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ON THE STABILITY AND BOUNDEDNESS OF SOLUTIONS OF AIZERMANN VECTOR
DIFFERENTIAL EQUATIONS

A. A. ADEYANJU1, M. O. OMEIKE2, J. O. ADENIRAN3 AND B. S. BADMUS4

ABSTRACT. The objective of this paper is to examine certain sufficient conditions for the uniform as-
ymptotic stability of the trivial solution and uniform ultimate boundedness of all solutions to a certain
Aizermann vector differential equation. By constructing an appropriate complete Lyapunov function, we
provide sufficient conditions that guarantee the qualitative properties mentioned above. The results of this
paper are solutions to the open problems contained in Ezeilo [18].

1. INTRODUCTION

In this paper, we consider the following systems of first order Aizermann differential equations

(1) Ẋ = F(X)+H(Y )+P1(t,X ,Y ), Ẏ =CX +DY +P2(t,X ,Y ),

where X , Y ∈ Rn; C, and D are real n×n symmetric constant matrices; F,H : Rn → Rn are one time
continuously differentiable functions(C1) satisfying F(0) = G(0) = 0, and P1,P2 : R+×Rn ×Rn →Rn.
To guarantee existence and uniqueness of solutions of (1), the nonlinear terms in (1) are assumed to be
continuous and satisfy Lipschitz continuity condition.

Qualitative theory of differential equations which began in late 19th century by the works of Poincaré
[37] and Lyapunov [29] has since been receiving a great attention from researchers and experts across the
world on the subject till date. A very useful tool in the study of qualitative properties of solutions of dif-
ferential equations is a scalar function known as Lyapunov function named after A. M. Lyapunov who in-
troduced the two popular methods known today as the first and second methods of Lyapunov. This func-
tion, under certain conditions helps to deduce information on the behaviour of solutions of differential
equations without necessarily solving the equations themselves (See, [49], [50]). The second method of
Lyapunov has been employed by many authors to study stability, boundedness, convergence, periodicity
etc. of solutions to many differential equations, see the works of Adeyanju([2], [3], [4]), Adeyanju and
Tunc ([5], [6]) Adeyanju et. al [7], Adeyanju and Adams[8], Burton[13], Cartwright[14], Erugin[15],
Ezeilo[17], Graef[23], Huiqing[24], Jiang[25], Loud[28], Malkin[30], Mufti[31], Omeike([33], [34]),
Qian([38]-[40]), Sugie[42], Tejumola[43], Tunc([44], [45]), and Yoshizawa[48].

In 1949, Aizerman (Aizerman [10], Parks [35]) proposed the following problem. Let there be given
a system of linear differential equations

(2)
dx1

dt
=

n

∑
j=1

a1 jx j +ax1,
dxi

dt
=

n

∑
j=1

ai jx j, (i = 2,3, ...,n).

Suppose that for the given constants ai j (i, j = 1,2, ...,n) and for an arbitrary value of a from the interval
α < a < β , all the roots of the characteristics equation of system (2) have negative real parts. Let ax1
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be replaced by f (x1) in (2). We then have:

(3)
dx1

dt
=

n

∑
j=1

a1 jx j + f (x1),
dxi

dt
=

n

∑
j=1

ai jx j, (i = 2,3, ...,n).

Aizermann’s problem (Boikov [12]) is now as follows. If it is known that the trivial solution of the linear
system (2) is asymptotically stable for all a satisfying the condition α < a < β , will the trivial solution
of the non-linear system (3) be stable in the large if the following condition is satisfied

(4) αx2
1 < x1 f (x1)< βx2

1, for x1 ̸= 0.

This problem has inspired many researches. In fact, it has been shown that the condition (4) is not
sufficient for stability in second-order (Krasovskii [27]) and third-order (Pliss [36]) systems. In other
words, it is required to find out whether the trivial solution x1 = x2 = ... = xn = 0 of the system (3) is
asymptotically stable in the large or not, for an arbitrary choice of a continuous function f (x1), which
reduces to zero for x1 = 0 and which satisfies the inequality (4).

