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HMM-BASED QUALITY OF SERVICE SURVIVABILITY

IN MOBILE CELLULAR NETWORKS

M. E. EKPENYONG1 AND D. E. ASUQUO

ABSTRACT. The degree of system survivability is governed by
the deployed service protocol or internal information transfer
mechanism, and despite the advances recorded in wireless net-
work research, survivability still remains an open issue. This
paper investigates the impact of failures on mobile cellular net-
works using the Hidden Markov Model (HMM) framework. Un-
der ideal operation conditions, an experimental 3.75G test-bed
was simulated. From the simulation, it was observed that reduc-
ing the number of general channels negatively impacts on new
and handoff calls. To guarantee dependability and prevent the
system from severe degradation, a saturation phase was imposed
to ensure self-healing, such that handoff requests do not exceed
the prioritization index. To model the system dynamics, two
HMM-based systems were developed using empirical data ob-
tained from an operating carrier. An evaluation of the training
showed that system failure rates can be well tolerated through
the efficient utilization of available guard channels, and the best
Viterbi trace obtained from path with less node failures. Further
analysis of the results demonstrated that the proposed frame-
work improved the system performance, and regardless of an
increase in the arrival rate, the probability of new call blocking
stabilized below the recommended threshold after 25% of the
channels was utilized.

Keywords and phrases: Fault recovery, HMM, network depend-
ability, machine learning, self-healing mechanism
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1. INTRODUCTION

The increase in cellular network capacity has not only complicated
mobility management, but has also threatened dependability of the
network. An undependable system most likely results in low qual-
ity of service (QoS) and users’ dissatisfaction. Dependability is
a measure of three key parameters namely reliability, availability
and survivability. Reliability is vital for estimating the network
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failure probability; availability is a real-time measure of network
usage; and survivability describes the accessible performance of the
network after failure. Survivable wireless network design involves
three major tasks: fault tolerant topology determination; network
nodes and link dimensioning; and traffic demands, subject to QoS
and survivability requirements. Several research works have offered
both analytical and simulation solutions to blocking and dropping
probabilities in cellular networks [1-5], but only few of them report
on fault tolerant designs. Sustaining communication services in the
event of network failures requires robust survivable and self-healing
algorithms. Self-healing is a process whereby a system automati-
cally detects, diagnoses and repairs localized software and hardware
errors [6].
Four components on which the mobility status of a multilayered

cellular system depends on are identified in [7]. These components
include distance of the mobile user from the base station (BS),
signal strength (SNR), mobile speed, and the probability that no
handoff occurred. Survivability strategies in wireless networks are
mainly developed for fault prevention and recovery. Prevention
techniques target component improvement and system reliability
using fault tolerant architectures in the network switches and pro-
vides backup power supplies for the network components. On the
other hand, to utilize the remaining capacity after failure, recov-
ery techniques attempt to restore failure prone connections while
maintaining network stability – through the use of dynamic fault
recovery algorithms or appropriate load control policy in the radio
resource management (RRM) functionality. Sharma and Hellstrand
[8] viewed protection and restoration as two survivability techniques
that require computation of an alternative path to which the traffic
is switched whenever a failure occurs. The protection technique en-
sured that a backup path is pre-established before any failure, and
spare capacity is simultaneously reserved as the request is setup.
Various factors are involved when providing survivability. The no-
table ones are resource utilization, request blocking ratio, recovery
time, and recovery granularity.
Next-generation wireless networks would enable the transporta-

tion of higher volumes of information and ensure exact levels of
reliability. This scenario is becoming crucial as faults contribute to
increased rate of data loss. The life cycle of network components
according to the ITU-T E800/4260 is presented in Fig. 1.
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Fig. 1. Failure cycle of a repairable system

Each component generally begins at the operating state, t =
0; and when a failure occurs, the network element enters the re-
pair state. Once the failure has been repaired, the network once
more enters the operating state. The expected mean time before
the first failure is the Mean Time to Failure (MTTF) and this
corresponds with the operating state; the Mean Time to Repair
(MTTR) is the average time spent performing all corrective main-
tenance repairs; and the Mean Time Between Failures (MTBF) is
the MTTF including the time of repair following the last failure,
i.e.; MTBF = MTTF + MTTR.. Providing survivability in cel-
lular networks is therefore vital to minimize the recovery time while
maintaining efficient resource utilization.

