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ON THE SUBSEMIGROUP GENERATED BY
IDEMPOTENTS OF THE SEMIGROUP OF ORDER
PRESERVING AND DECREASING CONTRACTION

MAPPINGS OF A FINITE CHAIN

M. M. ZUBAIRU

ABSTRACT. Denote [n] to be a finite chain {1, 2, . . . , n} and
let ODPn be the semigroup of order preserving and order de-
creasing partial transformations on [n]. Let CPn = {α ∈
Pn : (for all x, y ∈ Dom α) |xα − yα| ≤ |x − y|} be the
subsemigroup of partial contraction mappings on [n]. Now let
ODCPn = ODPn ∩ CPn. Then ODCPn is a subsemigroup of
ODPn In this paper, we identify the subsemigroup generated
by the idempotents in the semigroup of order-preserving and
order-decreasing partial contractions ODCPn. In particular, we
characterize the idempotents in the semigroup and study fac-
torization in the subsemigroup generated by the idempotents in
ODCPn. We give a necessary and sufficient condition for prod-
uct of two idempotents to be an idempotent and otherwise.

Keywords and phrases: Contraction mappings, order preserv-
ing and decreasing maps, idempotents, subsemigroup generated by
idempotents
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1. INTRODUCTION

Denote [n] to be an n− chain {1, 2, . . . , n}. A map α which has
domain and image both subsets of [n] is said to be a transformation.
A transformation α whose domain is a subset of [n] (i.e., Dom α ⊆
[n]) is said to be partial. If the domain of the transformation is the
whole [n], then such a transformation is said to be full or total. The
collection of all partial transformations of [n] is known as the partial
transformation semigroup, which is usually denoted by Pn. A map
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α in Pn is said to be order preserving (resp., order reversing) if (for
all x, y ∈ Dom α) x ≤ y implies xα ≤ yα (resp., xα ≥ yα); is
order decreasing if (for all x ∈ Dom α) xα ≤ x; an isometry (i.e.,
distance preserving) if (for all x, y ∈ Dom α) |xα − yα| = |x − y|;
a contraction if (for all x, y ∈ Dom α) |xα − yα| ≤ |x − y|. An
element x ∈ Dom α is said to be a fixed point of α if xα = x,
and is a non-fixed point of α if xα ̸= x. The set of all fixed points
of α is denoted by fix α whereas the set of all non-fixed points of
α is denoted by n(α). i.e., fix α = {x ∈ Dom α : xα = x} and
n(α) = {x ∈ Dom α : xα ̸= x}. An element a in a semigroup S
is said to be an idempotent if a2 = a. The set of all idempotent of
a semigroup S is usually denoted by E(S). It is well known that
an element α ∈ Pn is an idempotent if and only if Im α = fix α.
In other words, α is an idempotent if and only if xi ∈ Ai for 1 ≤
i ≤ p, i.e., the blocks Ai are stationary [14]. An element a in a
semigroup S is said to be periodic if there exists n ∈ N such an is
an idempotent. Let S be a semigroup with 0 (zero) element. A non
zero element a ∈ S is said to be a nilpotent if there exists m ∈ N
such that am = 0, and the smallest m ∈ N for which am = 0 is
called nilpotent degree of a usually denoted by nildeg a. We shall
be writing ∅ to denote the empty map in Pn (i.e., the zero element of
Pn). For standard concept in semigroup theory and transformation
semigroups, we refer the reader to Howie [12, 13], Higgins [18] and
Mazorchuk [17], respectively.

