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SOLUTIONS OF CERTAIN SYSTEM OF SECOND
ORDER NONLINEAR DELAY DIFFERENTIAL

EQUATIONS
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ABSTRACT. Convergence criteria for the solutions of certain
system of two nonlinear delay differential equations with con-
tinuous deviating argument ϱ(t) using a suitable Lyapunov-
Krasovskii’s functional are established in this study. The new
result attained extends and updates some results mentioned in
the literature. A numerical illustration is given to show the va-
lidity of the result as well geometric analysis to describe the
behavior of solutions of the system.
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1. INTRODUCTION

We consider here system of nonlinear differential equations of the
form,

Ẋ = H(Y )

Ẏ = −Φ(X, Y )Y − Ψ(X(t− ϱ(t)) + P (t,X, Y ),
(1)

where X, Y ∈ Rn are the unknown functions, H,Ψ : Rn → Rn,
Φ : Rn × Rn → Rn×n, P : R+ × Rn × Rn → Rn and H,Φ, Ψ, P are
continuous in their respective arguments. 0 ≤ ϱ(t) ≤ ξ, (ξ > 0),
ϱ′(t) ≤ υ, 0 ≤ υ ≤ 1 and ξ value will be fixed later. Moreover, ϱ(t)
is once continuously differentiable on R+ and we also assume that
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the solutions of (1) exist and are unique. Equation (1) is the vector
version for the system

ẋi = hi (y1, y2, . . . , yn)

ẏi = −
n∑

k=1

Φikyk − Ψi(x1(t− ϱ(t)), (x2(t− ϱ(t))..., (xn(t− ϱ(t)))

+ pi (t;x1, x2, . . . , xn; y1, . . . , yn) , (i = 1, 2, . . . , n)

in which Φik are functions of xi, yi. If i = k = 1 and ϱ(t) = 0, the
system reduces to the one studied by Tejumola [14] for boundedness
of solutions.
A lot of results have been obtained on the study of properties of
solutions of ordinary differential equations. The essence of these
properties of solutions is to characterize and describe the nature
of solutions of ordinary differential equations as well as the state
variables defining models of natural phenomena and dynamical sys-
tems. Moreover, properties of solution of delay differential equa-
tions are very vital in specifying the behaviour of solutions of fairly
complicated nonlinear systems arising from some fields of science
and technology such as after effect, nonlinear oscillation, biological
systems and equations with deviating arguments. (See, Cronin [6]
and Rauch [13]). Results abound for convergence of solutions for
various second and third order certain nonlinear scalar or vector dif-
ferential equations. (See for example, [9], [10], [11], [15], [16], [17],
[18], [19], [20] and the references cited therein). But with respect to
system of two nonlinear vector differential equations, only very few
results exist in the literature for the stability and boundedness of
solutions. (See for example, [12] and [8]). Scarce still, is the conver-
gence of solutions of certain system (1) with variable delay. Though
it goes without saying that studies on delay differential equation are
ubiquitous but system of two nonlinear delay differential equations
are less visible and rarely scarce. More specifically, system of the
form (1) has not been discussed in the relevant literature. This new
system will be of interest to researchers and scientists particularly
in the theory of motion in mathematical physics. It should be noted
here that results of special cases of system (1) where the deviating
argument is absent or delay being zero have been investigated by
few authors. (See, [12] and [8]).
Our motivation comes from [12]. Here, we consider a system of
the form (1) using a suitable Lyapunov-Krasovskii’s functional to
obtain new satisfactory criteria for the convergence of solutions of
system of delay differential equation. Analysis of such systems are
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quite difficult. The difficulty increases depending on the assump-
tions made on the nonlinear term with the deviating argument and
the necessity for a complete Lyapunov-Krasovskii’s functional. The
Lyapunov-Krasovskii’s functional for more satisfactory results are
well discussed in [5]. The result obtained is not only new but will
also contribute to the qualitative theory of systems nonlinear de-
lay differential equations. A numeric example is given to show the
application of the result and geometric display to describe the be-
havior of solutions under the criteria obtained.