Particularly, Erugin [16] examined the stability property of the trivial solution to the one-dimensional
Aizerman equation

ẋ = ψ(x)+by, ẏ = cx+dy,

where b, c and d are constants and ψ(x) is a continuous scalar function. Mufti [32] considered the
following equation

ẋ = ay+ x f (y), ẏ = bx+ yg(x),

where a,b are constants. Much later, Ezeilo [18] proved some results on the stability of the trivial
solution to the following Aizerman vector differential equations

(5) Ẋ = F(X)+BY, Ẏ = G(X)+DY,

and

(6) Ẋ = AY −F(Y )X , Ẏ =−BX −G(X)Y,

where X , Y ∈ Rn, A,B and D are real n×n constant matrices and F,G : Rn → Rn are continuous func-
tions.

Furthermore, in a quite recent paper, Adeyanju et.al. [1] proved some interesting results on the sta-
bility and boundedness of solutions to the following vector form of Aizermann differential equation

(7) Ẋ = F(X)+BY +P1(t,X ,Y ), Ẏ = G(X)+DY +P2(t,X ,Y ),

where X , Y ∈ Rn, B, and D are real n× n symmetric constant matrices, F,G : Rn → Rn are one time
continuously differentiable functions(C1) satisfying F(0) = G(0) = 0.

Inspired by the works of Ezeilo [18], Krasovskii ([26], [27]), Adeyanju et.al. [1] and other listed ref-
erences, we are going to use the direct method of Lyapunov to prove some results on the stability and
boundedness of solutions of (1). The stability and boundedness of solutions to (1) and other similar Aiz-
ermann vector differential equations, until now remain an open problem due to difficulty in constructing
a suitable Lyapunov function [18].

Remark 1.1. (i) We introduced the terms P1(t,X ,Y ) and P2(t,X ,Y ) appearing in (1) so as to study
other qualitative properties of solutions of (1) aside stability.

(ii) The qualitative properties of (1) have not been discussed in literature by any author to the best
of our understanding.

Consider a system of differential equations (Yoshizawa [47])

(8) Ẋ = f (t,X),
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where X is an n-vector and f (t,X) is an n- vector function which is defined in a region Ω ⊂ I ×Rn and
continuous in (t0,X0) so that for each (t0,X0) there is a solution X(t; t0,X0) satisfying

(9) X(t; t0,X0) = X ,

and

(10) X(t0; t0,X0) = X0.

Let f be Lipschitz and continuous so as to ensure the existence of a unique solution of equation (8).
Then, we can give the following definitions and theorems about the solutions of equation (8).

Definition 1.2. Stability and Asymptotic Stability (Yoshizawa [47]).
A solution φ(t) of (1) defined for t ≥ 0, is said to be Lyapunov stable if given an ε > 0, there exists a
δ > 0 such that any solution ϕ(t) of (8) with:

(11) ∥ϕ(0)−φ(0)∥< δ

satisfies

(12) ∥ϕ(t)−φ(t)∥< ε

for all t ≥ 0, where ∥.∥ stands for norm.

If in addition to the definition of stability above, we have:

(13) ∥ϕ(t)−φ(t)∥→ 0 as t → ∞,

then we say the solution φ(t) is asymptotically stable.

Definition 1.3. Boundedness (Yoshizawa [47])
A solution φ(t) of (8) is said to be bounded if there exist a β > 0 and a constant M > 0 such that
∥φ(t, t0,x0)∥< M whenever ∥x0∥< β , t ≥ t0.

We shall consider the differential system (8) under the assumption that f (t,X) is continuous on
0 ≤ t < ∞, ∥X∥< H, and f (t,0)≡ 0.

Theorem 1.4. (Yoshizawa [47])
Suppose that there exists a Lyapunov function V (t,X) defined on 0 ≤ t < ∞, ∥X∥ < H which satisfies
the following conditions:

(i) V (t,0) = 0
(ii) a(∥X∥)≤V (t,X)≤ b(∥X∥),

(iii) V̇(8)(t,X)≤−c(∥ X ∥),
where a(r),b(r) and c(r) are continuous-increasing positive definite function(CIP). Then, the zero so-
lution of (8) is uniform-asymptotically stable.