2. RELATED WORKS

Previous research works on the application of reliability theory to
large complex systems focused on characterizing failure distribu-
tions to resolve why a system fails, the failure rate, and the possi-
bility of mitigating such failures. In [9], the topology and capacity
of physical links of specific transport networks are considered. In
[10], the design of partial survivable backhaul networks for cellular
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systems where self-healing ring technology maintained the back-
bone transmission network with a diversity requirement for ensur-
ing survivability of the network is investigated. Cox and Sanchez
[11] studied the least-cost backhaul network design while meeting
survivability and capacity constraints. An analytical model using
Markov chains for the assessment of cellular networks is proposed
in [12]. A stochastic reward net model is explored by the authors
to automate the generation of Continuous Time Markov Chain
(CTMC) and survivability metrics such as call blocking probabili-
ties and latency due to failures. These works do not consider the
effect of user mobility in the network design.
An analysis of survivability issues for voice services in 2G GSM

mobile networks is made in [13]. The authors observed that the im-
pact of a failure depends on a variety of factors such as the location
and shape of failed area, user mobility, and user behaviour. How-
ever, the issue of coordination between layers and key concepts such
as escalation, integrated and differentiated survivability were not
addressed. In multilayered networks, escalation is a crucial aspect
of survivability strategy. As defined in [14], it is a set of rules that
describes when to start and stop, and how to coordinate the activi-
ties of the different recovery strategies. In [15], three key aspects of
escalation are identified, which include activation type, escalation
direction and inter-layer coordination. Chu and Lin [16] investi-
gated the survivability of mobile wireless communication networks
in the event of a BS failure and modelled the survivable network
as a mathematical optimization problem that aimed at minimiz-
ing the total number of blocked traffic through the relocation of
spare resources. Their results showed that the total call blocking
rate is less sensitive to the call blocking probability threshold of
each BS for light traffic load. A major benefit of layered structure
in telecommunication networks is the simplification of hardware
and network management at the topology level. Here, the phys-
ical and/or logical network topology is the most obvious way to
defining layers for network survivability. This benefit was demon-
strated in [17] for a three-tier internet hierarchy. The development
of computational multilayered models with realistic survivability
restrictions has become prominent [18-21]. Orlowski [19], for in-
stance, proposed mathematical models for integrated optimization
of two network layers with survivability constraints and described
a multi-layer network design problem for various technologies, and
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modelled the network using mixed-integer programming (MIP) for-
mulations. Real-world telecommunication networks consist of stack
of technologically diverse networks called layers. These layers are
strongly interdependent and embedded into one another. In [20],
the relation of different layers of Wavelength Division Multiplexing
(WDM) for multi-layer networks with service application for fail-
ure events is analyzed. In [21], a cost optimal multi-layer network
design that permits technology selection at each node and incorpo-
rates traffic demand uncertainty is presented. Their model yielded
full flexibility with regards to the number of layers and integrated
layer-skipping and router offloading.
Previous works mainly employed analytical methods, and stud-

ied survivability metrics such as call blocking probability and call
setup latency due to failure. However, these works never consid-
ered handoff probability due to frequent user mobility – a necessary
metric for 3G and emerging wireless networks. This paper simu-
lates a test-bed that validates an analytical model (a continuous
time Markov chain technique) to study the performance of the sys-
tem at different traffic load and channel allocation strategies. The
simulated test-bed is then trained using a Hidden Markov Model
(HMM) framework. The purpose of this framework is necessary to
implement the system’s dynamics and self-healing mechanism for
efficient failure rates discovery, sufficient to guarantee dependabil-
ity and prevent the network from severe degradation, as opposed
to previous methods which only modelled survivability as a mathe-
matical optimization problem without the incorporation of network
dynamics. Furthermore, escalation directions for coordination be-
tween network layers for specific recovery strategies is implemented
in this paper

3. SURVIVABILITY FRAMEWORK

In Fig. 2, a three-layered framework for QoS survivability eval-
uation is presented. These layers include the physical, transport
and application layers. The physical layer consists of the trans-
mission medium and signals responsible for realizing the network
capacity for radio communication and RRM. The transport layer
carries traffic and provides predefined sets of alternative routing
and congestion control for managing users’ mobility across the net-
work. The application layer employs the available network services
to improve end-to-end mobility management. The benefits of the
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proposed architecture include multi-protocol support, network sur-
vivability and efficient bandwidth allocation.
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Fig. 2. Survivability framework outlining failure scenario,
disruption type and QoS evaluation metrics

Considering the framework in Fig. 2, a comparison of the recovery
strategies is summarized in Table 1.