We shall write equation (1) as

Ẋ = H(Y )

Ẏ = −Φ(X, Y )Y − Ψ(X) +

∫ t

t−ϱ(t)

⟨JΨ (Xσ), H(Y σ)⟩dσ + P (t,X, Y ).

(2)

The following is our main result

2. STATEMENT OF RESULT

Theorem 1: Given that Ψ(0) = H(0) = 0, we assume that
δH , δP , δS,△H ,△P ,△S > 0 and δo > 0 such that the following
conditions hold:

(i) the Jacobian matrices JH(Y ), JΨ (X) and Φ(X, Y ) exist, sym-
metric, commute pairwise and their eigenvalues satisfy

0 < δH ≤ λi(JH(Y )) ≤ △H

0 < δS ≤ λi(JΨ (X)) ≤ △S

0 < δP ≤ λi(Φ(X, Y )) ≤ △P

(i = 1, 2..., n)

(ii) P (t,X, Y ) satisfies

∥P (t,X2, Y2)− P (t,X1, Y1)∥ ≤ δo{∥X2 −X1∥2 + ∥Y2 − Y1∥2}
1
2

for any X, Y ∈ Rn, provided

ξ < min

{
(α + βδH)δS
(α + β)∆S

;
(1− υ)[(δP − α)δH − βδH∆H ]

2δH∆S(1− υ) + (δH + α + β)∆SδH∆H

}
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and δo < µ,
then any two solutions X2(t), X1(t) and Y2(t), Y1(t) of (1) neces-
sarily converge.

The function V (Xt, Yt)

The Lyapunov-Krasovskii’s functional V (Xt, Yt) that will be used
to prove our result is defined by

2V (Xt, Yt) = 2

∫ 1

0

⟨Ψ(ϑX)X⟩dϑ+ 2

∫ 1

0

⟨H(σY )Y ⟩dσ

+ 2α⟨X, Y ⟩+ 2β⟨X,H(Y )⟩

+ Λ

∫ t

−ϱ(t)

∫ t

t+s

⟨H(Y σ), H(Y σ)⟩dσds,

(3)

for 0 < α < 1 and 0 < β < 0.1.

Using (3) above, we establish the following result.
Lemma 1. Given that all the conditions on H(Y ), Ψ(X) and
Φ(X, Y ) in Theorem 1 hold. Then, we have D1 > 0 and D2 > 0
such that

D1(∥X∥2 + ∥Y ∥2) ≤ 2V (Xt, Yt) ≤ D2(∥X∥2 + ∥Y ∥2) (4)

for arbitrary X, Y ∈ Rn.

Proof of Lemma 1:
Clearly V (0, 0) = 0 in (3) and V (Xt, Yt) in (3) after re-arrangement
becomes

2V (Xt, Yt) = ⟨α
1
2X + α

1
2Y, α

1
2X + α

1
2Y ⟩

+ ⟨β
1
2X + β

1
2H(Y ), β

1
2X + β

1
2H(Y )⟩

+ 2

∫ 1

0

⟨G(ϑX)X⟩dϑ− α⟨X,X⟩ − β⟨X,X⟩

+ 2

∫ 1

0

⟨H(σY )Y ⟩dσ − β⟨H(Y ), H(Y )⟩ − α⟨Y, Y ⟩

+ Λ

∫ t

−ϱ(t)

∫ t

t+s

⟨H(Y σ), H(Y σ)⟩dσds.

For each of the term of the above function, we obtain the estimates
by the same reasoning in [1], [2], [7] and (i) of Theorem 1, we have
that
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the term

⟨H(Y ), H(Y )⟩ =
∫ 1

0

d

dσ
⟨H(σY ), H(Y )⟩dσ

= 2

∫ 1

0

⟨JH(σX), H(σY )⟩dσ

= 2

∫ 1

0

∫ 1

0

ε⟨JH(εY )Y,H(σεY )Y ⟩dσdε

≥ △HδH∥Y ∥2.