Theorem 1.5. (Yoshizawa [47])
Suppose that there exists a Lyapunov function V (t,X) defined on 0 ≤ t < ∞, ∥X∥ ≥ D, (where D may be
large) which satisfies:

(i) a(∥X∥) ≤ V (t,X) ≤ b(∥X∥), where a(r) and b(r) are continuous, monotone increasing func-
tions and a(r)→ ∞ as r → ∞,

(ii) V̇ (t,X)≤−c(∥X∥), where c(r) is positive and continuous.

Then, the solutions of equation (8) are uniformly ultimately bounded.

Theorem 1.6. (LaSalle’s Invariance Principle)(Tunc and Mohammed [44])
If V is a Lyapunov function on a set G and xt(φ) is a bounded solution such that xt(φ) ∈ G for t ≥ 0,
then ω(φ) ̸= 0 is contained in the largest invariant subset of E ≡ {ψ ∈ G∗ : V (ψ̇) = 0}, where G∗ is the
closure of set G and ω denotes the omega limit set of a solution.
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2. PRELIMINARY RESULTS

Here, we state some known results that will be helpful in the proofs of our main results later.

Lemma 2.1. ([19], [22], [33], [45])
Let A be a real symmetric n×n-constant matrix and

δa ≤ λi(A)≤ ∆a, (i = 1,2, ...,n),

where δa and ∆a are constants representing the least and greatest eigenvalues of matrix A respectively.
Then,

δa⟨X ,X⟩ ≤ ⟨AX ,X⟩ ≤ ∆a⟨X ,X⟩.

Lemma 2.2. ([18])
Let H : Rn → Rn be of class C1 and suppose that H(0) = 0.

(i) Then for any X ∈ Rn,

H(X) =
∫ 1

0
Jh(sX)Xds,

where Jh(X) is the Jacobian matrix of H(X);
(ii) Let Jh(X) be symmetric and commutes with a certain real symmetric n×n matrix E. Then

d
dt

∫ 1

0
⟨EH(sX),X⟩ds = ⟨EH(X), Ẋ⟩,

for any real differentiable vector X = X(t) ∈ Rn.

Lemma 2.3. ([9], [20], [21]) Let A, B be any two real symmetric positive definite n×n matrices. Then,
(i) the eigenvalues λi(AB), (i = 1,2, . . . ,n), of the product matrix AB are real and satisfy

min
1≤ j,k≤n

λ j(A)λk(B)≤ λi(AB)≤ max
1≤ j,k≤n

λ j(A)λk(B);

(ii) the eigenvalues λi(A+B), (i = 1,2, . . . ,n), of the sum of matrices A and B are real and satisfy

{ min
1≤ j≤n

λ j(A)+ min
1≤k≤n

λk(B)} ≤ λi(A+B)≤ { max
1≤ j≤n

λ j(A)+ max
1≤k≤n

λk(B)}.

3. MAIN RESULTS

In this section, we state and prove our main results regarding system (1). The following estimates
defined for the matrices in the brackets below, will be used later to establish the proofs of main results.

Let, δh,δc,δ1,δ2,δ1,∆h,∆c and ∆2 be some constants. Then, we define the following for (i= 1,2, . . . ,n):
(i) 0 < δh ≤ λi(−Jh(Y ))≤ ∆h, 0 < δc ≤ λi(C)≤ ∆c;

(ii) −∆1 ≤ λi(−JhD)≤−δ1 < 0, −∆2 ≤ λi(CJ f )≤−δ2 < 0.

Theorem 3.1. Suppose J f (X), Jh(Y ) denote the Jacobian matrices ∂ fi
∂xi

, ∂hi
∂yi

of F(X) and H(Y ) respec-
tively and F(0) = 0,H(0) = 0, P1(t,X ,Y ) = 0,P2(t,X ,Y ) = 0. Further,

(i) the matrices D,Jh(Y ), J f (X) are all symmetric and negative definite, while C is a symmetric
and positive definite matrix,

(ii) the matrices C,D,Jh and J f commutes with each other,
(iii) the matrix {DJ f (X)−CJh(X)} is strictly positive definite.