2. PRELIMINARY

The full transformation semigroup Tn (where Tn denote the semi-
group of full transformation on [n]), is known to be a regular semi-
group as in [[18], p.33. Ex.1]. The idempotents in Tn do not form a
subsemigroup for n ≥ 2 as shown by Howie [15]. However, Vorob’ev
[19], showed that the singular elements in Tn are expressible as
product of idempotents in Tn. It is now an interest to researchers
to investigate the algebraic properties of the semigroup generated
by the idempotents elements. The semigroup generated by idem-
potents in Tn was investigated by Howie [15] in 1966. Products
of idempotent in certain semigroup of order preserving maps was
as well investigated by Howie et. al [14]. The semigroup of all or-
der decreasing partial transformation is denoted by DPn. Algebraic
and combinatorial properties of various subsemigroups of DPn were
investigated by various authors, see for example [1, 2, 3, 4, 5].
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Let

CPn = {α ∈ Pn : (for all x, y ∈ Dom α) |xα− yα| ≤ |x− y|}

and

OCPn = {α ∈ CPn : (for all x, y ∈ Dom α) x ≤ y implies xα ≤ yα}

be the subsemigroups of partial contractions and of order preserving
partial contractions of [n], respectively. Let

DCPn = {α ∈ DPn : (for all x, y ∈ Dom α) |xα− yα| ≤ |x− y|}

be the subsemigroup of order decreasing partial contraction maps
on [n], and also let

ODCPn = DCPn ∩ OCPn.

Then ODCPn is a subsemigroup of DCPn and is the subsemigroup
of order preserving and order decreasing partial contractions. It is
worth noting that certain combinatorial properties of the semigroup
DCPn was first discussed by Zubairu and Ali [16]. Moreover, it
was also shown in [16] that DCPn is not regular and its regular
elements were characterized. Some of the earlier researches done on
semigroups of contraction mappings on chain in algebraic context
can be attributed to [6, 7, 5, 8, 11, 9, 10, 16, 20, 21]. Perhaps, it
seems nothing has been done so far on the subsemigroup of order
preserving and order decreasing partial contractions ODCPn. In
this paper, we study the idempotents in ODCPn and describe the
semigroup generated by the idempotents of ODCPn.
Let α be an element of ODCPn and let Dom α, Im α, h(α)

and fix α denote, the domain of α, image of α, | Im α| and {x ∈
Dom α : xα = x} (i.e., the set of fixed points of α), respectively.
For α, β ∈ ODCPn, the composition of α and β is defined as x(α ◦
β) = ((x)α)β for all x in Dom αβ. Without ambiguity, we shall be
using the notation αβ to denote the composition of α and β (i.e.,
α ◦ β).
Next, it is well known that given any transformation α in Pn,

the domain of α is partitioned into blocks by the relation ker α =
{(x, y) ∈ Dom α × Dom α : xα = yα} and so as in [14], any
α ∈ ODCPn can be expressed as

α =

(
A1 . . . Ap

x1 . . . xp

)
(1 ≤ p ≤ n), (1)
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where 1 ≤ x1 < x2 < . . . < xp ≤ n and A1 < A2 < . . . < Ap. The
sets Ai (1 ≤ i ≤ p) are the equivalence classes under the relation
ker α, i.e., Ai = xiα

−1 (1 ≤ i ≤ p).
3. IDEMPOTENTS AND THEIR PRODUCTS

3. IDEMPOTENTS AND THEIR PRODUCTS

We first note the following lemmas from [7] and [4] about idempo-
tent elements inOCPn and arbitrary elements in DPn, respectively.
Lemma 3.1 ([7], Lemma 3.3). Let α ∈ E(OCPn). Then α can be
expressed as

α =

(
A1 . . . ap−1 Ap

a1 . . . ap−1 ap

)
,

where ai ∈ Ai (1 ≤ p ≤ n).

Lemma 3.2. Let α, β ∈ DPn. Then fix αβ = fix α ∩ fix β.

We now characterize the idempotents in ODCPn in the lemma
below:

Lemma 3.3. Every idempotent ϵ in OCPn is expressible as

ϵ =

(
a1 . . . ap−1 Ap

a1 . . . ap−1 ap

)
,

where ap = minAp.

Proof. Let ϵ ∈ E(ODCPn). Notice that E(ODCPn) ⊆ E(OCPn).
Thus, ϵ ∈ E(OCPn) and by Lemma 3.1, ϵ can be expressed as(

A1 . . . ap−1 Ap

a1 . . . ap−1 ap

)
.

