
Journal of the Vol. 42, Issue 2, pp. 60 - 66, 2023

Nigerian Mathematical Society ©Nigerian Mathematical Society

A STUDY OF GENERALIZED
EILENBERG-MACLANE SPECTRUM THROUGH

NEW Ω-SPECTRUM

PRAVANJAN KUMAR RANA1 AND BHASKAR MANDAL2

ABSTRACT. In this paper we construct the Eilenberg-MacLane
spectrum using Moore space then we define a new Ω spectrum,
finally we study the generalization of Eilenberg-MacLane spec-
trum through new Ω spectrum.
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1. INTRODUCTION

In [4] Dold-Thom showed that for any CW-complex X , πi(SP
∞(X)) ∼=

H̃i(X) . In [7], E.H.Spanier showed that if X is a connected CW-
complex then there is a weak homotopy equivalence

ρ : SP∞(X) → ΩSP∞(ΣX)

defined by ρ(x1, x2, ..., xn, ...)(t) = ((x1, t), (x2, t), ..., (xn, t), ...), where
ρ is continuous because its restriction to SP n(X) is continuous for
every n ≥ 0.
In [5], Eckmonn-Hilton showed that for pointed CW-complexes X
and Y, [ΣX, Y ] ∼= [X,ΩY ] where [X, Y ] denotes the set of all ho-
motopy class of maps from X to Y.
The functor SP∞ has the interesting properties that it can be used
to define Eilenberg-Maclane Spectrum .

Now we recall the following definitions and statements:-

Definition 1.1:[2] A Hausdorff space X is a CW-complex, if it

Received by the editors January 04, 2023; Revised: February 28, 2023; Accepted:

April 10, 2023

www.nigerianmathematicalsociety.org; Journal available online at https://ojs.ictp.

it/jnms/

60



A STUDY OF GENERALIZED EILENBERG-MACLANE SPECTRUM... 61

satisfies the following conditions:
i) X is a disjoint union of sets en,called cells
ii) To each cell en and its closure ẽn, there exists a continuous func-
tion f : En → ẽn such that f |(En − Sn−1), where En Is a closed
n-ball and Sn−1 its boundary.
iii) f(Sn−1) ⊂ Xn−1, where Xn−1is the n-skeleton of X.

iv) For any cell en ⊂ X, ˜en ∩ e ̸= 0,for at most finitely many cells
e ⊂ X.
v) A subset A ⊂ X is closed iff A ∩ ẽ is closed for all cells e ⊂ X.
A pointed CW-complex is called an Eilenberg MacLane space if it
has only one nontrivial homotopy group. If G is a group and n
is a positive integer, the Eilenberg-MacLane space of type (G,n)
is a pointed CW-complex X whose homotopy groups vanish in all
dimensions except n , where G = πn(X) and G is to be abelian for
n > 1,
we can write the notation K(G,n) for a CW-complex which repre-
sents an Eilenberg-MacLane space of type (G,n).

Definiton 1.2:[2, 6] Let X be a topological space with base point
x0 ∈ X.For n ≥ 0, we define the n fold symmetric product of X , de-
noted by SP nX by SP 0X = x0, SP

nX = Xn/Sn for n ≥ 1,where
Xn denotes the n fold cartesian product of X with itself and Sn

denotes the symmetric group on n objects regarding as acting on
Xn by permuting the coordinates.
Hence for n ≥ 1, SP nX = {(x1, · · · , xn) : xi ∈ X)} ,
We define limn→∞ SP nX = ∪∞

n=1SP
nX is called an infinite sym-

metric product of X and is denoted by SP∞X.

P.K.Rana in [1] showed that SP n and SP∞ are covariant func-
tor from the category of pointed topological spaces and base point
preserving continuous maps to the category of pointed topological
spaces and base point preserving continuous maps.

Definition 1.3:[2] Given an abelian group G and n ≥ 1 ifHn(X) ∼=
G and H̃i(X) = 0 for i ̸= n. then the space X is called a Moore
space of type (G, n) and is denoted by M(G, n).