Then the trivial solution of system (1) is uniformly-asymptotically stable and satisfies

(14) ∥X(t)∥→ 0, ∥Y (t)∥→ 0, as t → ∞.

Theorem 3.2. Under the assumptions (i)-(iii) of Theorem 3.1, if
(iv) ∥P1(t,X ,Y )∥ ≤ φ(t) , ∥P2(t,X ,Y )∥ ≤ θ(t) for all t ≥ 0, maxθ(t) < ∞, maxφ(t) < ∞ and

θ(t),φ(t) ∈ L1(0,∞), where L1(0,∞) is the space of integrable Lebesgue functions.
Then solutions of system (1) are bounded.

Theorem 3.3. Under the assumptions (i)-(iii) of Theorem 3.1, if
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(iv) ∥P1(t,X ,Y )∥≤ φ(t){1+∥X∥}, ∥P2(t,X ,Y )∥≤ θ(t){1+∥Y∥} for all t ≥ 0, maxθ(t)<∞, maxφ(t)<
∞ and θ(t), φ(t) ∈ L1(0,∞), where L1(0,∞) is the space of integrable Lebesgue functions.

Then, any solution (X(t),Y (t)) of system (1) with the initial condition

(15) X(0) = X0,Y (0) = Y0,

satisfies

(16) ∥X(t)∥ ≤ A1, ∥Y (t)∥ ≤ A1

for all t ≥ 0 where A1 > 0 depends on C, D, θ(t), t0, X0, Y0, and Pi(t,X ,Y ),(i = 1.2).

The main tool in the proof of these theorems is the Lypunov function defines as

(17) 2V (X ,Y ) = ⟨X ,CX⟩−2
∫ 1

0
⟨H(sY ),Y ⟩ds.

The next lemma is useful in providing proofs to the main results.

Lemma 3.4. Suppose that, under the assumptions of Theorem 3.1 there exist constants A2 and A3 both
positive such that the function V defined by equation (17), satisfies

(18) A2{∥X(t)∥2 +∥Y (t)∥2} ≤V (X ,Y )≤ A3{∥X∥2 +∥Y∥2},
and

(19) V (X(t),Y (t))→+∞ as ∥X∥2 +∥Y∥2 → ∞.

Furthermore, there exists a positive constant A4 such that for any solution (X(t),Y (t)) of (1) we have

(20) V̇ (X ,Y )≤−A4{∥X(t)∥2 +∥Y (t)∥2},
for all t ≥ 0 and X ,Y ∈ Rn.

Proof. It is clear that for X(t) =Y (t) = 0, t ≥ 0, V (X ,Y ) = 0. Also, from the scalar function defined in
equation (17) above, we have

2V (X ,Y ) =⟨X ,CX⟩−2
∫ 1

0
⟨H(sY ),Y ⟩ds

=⟨X ,CX⟩−2
∫ 1

0

∫ 1

0
⟨Jh(s1s2Y )Y,Y ⟩s1ds1ds2.

By the hypotheses of Theorem 3.1 and Lemma 2.1, we have,

−⟨Jh(s1s2Y )Y,Y ⟩ ≥ δh∥Y∥2,

and
⟨X ,CX⟩ ≥ δc∥X∥2.

Thus, ∫ 1

0

∫ 1

0
⟨Jh(s1s2Y )Y,Y ⟩s1ds1ds2 ≥δh∥Y∥2

∫ 1

0

∫ 1

0
s1ds1ds2

=
1
2

δh∥Y∥2.

Hence,

2V (X ,Y )≥ 1
2

δh∥Y∥2 +δc∥X∥2.

There exists a constant A2 = min{ 1
2 δh,δc}, such that

(21) 2V (X ,Y )≥ A2(∥X∥2 +∥Y∥2),

for all t ≥ 0 and X ,Y ∈ Rn. It then follows from (21) that V (X ,Y ) = 0 if and only if ∥X∥2 +∥Y∥2 = 0
and V (X ,Y )> 0 if and only if ∥X∥2 +∥Y∥2 ̸= 0, which now implies that

(22) V (X ,Y )→ ∞ as ∥X∥2 +∥Y∥2 → ∞.
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Similarly, by the hypotheses of Theorem 3.1 and Lemma 2.1, we obtain

−⟨Jh(s1s2Y )Y,Y ⟩ ≤ ∆h∥Y∥2,

and
⟨X ,CX⟩ ≤ ∆c∥X∥2.