Now, it suffices to show that A1 = {a1} and ap = minAp. Suppose
by way of contradiction that there exists a ∈ A1 such that a ̸=
a1. Thus either a < a1 or a > a1. Now we consider these cases
separately.
If a < a1. Then since ϵ is order decreasing we have aϵ ≤ a and

moreover ϵ is order preserving ensures a1 < a ≤ a2. Thus,

|a2 − a| = a2 − a = a2ϵ− a < a2ϵ− aϵ = |a2ϵ− aϵ|.
This contradicts the fact that ϵ is a contraction.
If a > a1. Then a1 < a < a2. This ensures

|a2 − a1| > |a2 − a|. (2)

Notice that a1 and a2 are fixed points. Thus

|a2ϵ− aϵ| = |a2ϵ− a1ϵ| = |a2 − a1| > |a2 − a| (by equation (2)).
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This also contradicts the fact that ϵ is a contraction. Therefore
A1 = {a1}, as required.
Now to show ap = minAp, suppose by way of contradiction that

there exists b ∈ Ap such that b ≤ x for all x ∈ Ap. In particular
b ≤ ap. Therefore

|b− ap−1| = b− ap−1 = b− ap−1ϵ < ap − ap−1ϵ

= apϵ− ap−1ϵ = bϵ− ap−1ϵ = |bϵ− ap−1ϵ|.

This contradicts the fact that ϵ is a contraction and hence the result
follows. □

We now have the following lemma:

Lemma 3.4. Let ϵ ∈ E(ODCPn). If a ∈ Dom ϵ such that a ̸∈
fix ϵ. Then aϵ = max fix ϵ.

Proof. Suppose by way of contradiction that there exists b ∈ fix ϵ
such that b > aϵ. Thus bϵ > aϵ. Notice that ϵ is order preserving, as
such b > a. Also, since ϵ is order decreasing then aϵ ≤ a. Therefore,

|b− a| = b− a = bϵ− a ≤ bϵ− aϵ = |bϵ− aϵ|.

This contradicts the fact that ϵ is a contraction. Hence the result.
□

It is worth noting that products of idempotents in ODCPn is
not necessarily an idempotent. For the purpose of illustrations,
consider

ϵ =

(
1 4 5
1 4 5

)
and ρ =

(
1 2 {3, 4, 5}
1 2 3

)
idempotents inODCP5. The product of ϵ and ρ is ϵρ =

(
1 {4, 5}
1 3

)
,

which is not an idempotent. Therefore E(ODCPn) is not a semi-
group. Now what is the description of the semigroup generated
by the idempotents in E(ODCPn)? To answer this question, we
begin with the following lemma, which gives a necessary and suf-
ficient conditions for product of two idempotents in ODCPn to be
an idempotent.
Throughout the remaining content, we shall refer to ϵ, ρ ∈ E(ODCPn)

as(
a1 . . . ap−1 Ap

a1 . . . ap−1 ap

)
and

(
b1 . . . br−1 Br

b1 . . . br−1 br

)
(1 ≤ p, r ≤ n),

(3)
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respectively, unless otherwise specified. We now have the following
lemma.

Lemma 3.5. Let ϵ, ρ ∈ E(ODCPn) be as expressed in equation 3.
Then ϵρ is an idempotent if and only if for any i ∈ {1, 2, . . . , p}:

(i) if ai = bj for some j ∈ {1, . . . , r − 1} then aiρ = ai or;
(ii) if ai ∈ Br then aiρ = max(fix ϵ ∩ fix ρ).

Proof. Suppose ϵρ is an idempotent. Let i ∈ {1, . . . , p} be such
that:

(i) ai = bj for some j ∈ {1, . . . , r − 1}. Thus ai ∈ fix ϵ and
ai ∈ fix ρ. Thus aiρ = ai;

(ii) ai ∈ Br. Notice that aiϵρ = aiρ ∈ Im ρ = fix ρ. Thus either
aiϵρ = ai or aiϵρ ̸= ai.