Table 1. Comparison of some recovery strategies (escalation directions)

Performance Crite-
ria

Bottom
Layer

Bottom-
up

Top-
down

Top
Layer

Preferred
Value

Switching granular-
ity

Coarse Coarse Fine Fine Coarse

Failure coverage Low High High High High

Required capacity
resources

Low High High Low Low

Service differentia-
tion

Difficult Difficult Average Easy Easy

Coordination, man-
agement

Low High High Low Low

Failure scenario Simple Simple Complex Complex Simple

Recovery close to
root

Yes Yes No No Yes

Strategy complex-
ity

Low Medium Medium Low Low

The tradeoff between restorations at the different layers is that the phys-
ical layer has the fastest restoration. Higher layers may restore failures
at lower layers but not vice-versa. One major constraint of a restoration
technique is to ensure that the failure of any set of network component
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at any layer remains localized, thereby affecting those network sessions
directly associated with such set of components.

4. SYSTEM MODEL

4.1 QoS PERFORMANCE
The system model consists of three clusters. Each cluster has four cells
with each cell having same radius and number of channels, with BS at the
centre. Suppose users are randomly distributed across the network and
in a given cell i, the new call and handoff call arrival rates (λn,i and λh,i)
are Poisson distributed, while their mean service times (μn,i and μh,i)
and holding times (1/μn,i and 1/μh,i) are exponentially distributed. The
assumption above permits the use of Erlang-B model for computing the
call blocking probability [22-23]. Certain concepts are vital for explain-
ing user’s mobility and establishing relationship between call blocking
and dropping probabilities in wireless network designs. The traffic per-
formance of the network, for instance, largely depends on users’ mobil-
ity, which is characterized by the cell residence time distribution [24-25].
Our tractable model is developed using the principles of queuing theory
and Markov chain, and is useful for expressing the traffic characteristics,
channel allocation scheme, user behaviour and mobility patterns of mo-
bile communication systems. Next, we discuss the impact of different
failure scenarios on system performance for disjoint and clustered cells,
and model the effect of user mobility on channel reservation.

4.1.1 WITHOUT CHANNEL RESERVATION
In a complete resource sharing call admission control (CAC) scheme
[26], no channel is reserved for call requests in any service class. A call is
admitted only when the network has sufficient resources to accommodate
it, otherwise it is rejected. The same CAC policy is applicable for new
and handoff calls. In this policy, the cell residence time is exponentially
distributed with mean R̂ = 1/γ, where γ, represents the degree of
mobility of the user, and, γ approaches zero as mobility decreases. Let
the state of a cell i, represent an instance of the number of channels
occupied in that cell such that the cell states can be depicted as a CTMC
(see Fig. 3), and the channel distribution in each cell corresponds to a
multi server queue: M/M/C i with no buffer; where Ci represents the
number of channels in cell i.

The state space of cell i is represented such that for all cells we have,
0 ≤ ni ≤ Ci, since there are Ci channels per cell. The transitions
between states correspond to transitions of a CTMC. We designate
π(ni, n′

i), as the transition from state ni to state n′
i, to satisfy the
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Fig. 3. Transition diagram for network state without channel
reservation

normalization condition:
nci∑
n1

π (ni) = 1 (1)

Then, the transition probabilities for adjacent states are obtained from,

π (ni, ni + 1) = λn,i + λh,i (2)

π (n, ni − 1) = niui (3)

Equation (2) represents call arrivals at the next state, i.e., from state
ni to state (ni + 1). Call arrivals occur either when a new call arrives
or during a handoff. Equation (3) represents departures from state ni

to state (ni − 1). Departures may occur either when a call exits a cell
(due to handoff) or because a new call has been completed. In Fig. 3,
we denote the steady state probability that the total number of ongoing
calls in cell i is ni, as P (ni), given that ni = 0, 1, 2, . . . , Ci. From
the global balance equation, the steady state probabilities are obtained
as [27]:

P (ni) = P (0)
ρi

ni

n!
; 0 ≤ ni ≤ Ci (4)

where
ρi =

(
λi
μi

)
is the traffic intensity of cell i; λi = λn,i + λh,i, μi =

μn,i + μh,i

P (0) is the normalization factor, and is defined as P (0) = 1
∑ Ci

ni=0
ρi

ni

ni!