Therefore,

−
∫ 1

0

∫ 1

0
⟨Jh(s1s2Y )Y,Y ⟩s1ds1ds2 ≤∆h∥Y∥2

∫ 1

0

∫ 1

0
s1ds1ds2

=
1
2

∆h∥Y∥2.

Thus,

2V (X ,Y )≤ 1
2

∆h∥Y∥2 +∆c∥X∥2.

Then, we can always find a constant A3 = max{ 1
2 ∆h,∆c}, such that

(23) 2V (X ,Y )≤ A3(∥X∥2 +∥Y∥2),

for all t ≥ 0 and X ,Y ∈ Rn. Hence,

A2{∥X∥2 +∥Y∥2} ≤ 2V (X ,Y )≤ A3{∥X∥2 +∥Y∥2}.

In what follows, we obtain the derivative of V with respect to t along the solution path of the system (1)
such that it satisfies

(24) V̇ |(1) ≡
d
dt

V (X ,Y )|(1) ≤−A5

provided that ∥X∥2+∥Y∥2 ≤ A6, both A5 and A6 are some positive constants. The derivative of function
V in (17) is

V̇ (X ,Y ) =−⟨H(Y ),DY ⟩+ ⟨CX ,F(X)⟩

=−
∫ 1

0
⟨Jh(s1Y )Y,DY ⟩ds1 +

∫ 1

0
⟨CX ,J f (s1X)X⟩ds1.

By the hypotheses of Theorem 3.1 and Lemma 2.3, we have

(25) V̇ (X ,Y )≤−δ1∥X∥2 −δ2∥Y∥2.

Thus, there exists a constant A4 = min{δ1,δ2}> 0 such that

(26) V̇ (X ,Y )≤−A4{∥X∥2 +∥Y∥2},

for all X ,Y ∈ Rn. This completes the proof of Lemma 3.4. □

Proof. Theorem 3.1
From inequalities (21), (23) and (26) in the proof of Lemma 3.4, we therefore conclude that, the triv-
ial/zero solution of system (1) is uniformly stable.

Furthermore, consider the set W defined by

W = {(X ,Y ) : V̇ (X ,Y ) = 0}.

By using LaSalle’s invariance principle, we observe that (X ,Y )∈W implies that X =Y = 0. Hence, this
shows that the largest invariant set contained in W is (0,0) ∈W. Therefore, the zero solution of system
(1) is uniformly-asymptotically stable since all the conditions of Theorem 1.4 are being satisfied. This
completes the proof of Theorem 3.1. □
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Proof. Theorem 3.2
The inequalities (21) and (23) obtained earlier are still much valid here. Hence, we proceed to obtain
the derivative of the function V defined in (17) when P1(t,X ,Y ) ̸= 0 and P2(t,X ,Y ) ̸= 0 as follows.

V̇ (X ,Y ) =−⟨H(Y ),DY ⟩+ ⟨CX ,F(X)⟩+ ⟨CX ,P1(t,X ,Y )⟩−⟨H(Y ),P2(t,X ,Y )⟩(27)

=−
∫ 1

0
⟨Jh(s1Y )Y,DY ⟩ds1 +

∫ 1

0
⟨CX ,J f (s1X)X⟩ds1 + ⟨CX ,P1(t,X ,Y )⟩

−⟨H(Y ),P2(t,X ,Y )⟩.

By the hypotheses of Theorem 3.2, Lemma 2.3 and Lemma 3.4, we have

V̇ (X ,Y )≤−δ1∥X∥2 −δ2∥Y∥2 + ⟨CX ,P1(t,X ,Y )⟩−⟨H(Y ),P2(t,X ,Y )⟩.