If aiϵρ = ai then ai ∈ fix ϵρ = fix ϵ∩fix ρ. i.e.,, ai ∈ fix ρ.
Therefore aiρ = ai.
Now if aiϵρ ̸= ai, i.e., ai ̸∈ fix ϵρ. Thus by Lemma 3.4

aiϵρ = max fix ϵρ. i.e., aiϵρ = max (fix ϵ ∩ fix ρ), as re-
quired.

Conversely, suppose for any i ∈ {1, 2, . . . , p}:
(i) if ai = bj for some j ∈ {1, . . . , r − 1} then aiρ = ai or;
(ii) if ai ∈ Br then aiρ = max(fix ϵ ∩ fix ρ).

Now let x ∈ Dom ϵρ. Thus x ∈ Dom ϵ and therefore there are
three cases to consider, i.e., xϵ = bj for some j ∈ {1, 2, . . . , r − 1},
xϵ ∈ Br, or xρ ̸= bj (1 ≤ j ≤ r − 1) and xρ ̸∈ Br.
If xϵ = bj for some j ∈ {1, 2, . . . , r−1}. Then x(ϵρ)2 = (xϵρ)ϵρ =

(bjρ)ϵρ = bjϵρ = xϵ2ρ = xϵρ.
If x ∈ Br. Then x(ϵρ)2 = (xϵρ)ϵρ = (brρ)ϵρ = brϵρ = xϵ2ρ = xϵρ.
If xρ ̸= bj (1 ≤ j ≤ r − 1) and xρ ̸∈ Br. Then x(ϵρ) = ∅ =

∅2 = x(ϵρ)2. As such in all the cases, ϵρ is an idempotent, as
required. □

We now give the following remark.

Remark 3.6. Let ϵ, ρ ∈ E(ODCPn) be as expressed in equation
(2). Then the product ϵρ is not an idempotent if and only if there
exists i ∈ {1, . . . , p} such that ai ∈ Br, ai ̸= max(fix ϵ ∩ fix ρ) and
ai ̸∈ fix ρ.

We now have the following lemma.

Lemma 3.7. Let α be a non idempotent element in ODCPn. Then

α =

(
d1 . . . dp−1 Dp

d1 . . . dp−1 x

)
with x ̸∈ Dp (1 ≤ p ≤ n) if and only if

α = ϵ1ϵ2 for some ϵ1, ϵ2 ∈ E(ODCPn) with fix ϵ1 ∩ fix ϵ2 ̸= ∅.
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Proof. Suppose α =

(
d1 . . . dp−1 Dp

d1 . . . dp−1 x

)
∈ ODCPn with x ̸∈

Dp. Let dp = minDp. Notice that α is order decreasing and x ̸∈ Dp,

thus x < minDp, i.e., x < dp. Thus define ϵ1 =

(
d1 . . . dp−1 Dp

d1 . . . dp−1 dp

)
and ϵ2 =

(
d1 . . . dp−1 {x, dp}
d1 . . . dp−1 x

)
. Then it easily follows from

Lemma 3.4 that ϵ1, ϵ2 ∈ E(ODCPn). Moreover, one can easily
verify that α = ϵ1ϵ2.
Conversely, suppose α = ϵ1ϵ2 for some ϵ1, ϵ2 ∈ E(ODCPn) with

fix ϵ1 ∩ fix ϵ2 ̸= ∅. Using Lemma 3.4 we can express ϵ1 and ϵ2 as(
a1 . . . ap−1 Ap