Definition 1.4:[2] Let X be a pointed topological space with base
point x0 .Then the Loop space of X denoted by ΩX, defined to be
the space of all continuous pointed map α : S1 → (X, x0) equipped
with compact open topology.
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Definition 1.5: The spectrum X = {Xn, αn} given by Xn =
K(Z, n) and αn : K(Z, n) → ΩK(Z, n + 1), a base point preserv-
ing weak homotopy equivalence, is called an Eilenberg-MacLane
spectrum.

Theorem 1.6:[4] For any CW-complex X , πi(SP
∞(X)) ∼= H̃i(X)

.

Proof. Let C be the category of base pointed finite CW-complexes
and SP∞ be the infinite symmetric product functor.Using Dold-
Thom Theorem in [4], πi(SP

∞(X)) ∼= H̃i(X) on C. □

Theorem 1.7:(Eckmonn-Hilton)[5] For pointed CW-complexes
X and Y, [ΣX, Y ] ∼= [X,ΩY ] where [X, Y ] denotes the set of all
homotopy class of maps from X to Y.

Proof. Let Σ : C → C be the suspension functor and Ω be the
loop functor, for any pointed CW-Complexes X and Y ,from [5], it
follows. □

2. CONSTRUCTION OF THE SPECTRUM

In this section we construct the Eilenberg-Maclane spectrum us-
ing Moore space.To do this we use the following results:

Lemma 2.1:[2] For any CW-complex X , Hk(X) = H̃k(X) if k ̸= 0
and H0(X) = H̃0(X)

⊕
Z

Lemma 2.2:(E.H.Spanier)[6, 7] If X is a connected CW-complex
then there is a weak homotopy equivalence

ρ : SP∞(X) → ΩSP∞(ΣX)

defined by ρ(x1, x2, ..., xn, ...)(t) = ((x1, t), (x2, t), ..., (xn, t), ...).

Proof. Since ρ(x1, x2, ..., xn, ...)(t) = ((x1, t), (x2, t), ..., (xn, t), ...), ρ
is continuous because its restriction to SP n(X) is continuous for
every n ≥ 0 and hence ρ is a homomorphism which is one-one
mapping. □

Lemma 2.3:[2] Given any abelian group G and an integer n > 1
there exists a CW-complex X such that X = M(G, n).
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Theorem 2.4: X is a Moore space of type (G, n) if and only if
SP∞(X) is K(G, n) for n ≥ 1.

Proof. Let X isM(G, n) for n ≥ 1.ThenHn(X) ∼= G and H̃i(X) = 0
for i ̸= n. As n ≥ 1 , so by lemma 2.1, H̃i(X) ∼= G if i = n and
H̃i(X) = 0 if i ̸= n. Now by Dold-Thom Theorem [4] , we have
H̃i(X) ∼= πi(SP

∞(X)).So πi(SP
∞(X)) ∼= G , if i = n and 0 , if

i ̸= n.Thus SP∞(X) is K(G, n) for n ≥ 1.
Conversely , let SP∞(X) is K(G, n) for n ≥ 1.Now H̃i(X) ∼=
πi(SP

∞(X)) ∼= G ,if i = n and 0 , if i ̸= n.Hence H̃i(X) ∼= G
, if i = n and 0 , if i ̸= n. Hence Hn(X) ∼= G and H̃i(X) = 0 for
i ̸= n as n ≥ 1. Hence X is M(G, n). □

Now G is any abelian group and n > 1 be an integer , then by
Lemma 2.3 , there is a CW-complex X such that X is a M(G, n).
Now by Theorem 2.4, SP∞(X) ∼= SP∞(M(G, n)) = K(G, n).

Theorem 2.5: For any given abelian group G and n > 1 ,
SP∞(ΣkM(G, n)) is K(G, n+ k).