But,

−⟨H(Y ),P2(t;X ,Y )⟩ ≤|⟨H(Y ),P2(t,X ,Y )⟩|

≤
∫ 1

0
|⟨Jh(s1Y )Y,P2(t,X ,Y )⟩|ds1

≤A7∥Y∥∥P2(t,X ,Y )∥

where A7 = ∆h and has been defined earlier.
Also,

⟨CX ,P1(t,X ,Y )⟩ ≤|⟨CX ,P1(t,X ,Y )⟩|
≤∆c∥X∥∥P1(t,X .Y )∥.

Now, on using the inequalities

∥Y∥ ≤ 1+∥Y∥2, ∥X∥ ≤ 1+∥X∥2

and the hypothesis (vi) of Theorem 3.2, our estimate for V̇ becomes

V̇ ≤A7{1+∥Y∥2}∥P2(t,X ,Y )∥+∆c{1+∥X∥2}∥P1(t,X .Y )∥

≤A7{1+∥Y∥2}θ(t)+∆c{1+∥X∥2}φ(t)

≤A7θ(t)+∆cφ(t)+A7θ(t)∥Y∥2 +∆cφ(t)∥X∥2.

The following facts are obvious from inequality (21),

∥Y∥2 ≤ ∥X∥2 +∥Y∥2 ≤ 2A−1
2 V (X ,Y )

and
∥X∥2 ≤ ∥X∥2 +∥Y∥2 ≤ 2A−1

2 V (X ,Y ).

Therefore,

(28) V̇ ≤ A7θ(t)+∆cφ(t)+2A−1
2 {A7θ(t)+∆cφ(t)}V (X ,Y )

for all t ≥ 0,X ,Y ∈ Rn. On setting θ5(t) = A7θ(t)+∆cφ(t) in (28), we obtain

(29) V̇ ≤ θ
∗(t)+2A−1

2 θ5(t)V (X ,Y ).

The integration of both sides of (29) between 0 to t, (t > 0), leads to

V (t)≤V (0)+
∫ t

0
θ5(s)ds+2A−1

2

∫ t

0
θ5(s)V (s)ds.

Let

W1 =V (0)+
∫

∞

0
θ5(s)ds and W2 = 2A−1

2 .

Then,

V (t)≤W1 +W2

∫
∞

0
V (s)θ5(s)ds.
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By applying Gronwall-Bellman inequality [41], we have

V (t)≤W1 exp(W2

∫
∞

0
θ5(s)ds)≤ A8,

where A8 is a positive constant. By the estimates (21), (23) and the assumptions on θ(t) , we can
conclude that all solutions of (1) are uniformly bounded according to Theorem 1.5. Hence, the proof of
Theorem 3.2 is complete. □

Proof. Theorem 3.3
The proof of this theorem is similar to that of Theorem 3.2. But in this case, ∥P1(t,X ,Y )∥ ≤ φ(t){1+
∥X∥} and ∥P2(t,X ,Y )∥ ≤ θ(t){1+∥Y∥}. Already, we know from the proof of Theorem 3.2 that

V̇ ≤ A7{∥Y∥}∥P2(t,X ,Y )∥+∆c{∥X∥}∥P1(t,X .Y )∥.

On using the hypotheses of Theorem 3.3, we obtain

V̇ ≤A7θ(t)∥Y∥{1+∥Y∥}+∆cφ(t)∥X∥{1+∥X∥}

≤A7θ(t){∥Y∥+∥Y∥2}+∆cφ(t){∥X∥+∥X∥2}.

By using the following facts,

∥Y∥ ≤ 1+∥Y∥2 and ∥X∥ ≤ 1+∥X∥2,

we have,

V̇ ≤A7θ(t){1+2∥Y∥2}+∆cφ(t){1+2∥X∥2}

V̇ ≤A7θ(t)+∆cφ(t)+2A7θ(t)∥Y∥2 +2∆cφ(t)∥X∥2.(30)

Now, from the inequality (21), we have the following facts

(31) ∥X∥2 ≤ ∥X∥2 +∥Y∥2 ≤ 2A−1
2 V (X ,Y )

and

(32) ∥Y∥2 ≤ ∥X∥2 +∥Y∥2 ≤ 2A−1
2 V (X ,Y ).