a1 . . . ap−1 ap

)
and

(
b1 . . . br−1 Br

b1 . . . br−1 br

)
,

respectively. Notice that fix ϵ1∩fix ϵ2 ̸= ∅. Denote {c1, c2, . . . , cm−1}
where 1 ≤ m ≤ min{r, p}. Notice that α = ϵ1ϵ2 is not an idempo-
tent. Thus in line with Remark 3.6 there exists i ∈ 1, 2, . . . , p such
that ai ∈ Br, aiϵ2 ̸= ai and aiϵ2 ̸= max(fix ϵ1 ∩ fix ϵ2). Notice also
that ϵ2 is order preserving, i.e., cj < ai for all j ∈ {1, . . . ,m − 1}.
In particular, cm−1 < ai. Now aiϵ1ϵ2 = aiϵ2 ̸= ai, hence aiϵ1ϵ2 = y
for some y ∈ [n]. Let Cm = {ai (1 ≤ i ≤ p) : aiϵ2 ̸= ai}. Then
Cmϵ1ϵ2 = y.
It suffices to show that y ̸∈ Cm. Now suppose by way of con-

tradiction that y ∈ Cm. Notice that Cmϵ1ϵ2 = y. Thus yϵ1ϵ2 = y
i.e., y ∈ fix ϵ1ϵ2. Thus fix ϵ1ϵ2 = {c1, . . . , cm−1, y} = Im ϵ1ϵ2 which
means that ϵ1ϵ2 is an idempotent which is a contradiction. Hence

α = ϵ1ϵ2 =

(
c1 . . . cm−1 Cm

c1 . . . cm−1 y

)
and y ̸∈ Cm, as required. □

We now have the following characterization which explains when
a product of two idempotents gives a nilpotent.

Lemma 3.8. Let ϵ, ρ ∈ E(ODCPn) be as expressed in equation
(3). Then ϵρ is a nilpotent if and only if fix ϵ ∩ fix ρ = ∅.

Proof. Suppose ϵρ ∈ E(ODCPn) is a nilpotent. Suppose by way of
contradiction that fix ϵ ∩ fix ρ ̸= ∅. Now ϵρ is a nilpotent implies
there exists r ∈ N such that (ϵρ)r = ∅. Now since fix ϵ ∩ fix ρ ̸= ∅,
it means that fix ϵρ ̸= ∅ i.e., Dom ϵρ ̸= ∅. Now let x ∈ Dom ϵρ
and notice that x(ϵρ)r = xϵρ = x. i.e., (ϵρ)r ̸= ∅, a contradiction.
Conversely, suppose fix ϵ ∩ fix ρ = ∅. This means ai ̸= bj for all

1 ≤ i ≤ p and 1 ≤ j ≤ p. In the product ϵρ, there are two cases to
consider. i.e., either ap ∈ Br or ap ̸∈ Br.
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If ap ∈ Br. Then apϵρ = apρ = br. i.e., ϵρ =

(
Ap

br

)
. Notice

that ϵρ is order decreasing i.e., br ≤ y for all y ∈ Ap. In particular,
br ≤ ap = minAp. Notice also that ap ̸= br. This ensures br < ap
and as such br ̸∈ Ap. It therefore follows easily that ϵρ is a nilpotent.
Now if ap ̸∈ Br. Then ϵρ = ∅ which is obviously a nilpotent. The

proof is now complete. □

In the last two paragraph of the proof of the above lemma, we
have actually proved the following.

Lemma 3.9. If α ∈ ODCPn is a nilpotent expressible as a product
of two idempotents in ODCPn. Then h(α) ≤ 1 and as such nildeg
α = 2.

Now let

σ =

(
c1 . . . cm−1 Cm

c1 . . . cm−1 y

)
∈ ODCPn where y ̸∈ Cm, (1 ≤ m ≤ n).

(4)
Then we now have the following lemma which explains the product
of nilpotent element of height one and σ in ODCPn.

Lemma 3.10. Let α ∈ ODCPn be a nilpotent of height one and
σ ∈ ODCPn be as expressed in equation (4). Then both ασ and σα
are nilpotents of height less or equal to one.

Proof. Let α ∈ ODCPn be a nilpotent of height one and σ ∈
ODCPn be as expressed in equation (4). Thus α is of the form(

A
x

)
whereA ⊂ [n] and x ̸∈ [n]\A. Now either x ∈ {c1, . . . , cm−1}

or x ̸∈ {c1, . . . , cm−1}.