Thus,

P (ni) =

ρi
ni

ni!∑ Ci
ni=0

ρini

ni

(5)

A new call requesting connection to cell i is blocked if all the Ci channels
in the cell are occupied. Hence, the new call blocking probability P (nbi)
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in cell i, is obtained as:

P (nbi) = P (Ci) =

ρi
Ci

Ci!∑ Ci
ci=0

ρici
ci

(6)

Given that no prioritization is assumed for handoff/emergency calls in
the complete resource sharing scheme, the handoff dropping probability
P (hdi) in cell i is the same as P (nbi). Hence,

P (hdi) = P (nbi) = P (Ci) (7)

In extremely slow environments – where no priority is assigned to hand-
off call attempts, the new call and handoff blocking probabilities are
identical [22], due to the Poisson Arrival See Time Average (PASTA)
property.

4.1.2 WITH CHANNEL RESERVATION
With dynamic channel allocation, we explore the idea of guard channels
to reserve some channels for handoff calls, since their failure are more
sensitive to mobile subscribers than new call blocking. This allows a
new call to utilize channels assigned for both new and handoff calls
requests (but only handoff calls make use of the guard channels). We
use the CTMC shown in Fig. 4, to evaluate these two metrics. Let γ

μi+γ

denote the probability that a call can perform handoff because it has
excellent signal quality. Then, the arrival rate of handoff call is thinned

by
(

γ
μi+γ

)
λh,i = βλh,i, where γ ranges in value from 1 to 5. It is

obvious that β increases with γ.

Fig. 4. Transition diagram for network state with guard channel
reservation

The system is modeled with each cell having a total of Ci channels
plus ni general channels for new and handoff calls, and (Ci − ni) guard
channels for handoff calls only. When the general channels are occupied
and a new handoff call arrives, a channel is assigned from the guard
channels and the call is accepted. However, when all channels including
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the guard channels are occupied, then, handoff calls are dropped and
new calls are blocked. If ni > Ci

2 , then (Ci − ni)< ni. Similarly, if

ni <
Ci
2 , then (Ci−ni)> ni. If the general channel ni is unoccupied at a

time where only ki channels are consumed, i.e., ki = ni; then, incoming
handoff calls will share the general channels with incoming new calls.
Thus, the steady state probability that ki channels are occupied in the
network is obtained as:

Pki = P (0)
ρi

ki

ki!
(8)

with, ki = ni, ρi =
(
λn,i+λh,i

μn,i+μh,i

)
and

P (0) =
1

1 +
∑ni

ki=1
ρiki
ki!

+
∑Ci

ki=ni+1

ρini

ni!
1

(ki−ni)!

(
βλh,i

μh,i

)ki−ni

If the general channels ni are occupied at a time where ki > ni, then, at
that instant all (Ci −Ri) general channels have been consumed and the
cell will assign available Ri reserved channels to incoming handoff calls
and block newly arrived calls. The steady state probability of meeting
the system in this state (ki > ni) is derived as:

Pki = P (0)
1

ni!

(
λn,i + λh,i

μn,i + μh,i

)ni 1

(ki − ni)!

(
βλh,i

μh,i

)ki−ni

; ki > ni (9)

Thus, the blocking probability that a new call finds ni general channels
busy and is blocked is:

P (nbg) = P (0)
1

ni!

(
λn,i + λh,i

μn,i + μh,i

)ni

(10)

Similarly, the probability that an incoming handoff call finds all ni gen-
eral channels and Ri reserved (guard) channels busy and is dropped
is:

P (hdg) = P (0)
1

ni!

(
λn,i + λh,i

μn,i + μh,i

)ni 1

R!

βλh,i

μh,i
(11)

To measure the degree of prioritization achieved between new and
handoff calls in the guard channels scheme, we introduce the concept of
call incompletion probability which describes the probability that a call
is blocked either at call initiation or new call requests or during handoff.
Now, let Pin, be the call incompletion probability, Pnb, the new call
blocking probability, and Phd, the handoff dropping probability. We can
express Pin mathematically as:

Pin = P (nbg) + P (hdg) (12)

Pin = P (nbg) +
1

R!