Proof. For n > 1 , M(G, n) is simply connected and hence con-
nected. Now by Lemma 2.2, there is a weak homotopy equivalence
ρ : SP∞(M(G, n)) → ΩSP∞(ΣM(G, n)). Using the composite
map we can get a weak homotopy equivalence ρk : SP∞(M(G, n)) →
ΩkSP∞(ΣkM(G, n)).
Thus SP∞(ΣkM(G, n)) is K(G, n+ k). □

Theorem 2.6: Let G be an abelian group and M(G,n) be a
Moore space.Then there is a weak homotopy equivalence
βn : SP∞(M(G, n)) → ΩSP∞(M(G, n+ 1))

Proof. Since πn+1(SP
∞(M(G, n+1))) ∼= πn(ΩSP

∞(M(G, n+1))) ∼=
G.
Again πn(SP

∞(M(G, n)) ∼= πn+1(SP
∞(M(G, n+ 1))), and hence

πn(SP
∞(M(G, n)) ∼= πn(ΩSP

∞(M(G, n + 1)) for each n ≥ 1.
Hence there is a continuous function
βn : SP∞(M(G, n)) → ΩSP∞(M(G, n+ 1)) whose induced homo-
morphism β∗

n : πn(SP
∞(M(G, n)) → πn(ΩSP

∞(M(G, n + 1))) is
an isomorphism .
Since ΩSP∞(M(G, n+1))has the homotopy type of a CW-complex
and hence βn is a weak homotopy equivalence. □
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Proposition 2.7: If An = SP∞(M(G, n)) then {An, βn} define
an Eilenberg-Maclane Spectrum.

Proof. Since SP∞(M(G, n)) = K(G, n) , from Definition 1.5 and
Theorem 2.6, it follows.
We know every loop space is a H-group and the set of homo-
topy classes of maps from any pointed space to an H-group ad-
mits a group structure and so there is a natural group structure on
[X,K(G,n)]. □

Now we have the following Theorem:
Theorem 2.8: For all path connected n-dimensional CW-complex
X , [X,M(G, n)] ∼= [X,SP∞(M(G, n))], n > 1.

Proof. Since M(G, n) ⊂ SP∞(M(G, n)) and so
i∗ : [X,M(G, n)] → [X,SP∞(M(G, n))] is injective as M(G, n)
is simply connected. Surjectivity follows from the fact that X is
n-dimensional CW-complex and cellular approximation. □

Corollary 2.9: Given an abelian group G an integer n ≥ 1 and
a path-connected n-dimensional CW-complex X ,then
Hn(X,G) = [X,M(G, n)] = [X,SP∞(M(G, n))], is the cohomol-
ogy group

Proof. Using Theorem 2.4, Theorem 2.8 and corollary of the Hopf
theorem in [2], it follows. □

3. GENERALIZATION OF THE SPECTRUM

Now to generalized the Eilenberg-Maclane spectrum we can rewrite
the spectrum given in Proposition 2.7 as follows
Ak = ΩSP∞(Σk−1M(G, 2)) and αk = Ω.βk+1 , k > 0
where βk is given in Theorem 2.6
Let X be a connected CW-complex ,
define a new spectrum A={An, αn}, where

Ak =

{
Ω−(k−2)SP∞(X), k ≤ 0

ΩSP∞(Σk−1X), k > 0
and αk =

{
id, if k ≤ 0

Ωρk, if k > 0

where ρk : SP∞(Σk−1X) → ΩSP∞(ΣkX) is the weak homotopy
equivalence given in Lemma 2.2.

Cohomology theory associated with the spectrum A is given by
hn(Y,A) = [Y,An]
we can find corresponding coefficient system by assuming Y = S0
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If n ≤ 0,
hn(S0,A)
= [S0,Ω−(n−2)SP∞(X)]
= [Σ−(n−2)S0, SP∞(X)]
= [S−(n−2), SP∞(X)]
= π−(n−2)(SP

∞(X))
= H−(n−2)(X,Z)

n > 0,
hn(S0,A)
= [S0,ΩSP∞(Σn−1X)]
= [ΣS0, SP∞(Σn−1X)]
= [S1, SP∞(Σn−1X)]
= π1(SP

∞(Σn−1X))
= H1(Σ

n−1X,Z)
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