first IVPs were used to ascertain the efficiency of our

two methods

Problem 1.
y/ — 1 _y2



0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

X

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
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TABLE 1. Absolute Error for Problem 1

Method at k=3 (9) LMM at K=3

3.60431 x10~°
1.72906 x10~?
6.6690 x 10~°

2.94404 x10°
3.31186 x10~°
2.99503x 10~

1.27065 x10~?
1.93718 x107?
3.07730 x10~°
5.77059 x 1010

TABLE 2. Absolute Error for Problem 2

LMM Method at k=3 LMM Method at k=4

3.1614 x1078
3.1354 x10°8
3.4094 x1078
5.5686 x10~7
5.7371 x10~7
6.4434 x 1077
1.1253 x107°
1.2677 x107°
1.5907 x107
1.4658 x1073

¥(0)=0,h=0.1

Problem 2.

/

y

y(0)=1,

— 22

h=0.1

2.7950 x108
2.7723 x1078
2.8521 x1078
8.4683 x10~°
8.5497 x 10~
9.0007x 10~
1.0025x10~°
1.8660 x10~7
3.7837x10~*
4.8176x1074

R-K TYPE at k=3 R-K TYPE at k=4

1.6400x 1012
1.6070 x 1011
6.0190x 10~ 11
1.6695x 1010
41712 x10710
1.0341 x107°
2.7087 x10~°
7.8960 x10~?
2.7087x10~8

1.1801x 1077

LMM atK=4 REKATK=3 R.XKATK=4

3.6197x107%  1.0669 x10~% 2.3797 x10~!1 1.1000 x 1014
3.4694 x1078 1.0226 x10~8  4.0037 x10~11 2.2000 x10~ 14
3.4404 x1078 9.8843 x107° 4.4685 x10~!1 2.9000x10~14
1.0626 x10~% 2.2833 x10~° 3.8277 x10~'! 3.1000 x10~14
1.0021x10°% 2.2412x107° 2.4839x10~'1  2.7000x 1014
7.8042x 1072 2.0243x10~°  9.5340 x10~'2 1.9000 x10~ 14
1.2375 x1078 1.8240x10~°  3.4680 x10~'2 1.1000 x10~'4
1.0682 x1078 6.9651 x10~'1 1.1998 x10~!' 1.0000 x10~1°
1.0181 x1078 2.7426x10~°  1.5809 x10~!'' 7.0000 x10~1°
8.9687 x1072 2.3359x107°  1.5865 x10~!1' 1.1000 x10~1*

2.0000 x10~14
4.0000 x 10~ 14
7.0000 x10~14
1.5000 x10~13
3.3000 x 1013
7.3000 x 1013
1.5700 x10~12
2.8500 x 1012
1.0000 x 1012
9.4040% 10~
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6. CONCLUSION

The newly block methods at k = 3 and 4 are suitable for nonlinear
first order IVPs of the form (1.0). Each of the block Linear Multistep
methods display their superiority over existing methods. We observed
that each of their equivalent Runge —Kutta type methods performed ex-
cellently with the two nonlinear problems tested with these methods see
tables 3 and 4.
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