βλh,i

μh,i
P (nbg) (13)
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From equations (12) and (13),

P (hdg) =
1

R!

βλh,i

μh,i
P (nbg) = ωP (nbg)

where, ω = 1
R!

βλh,i

μh,i
.

Thus, the prioritization index is deduced as:

P (nbg)

P (hdg)
=

1

ω
(14)

If 1
ω > 1, then the network can successfully achieve handoff prioritiza-

tion, because at that instant, P (nbg) > P (hdg).

5. SIMULATION AND EVALUATION OF
EXPERIMENTAL TEST BED

A test bed (a platform for conducting rigorous, transparent, and repli-
cable testing of scientific theories, computational tools, and new tech-
nologies) is designed in this section to provide a clear visualization of
the proposed model and its feasibility within the study environment. An
evaluation of the model is then carried out using two methods: simula-
tion and machine learning.

5.1 DESCRIPTION OF THE TEST BED
Our test-bed spatially models a 3.75G network carrier. First, a survey
of BSs belonging to one of the telecommunication operators in Nigeria
was conducted for a period of three months. The BSs were digitized as
coloured circles on a road map of the study area using the ArcGIS soft-
ware. The green circles indicate low traffic; the yellow circles represent
moderately high traffic; while the red circles represent very high traffic.
With regards the test-bed data, it is possible to simulate Medium Ac-
cess Control (MAC) and handoff process in the system. The base station
controller (BSC) and the intelligence of the cell phone keep track of and
allow the phone to switch from one BS to another during conversation.
Fig. 5 reveals a typical case of poor service quality observed along major
roads due to high traffic (within the study area). One way for minimiz-
ing this effect is to apply effective power control mechanisms and model
the base stations such that users do not experience the near-far effect.

A random waypoint mobility model developed in [28]: where the users
are randomly located in the network, with distance from the BS in a cell
and movement direction (also randomly distributed) is simulated in this
section to illustrate users’ mobility. The users’ speeds are considered
as being uniformly distributed with a deterministic movement in same
direction for large number of users. This case is consistent with highway
travel and to portray the deterministic case, the road map is clearly
demarcated with thick black lines within the test-bed in Fig. 5. Fig. 6
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Fig. 5. Roadmap of the test-bed showing carried traffic distribution
amongst various BSs in the study area.

describes a simulation of mobility patterns for 10, 50, 100 and 500 mobile
users distributed within a 50 × 50m2 radius. The network topology
allows for movement of users across the entire network. Fig. 6(a)-
(d), illustrate the movement of users within the coverage area. For
lesser traffic (10 users), the traffic pattern is more defined and mobile
users can communicate faster. When the traffic gets bustier (50 and 100
users), the mobile users begin to form more distinct clusters as circled
in Figs. 6(b) and (c), communication becomes competitive, as more
users compete for available channels. For 500 users, the traffic intensity
becomes so high that mobile users begin to collide and the available
resource is insufficient to service the network.

5.2 MODEL EVALUATION
5.2.1 EVALUATION USING SIMULATION
To provide knowledge of possible outcomes and their likelihood of oc-
currence, a discrete simulation of the survivability model was attempted
to provide a microscopic view of the system. This simulation approach
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Fig. 6. Simulation of users’ mobility using the random waypoint
mobility model

is valuable for approximating real life scenarios [29] and offers the in-
vestigator greater knowledge of the real system. However, it does not
generate evolutionary traces for knowledge discovery and the accumu-
lation of sufficient training data, which distribution produces the most
probable estimates as well as a frame of expectations regarding variables
classification. In this section, we provide a Monte-Carlo type simulation
of the survivability model. Table 2 shows the various parameters and
values used in the simulation.