Thus, on applying these facts in (30) above and setting θ5 = A7θ(t)+∆cφ(t), we obtain

(33) V̇ ≤ θ5(t)+2A−1
2 θ5(t)V (X ,Y ),

for all t ≥ 0,X ,Y . The integration of both sides of (33) between 0 to t, (t > 0), gives

V (t)≤V (X(0),Y (0))+
∫ t

0
θ5(s)ds+2A−1

2

∫ t

0
θ5(s)(s)V (s)ds.

Let

W3 =V (X(0),Y (0))+
∫

∞

0
θ5(s)ds and W4 = 2A−1

2 .

Then,

V (t)≤W3 +W4

∫
∞

0
V (s)θ5(s)ds.

By applying Gronwall-Bellman inequality [41], we have

(34) V (t)≤W3 exp(W4

∫
∞

0
θ5(s)ds)≤ A9

where A9 > 0 is a constant. On using (21) in the inequality (34), we obtain

∥X∥2 +∥Y∥2 ≤ 2A9A−1
2 = A1

and this implies
∥X∥2 ≤ A1 and ∥Y∥2 ≤ A1.

This completes the proof of Theorem 3.3. □
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4. ULTIMATE BOUNDEDNESS OF SOLUTIONS

Theorem 4.1. Under the assumptions of Theorem 3.2 or Theorem 3.3, all the solutions of system (1)
are uniformly-ultimately bounded.

Proof. From the proof of Theorem 3.2 we have that the derivative V̇ of the function V defined in (17),
satisfied

V̇ ≤−δ1∥X∥2 −δ2∥Y∥2 + ⟨CX ,P1(t,X ,Y )⟩−⟨H(Y ),P2(t,X ,Y )⟩

≤−δ1∥X∥2 −δ2∥Y∥2 +∆c∥X∥∥P1(t,X ,Y )∥+∆h∥Y∥∥P2(t,X ,Y )∥
for some positive constants ∆c and ∆h. From the hypotheses of the theorem, we obtain

V̇ ≤−δ1∥X∥2 −δ2∥Y∥2 +∆cφ(t)∥X∥{1+∥X∥}+∆hθ(t)∥Y∥{1+∥Y∥}

≤−δ1∥X∥2 −δ2∥Y∥2 +∆cφ(t){∥X∥+∥X∥2}+∆hθ(t){∥Y∥+∥Y∥2}.

Now, suppose A10 = max{∆c,∆h} and 0 ≤ δ3 = max{θ(t),φ(t)}, we have

V̇ ≤−δ3∥X∥2 −δ2∥Y∥2 +δ3A10{∥X∥+∥Y∥}+A10δ3{∥X∥2 +∥Y∥2}.
Thus, from the conclusion of Lemma 3.4, we obtain

V̇ ≤−A4{∥X∥2 +∥Y∥2}+δ3A10{∥X∥+∥Y∥}+A10δ3{∥X∥2 +∥Y∥2}.
On using the fact that

{∥X∥+∥Y∥} ≤ 2
1
2 {∥X∥2 +∥Y∥2}

1
2 ,

we have

(35) V̇ ≤−{A4 −A10δ3}{∥X∥2 +∥Y∥2}+2
1
2 A10δ3{∥X∥2 +∥Y∥2}

1
2 .

By letting δ4 =
1
2 (A4 −A10δ3), δ3 < A4A−1

10 and δ5 = 2
1
2 α1A10, we have

(36) V̇ ≤−2δ4{∥X∥2 +∥Y∥2}+δ5{∥X∥2 +∥Y∥2}
1
2 .

If we choose (∥X∥2 +∥Y∥2)
1
2 ≥ δ6 = δ5δ

−1
4 , then the inequality (36) above implies that

(37) V̇ ≤−δ4{∥X∥2 +∥Y∥2}.
The remaining part of the proof follows exactly the Yoshizawa techniques found in Yoshizawa [48]. □

5. CONCLUSION

In this paper, we have studied some conditions for the uniform-asymptotic stability of the trivial
solution and uniform-ultimate boundedness of all solutions to a particular Aizermann vector differential
equation by means of Lyapunov direct method. By the results of this paper, the age-long Aizermann
problems have been brought to limelight for further study be interested researchers.
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