If x ∈ {c1, . . . , cm−1}. Then ασ =

(
A
ci

)
=

(
A
x

)
for some

i ∈ {1, . . . ,m− 1}. This is obviously a nilpotent of height 1.
Now if x ̸∈ {c1, . . . , cm−1}. Then either x ∈ Cm or x ̸∈ Dom σ.

If x ∈ Cm then ασ =

(
A
y

)
. Notice that α is order decreasing

and x ̸∈ A implies x ≤ g for all g ∈ A. Also σ is order decreasing
and in particular x ̸∈ Cm ensures that y < x and as such y ̸∈ A.
This shows that ασ is a nilpotent of height less or equal to one.
Moreover, if x ̸∈ Dom σ. Then it easily follows that ασ = ∅, and
therefore ασ is a nilpotent of height zero.
Now for the product σα, we consider the following cases: If ci ∈ A

for some 1 ≤ i ≤ m − 1. Then let H = {c1, . . . , cm−1} ∩ A. Then
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Hσα = x. i.e., σα =

(
H
x

)
. Notice that x ̸∈ A and H ⊆ A.

Thus, x ̸∈ H and therefore σα is a nilpotent of height less or equal
to one as required.

Now if y ∈ A then σα =

(
Cm

x

)
. Notice that y ̸∈ Cm and σ is

order decreasing. It means that y < c for all c ∈ Cm. Also notice
that α is order decreasing ensures x = yα ≤ y. i.e., x ≤ y < c
for all c ∈ Cm. This means x ̸∈ Cm. Therefore σα is a nilpotent
of height less or equal to one. Now if ci ̸∈ A and y ̸∈ A. Then
obviously ασ = ∅ which is a nilpotent of height zero. The proof is
now complete. □

Lemma 3.11. Let α ∈ ODCPn be a nilpotent of height one and
ϵ ∈ ODCPn be as expressed in equation (3). Then both αϵ and ϵα
are nilpotents of height less or equal to one.

Proof. Let α ∈ ODCPn be a nilpotent of height one and ϵ ∈
E(ODCPn) be as expressed in equation (3). Thus α is of the form(

A
x

)
where A ⊂ [n] and x ̸∈ [n] \A. Now either x = ai for some

1 ≤ i ≤ p or x ̸∈ {a1, . . . , ap}.
If x = ai for some 1 ≤ i ≤ p. Then αϵ = α, which is obviously a

nilpotent of rank less or equal to one.
Now if x ̸∈ {a1, . . . , ap}. Then αϵ = ∅, which is also a nilpotent

of rank zero.

Now for the product ϵα. Let E = Im ϵ ∩ A. Then ϵα =

(
E
x

)
.

Now since E ⊆ A and x ̸∈ A then x ̸∈ E. Therefore ϵα is a
nilpotent of height less or equal to one. □

We now prove the following lemma.

Lemma 3.12. Let ϵ ∈ E(ODCPn) be as expressed in equation (3)
and σ ∈ ODCPn be as expressed in equation (4). Then

(i) If fixϵ ∩ fixσ = ∅. Then both ϵσ and σϵ are nilpotents of
height less or equal to one.

(ii) If fixϵ∩fixσ ̸= ∅. Then ϵσ and σϵ are either idempotents or

of the form

(
e1 e2 . . . ek−1 Ek

e1 e2 . . . ek−1 y

)
where y ̸∈ Ek, (1 ≤

k ≤ n).

Proof. (i) If fixϵ ∩ fixσ = ∅. For the product ϵσ, if ai ̸∈ Cm for
all 1 ≤ i ≤ p, then ϵσ = ∅ which is obviously an idempotent
of height zero.
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Now if Im ϵ ∩ Cm ̸= ∅, denote E to be Im ϵ ∩ Cm. Then

ϵσ =

(
E
y

)
. Notice that y ̸∈ Cm and E ⊆ Cm. Thus

y ̸∈ E and as such ϵσ is a nilpotent of height one.
For the product σϵ, if ci ̸∈ Ap for all 1 ≤ i ≤ m − 1

and y ̸∈ Ap. Then obviously σϵ = ∅ which is a nilpotent of
height zero.