Table 2. Simulation parameters and values
S/N Parameter Value
1. Total number of channels (Ci) 20
2. Reserved/guard channels (Ci − ni) 5, 10, 16
3. Arrival rate of new calls (λn) random number
4. Arrival rate of handover calls (λh) random number
5. Degree of user mobility (γ) 1-5
6. Service rate of new calls (μn) random number
7. Service rate of handoff calls (μh) random number
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We observed the new call blocking and handoff dropping probabilities
under different traffic loads, channel resources and user mobility pat-
terns. Fig. 7 is used to evaluate the QoS metrics without call pri-
oritization. Here, the probability of blocking a new call is the same
as the probability of dropping a handoff request. The graph indicates
how failure scenarios for 75%, 50% and 20% of lost channels can cause
degradation in QoS delivery and impact differently on the system per-
formance. At low traffic intensities, the blocking probabilities record
very low values. But as the traffic intensity increases, the probability of
new call blocking (or handoff call dropping) increases for cells with few
channels. In the event of a failure resulting in the loss of 20% of the
total available channels, the reliability of the network remains stable for
new call blocking, P (nb), and handoff dropping, P (hd).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10-5

10-4

10-3

10-2

10-1

100

Traffic Intensity

P(
nb

)

Plot of P(nb) vs. Traffic Intensity

with 20 channels
with 16 channels
with 10 channels
with 5 channels

Fig. 7. A graph of probability of new call blocking vs. traffic intensity
(without channel reservation)

Figs. 8 and 9 are used to investigate the impact of a number of
guard channels (ci − ni) reserved for priority handoffs. In Fig. 8, we
observed that reserving more (guard) channels for handoff calls increases
the rate of blocked calls and results in a high P (nb), because the general
channels ni become fastly consumed by both new and handoff calls at
higher traffic intensities. The result further reveals that not more than
50% of the total available channels should be assigned as guard channels
in order to improve network component reliability.
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Fig. 8. A graph of probability of new call blocking vs. traffic intensity
(with channel reservation)

In Fig. 9, the effect of handoff call drop probability on the system
is minimized – for cells with guard channels, compared to Fig. 7 –
where the cells are simulated without prioritization for a given range of
traffic intensity. The result in Fig. 9 yields handoff probability values
below 0.02 threshold even at high traffic intensity, which suggests that
the required QoS can be maintained to sustain subscribers’ loyalty and
proves that the reservation schemes are useful to implement prioritiza-
tion techniques for call admission in 3G wireless networks. Although it
is important to allocate sufficient general channels to service increasing
traffic during handoffs, it is also justified to assign enough guard channels
(spare capacity) to BSs with high user mobility (in the event of adja-
cent BS failures), or cater for the sudden influx of priority calls at busy
roads. Hence, telecommunication operators require a dynamic channel
allocation strategies that learns from existing data, to ensure that guard
channels do not become unnecessarily idle at very low traffic.

Fig. 10 shows that at lower degrees of mobility, all handoff call re-
quests are granted with 75% guard channels. As the traffic gets bustier,
users moving faster in an attempt to relinquish calls to other nearby
cells suddenly have their calls dropped. This is so because as γ in-
creases, ongoing calls requesting handoff may be forcefully terminated
and introducing more guard channels will not benefit the system. At
γ = 5, the system converges for the 50% and 75% guard channels. The
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Fig. 9. Graph of probability of handoff call dropping vs. traffic
intensity (with channel reservation)

convergence shows that further system degradation can be averted, since
the general channels have been fully occupied by both new and hand-
off calls. This validates the claim that a system can remain survivable
even when a failure is noticed. Put differently, the system has reached
a saturation phase, where more calls are likely dropped due to exhaus-
tion of the general channels. In reality, such scenario could threaten
the system’s stability if the mobility pattern of users is unpredictable.
Certainly, users’ behavior is bound to worsen the network performance
should more users attempt severally to reconnect prematurely termi-
nated calls. A possible solution to this problem is to understand the
factors responsible for the failure and ensure that proper mechanisms
are incorporated to mitigate the impacts of failure on the system. In
practical systems, this can be achieved by invoking a survivability pro-
file that temporally swaps unused guard channels to service new and
handoff call requests, when more handoff calls are noticeably dropped
or when such convergence appears.

In Fig. 11, more handoff call requests are successful when the number
of reserved channels becomes high. The ratio of P (nbg) to P (hdg) gives

the prioritization index which ensures that P (hdg) is reduced without



HMM-BASED QUALITY OF SERVICE SURVIVABILITY . . . 207

Fig. 10. Graph of probability of handoff call dropping with guard
channel vs. degree of mobility

a significantly increasing P (nbg). For successful handoffs: P (nbg) >
P (hdg), and implies that 1

w > 1. The end point of each plot signifies
that handoff requests are not successful beyond this point to continue
providing services for both classes of calls. This self-healing mechanism
represents an efficient strategy for traffic management and restoration,
and aims at maintaining stable and survivable systems.
5.2.2 EVALUATION USING MACHINE LEARNING

A stochastic approach is employed in this section to model the dynamic
changing nature of the system. To model the CTMC property, a HMM
framework (where future occurrences or states depend solely on the
present state and not on the sequence of events preceding them) is im-
plemented. The framework allows for reasoning and computation that
would otherwise be intractable. In Fig. 6, we observed that the mobility
pattern of mobile users can be effectively managed at low traffic inten-
sities (Fig. 6(a)-(c)). But as the network grows, the available system
resources become insufficient and must be improved to ensure proper
mobility management; else, the ugly scenario in Fig. 6(d) appears. We
tackle this problem by observing the sequence of emissions, without re-
course to the sequence of states the model went through to generate the
emissions; and then recover the states’ sequence from observed data.
The following steps were used to analyze the HMMs:
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Fig. 11. Graph of probability of new call blocking vs. probability of
handoff call droping (with channel reservation)

(1) Test sequence generation: the transition matrix, TRANS, con-
sists of the new call blocking and handoff drop probability thresh-
olds; while the emission matrix, EMIS, contains two dataset se-
quences specifying the new call blocking and handoff call drop
probability for each HMM state (in this case, 20 states – indicat-
ing the number of available channels consumed at each state).
The MATLAB Machine Learning (ML) toolbox hmmgenerate
command was then used to generate 1,000 random sequence of
states and emissions from the model; [seq,states]=hmmgenerate
(1000,TRANS,EMIS)

(2) Test sequence estimation: Given the transition and emission
matrices TRANS and EMIS, the most likely states’ sequence the
model went through was obtained using the MATLAB ML tool-
box hmmviterbi command; hmmviterbi (seq, TRANS, EMIS)

(3) Transmission and emission matrices estimation: these matri-
ces were estimated by the MATLAB ML toolbox hmmestimate
and hmmtrain functions, given a sequence, seq, of emissions;
[estTR,estE] = hmmtrain (seq,TRANS,EMIS)
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The various input variables and respective values, used for training the
HMM systems are presented in Table 3,

Table 3. Input variables and values to HMM
S/N Variable Value
1. Arrival rate (λ) 2; 4
2. Traffic 10-100; 100-1000
3. Number of channel (C) 1-20
4. Service rate (μ) 1-5
5. Degree of user mobility (γ) 1-5
6. Maximum number of HMM states 1000
7. Recommended call blocking prob-

ability threshold
0.02

8. Recommended handoff call suc-
cess threshold

90%

5.2.2.1 MODEL TRAINING
The search for the most probable state sequence constitutes a natural
issue in HMM analysis. The Viterbi algorithm was used in this paper
to resolve the task of dynamically searching for the shortest path or se-
quence with dominant observations. Two different survivability systems
(with and without channel reservation) were trained for this purpose.
Table 4 and Table 5 present the results of HMM systems without chan-
nel reservation and with channel reservation, respectively. The Tables
accumulate the state sequences generated along the optimal path, by
the Viterbi algorithm. Generally, the best Viterbi trace was obtained
from paths with less node failures. The percentage of actual sequence
states (%ASS) indicates the most likely sequence of states that agreed
with the random sequence used.

Table 4. State path accumulation for system without channel reserva-
tion

System 1
Parameter S1 S2 S3 S4 S5 S6 S7 S8 S9 Total
λ(2); traffic
(100-1000)

517 282 125 51 17 8 0 0 0 1000

λ(4); traffic
(100-1000)

471 294 149 56 22 6 1 0 1 1000

λ(2); traffic
(10-100)

901 88 11 0 0 0 0 0 0 1000

Parameter Success Failure %ASS
λ(2); traffic (100-1000) 478 522 42.5
λ(4); traffic (100-1000) 485 515 49.4
λ(2); traffic (10-100) 550 440 54.0
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Table 5. State path accumulation for system with channel reservation
System 2

S1 S2 S3 S4 S5 S6 S7 S8 S9 Total
λ(2); traffic
(100-1000)