Now if ci ∈ Ap for some 1 ≤ i ≤ m − 1. Then let H =

{c1, . . . , cm−1} ∩ Ap. Therefore σϵ =

(
H
ap

)
. Notice that

fixϵ ∩ fixσ = ∅, as such ci ̸= ap for all 1 ≤ i ≤ m − 1.
Therefore ap ̸∈ H and as such σϵ is a nilpotent of height
one.

Thus both ϵσ and σϵ are nilpotents of height less or equal
to one.

(ii) If fixϵ ∩ fixσ ̸= ∅. For the product ϵσ, let K = fixϵ ∩ fixσ =
{e1, . . . , et} where t ≤ min{p,m}.

Thus either ai ∈ Cm for some t < i ≤ p or ai ̸∈ Cm for
all t < i ≤ p. If ai ∈ Cm for some t < i ≤ p, we may let
Ht = {ai ∈ Cm : t ≤ i ≤ p}. Then

ϵσ =

(
e1 . . . et Ht

e1 . . . et y

)
.

It is not difficult to see that y ̸∈ Ht and as such ϵσ is a
nilpotent. Now if ai ̸∈ Cm for all t < i ≤ p. Then

ϵσ =

(
e1 . . . et
e1 . . . et

)
,

which is an idempotent.
Now for the product σϵ, letK ′ = fix ϵ∩fix σ = {e′1, . . . , e′t}

where t ≤ min{p,m}.
Thus either y = ai for some t < i ≤ p or y ̸= ai and

y ̸∈ Ap for all t < i ≤ p.
If y = ai for some t < i ≤ p. Then

σϵ =

(
e′1 . . . e′t Cm

e′1 . . . e′t y

)
.

It is clear that y ̸∈ Cm and as such σϵ is a nilpotent. Now
if y ̸= ai and y ̸∈ Ap for all t < i ≤ p. Then

σϵ =

(
e′1 . . . e′t
e′1 . . . e′t

)
,

which is an idempotent and the proof is now complete.
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□

We now have the following lemma.

Lemma 3.13. Let σ ∈ ODCPn be as expressed in equation (4) and

τ ∈ ODCPn be express as

(
b1 . . . bt−1 Bt

b1 . . . bt−1 g

)
, g ̸∈ Bt. Then

(i) If fixσ ∩ fixτ = ∅. Then both τσ and στ are nilpotents of
height less or equal to one.

(ii) If fixτ ∩ fixσ ̸= ∅. Then τσ and στ are either idempotents

or of the form

(
e1 . . . ek−1 Ek

e1 . . . ek−1 y

)
where y ̸∈ Ek, (1 ≤

k ≤ n).

Proof. The proof is similar to the proof of Lemma 3.12. □

Lemma 3.14. If σ ∈ ODCPn as expressed in equation (4). Then
σ2 is an idempotent.

Proof. Obviously since y ̸∈ Cm, σ
2 =

(
c1 . . . cm−1

c1 . . . mm−1

)
which is

an idempotent. □

Remark 3.15. (i) Product of any two nilpotents in ODCPn of
height one is a nilpotent of height less or equal to one;

(ii) product of two or more idempotents in ODCPn is an idem-
potent or a nilpotent of height less or equal to one or is an
element of the form of equation (4).

Now let

Z = {α ∈ ODCPn : α is of the form of equation (4)}
and also let

W = {α ∈ (ODCPn) : α is a nilpotent with h(α) ≤ 1} .
Then we have actually proved the following result.

Theorem 3.16. The semigroup ⟨E(ODCPn)⟩ = Z∪W∪E(ODCPn).

4. CONCLUDING REMARKS

We have successfully described the semigroup generated by the idempo-
tents in ODCPn.
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