433 351 139 58 13 3 2 0 1 1000

λ(4); traffic
(100-1000)

465 307 145 45 33 4 0 1 0 1000

λ(2); traffic
(10-100)

824 171 5 0 0 0 0 0 0 1000

Parameter success Failure %ASS
λ(2); traffic (100-1000) 600 400 65.2
λ(4); traffic (100-1000) 502 498 59.2
λ(2); traffic (10-100) 680 320 72.7

The above state paths indicate that failure rates were properly managed
through efficient utilization of the available reserved channels. Both
systems converged with tolerance, 1e−06, before 500 iterations when the
satisfactory optimum was reached. The idea behind the threshold is to
ensure that the proposed models continue to perform optimally, even in
the midst of failures.

6. RESULTS

A distribution of traffic intensity across the various HMM states, is given
in Fig. 12. At low traffic (10-100 users), the traffic intensity dropped
to an average of 0.2 Erlang, compared to high traffic (100-1000 users),
which produced an average traffic intensity of 1.72, despite an increase
in the arrival rate.

In Fig. 13, the generated emissions (new call blocking probability), as
the number of states (or channels) increases for system without channel
reservation (or guard channels) is presented. It was observed that the
system performance improved as more channels became available. But
regardless of the increase in the arrival rate, the probability of new call
blocking was stabilized below the recommended threshold (i.e., 0.02),
after the fourth HMM state. From this state upward, the system is
bound to perform optimally without degradation.
Similar trends were observed for generated emissions (new call blocking
and handoff drop call probabilities) in system with channel reservation
(Figs. 14 and 15).

The estimated emissions (new call blocking probability) generated af-
ter model training, for system without channel reservation and system
with channel reservation, are given in Fig. 16 and Fig. 17, respectively.
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Fig. 12. Traffic intensity distribution across the HMM states

Fig. 13. New call block (or HO drop call) probability emissions across
the HMM states (without reserved channel)
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Fig. 14. New call block probability emissions across the HMM states
(with reserved channel)

Fig. 15. Handoff drop call probability emissions across the HMM
states (with reserved channel)
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We observed that the generated emissions in system with channel reser-
vation had lower blocking probabilities, compared to emissions generated
from system without channel reservation.

Fig. 16. Estimated new call block probability emissions across the
HMM states (without reserved channel)

Fig. 17. Estimated new call block probability emissions across the
HMM states (with reserved channel)

Further investigation revealed that there exist some correlation be-
tween the estimated emissions for new call blocking probability without
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channel reservation (Fig. 16.) and estimated emissions for HO drop call
probability without channel reservation (Fig. 18). This result validates
the relationship established in equation (7), that: given no prioritization
for handoff/emergency calls, the handoff drop call probability P (hdi) in
cell i, is the same as the new call blocking probability P (nbi) in same
cell. Also, the estimated HO probability emissions outputs of systems
with and without channel reservation (Fig. 18. and Fig. 19.) are almost
the same, except for result with arrival rate of 4.

Fig. 18. Estimate handoff drop call probability emissions across the
HMM states (without reserved channel)

Fig. 19. Estimate handoff drop call probability emissions across the
HMM states (with reserved channel)
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7. CONCLUDING REMARKS

The reliability of wireless communication systems is largely determined
by key dependability factors such as availability and survivability, and
the major issues associated with these factors include traffic load, chan-
nel allocation, bandwidth limitation, signal propagation, quality of ser-
vice, and on-demand or real time services. Hence, survivability traffic
management and restoration procedures — which seek to redirect net-
work loads such that failures impose minimal impact on their occurrence
while the affected load is restore, is important. The performance of traf-
fic restoration however depends on a combination of algorithms used for
the restoration, as well as space capacity allocation in the network. In
the event of failure, protection mechanisms outpace restoration when
recovery the traffic, and do not have to wait to establish and restore
alternative paths — as they guarantee complete availability.

This paper proposed a survivability framework, which permits the in-
vestigation of network characteristics of emerging wireless networks, and
the impact of failures on the performance of the system. The metrics
adopted to test the system’s performance are call blocking and call drop-
ping. Results obtained showed that the proposed framework improved
the system performance and enhanced dependability of the network, to
meet subscribers’ demand and the required service quality.
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