Then,

2V (Xt, Yt) ≥ (δS − α− β)∥X∥2 + (δH − α− β △H δH)∥Y ∥2

+ ∥β
1
2X + β

1
2H(Y )∥2 + ∥α

1
2X + α

1
2Y ∥2

+ Λ

∫ t

−ϱ(t)

∫ t

t+s

⟨H(Y σ), H(Y σ)⟩dσds,
(5)

where

δS − α− β > 0, δH − α− β △H δH > 0 (6)

and the integral

Λ

∫ t

−ϱ(t)

∫ t

t+s

⟨H(Y σ), H(Y σ)⟩dσds > 0.

From (5), it is quite obvious that the function V (Xt, Yt) defined in
(3) is definitely positive and V (Xt, Yt) also satisfy the conditions of
[Theorem A and Theorem B, [4]] and followed the same reasoning
in [20].
Hence, there is a D1 > 0 small enough such that

2V (Xt, Yt) ≥ D1(∥X∥2 + ∥Y ∥2).

The right side of inequality (4) of Lemma 1 follows by the same
reasoning in [1], [2], [7] and (i) of Theorem 1 if we choose from (3),
the term

2

∫ 1

0

⟨Ψ(ϑX)X⟩dϑ =

∫ 1

0

∫ 1

0

ϑ1⟨JΨ (ϑ1ϑ2X)X,X⟩dϑ1dϑ2

2

∫ 1

0

⟨H(σY )Y ⟩dσ =

∫ 1

0

∫ 1

0

σ1⟨JH(σ1σ2Y )Y, Y ⟩dσ1dσ2
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Thus,

δS∥X∥2 ≤
∫ t

0

⟨Ψ(ϑX), X⟩dϑ ≤ ∆S∥X∥2

δH∥Y ∥2 ≤
∫ t

0

⟨H(σY ), Y ⟩dσ ≤ ∆H∥Y ∥2

⟨X,H(Y )⟩ =
∫ t

0

⟨JH(σY )Y,X⟩dσ

≤
∫ t

0

⟨JH(σY )Y,X⟩dσ

≤ ∆H∥X∥∥Y ∥

≤ 1

2
∆H

(
∥X∥2 + ∥Y ∥2

)
|⟨X, Y ⟩| ≤ ∥X∥∥Y ∥ ≤

(
∥X∥2 + ∥Y ∥2

)
and

Λ

∫ t

−ϱ(t)

∫ t

t+s

⟨H(Y σ), H(Y σ)⟩dσds ≤ 1

2
Λϱ2(t)s∥Y ∥2.

It follows that,

2V (Xt, Yt) ≤ (2∆G + α + β∆H)∥X∥2 + (2∆H + α + β∆H +
1

2
Λξ2s)∥Y ∥2

≤ D2

(
∥X∥2 + ∥Y ∥2

)
,

where

D2 = max{2∆S + α + β∆H ; 2∆H + α + β∆H +
1

2
Λξ2s}.

Hence, (4) of Lemma 1 is established where D1, D2 are finite con-
stants.

Proof of Theorem 1
We take (X1(t), X2(t)), (Y1(t), Y2(t)) ∈ Rn to be any solution of (1)
and let Ω = Ω(t) be defined by

Ω(t) = V (X2(t)−X1(t), Y2(t)− Y1(t)),

and V is the function earlier defined in (3) with X, Y substituted
with X2 −X1 and Y2 − Y1 respectively.
Following Lemma 1, we have D3 and D4 such that

D3(∥X2−X1∥2+∥Y2−Y1∥2) ≤ Ω(t) ≤ D4(∥X2−X1∥2+∥Y2−Y1∥2).
(7)
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Next, differentiating Ω(t) with respect to t along the system (2)
we obtain,

Ω̇(t) = −Ω1 − Ω2 + Ω3 + Ω4,

where

Ω1 =
1

2
⟨(α + βδH)X2 −X1, Ψ(X2)− Ψ(X1)⟩

+
1

2

{
⟨(δP − α)Y2 − Y1, H(Y2)−H(Y1)⟩ − β⟨H(Y2)−H(Y1), H(Y2)−H(Y1)⟩

}
,

Ω2 =
1

2
⟨(α + βδH)X2 −X1, Ψ(X2)− Ψ(X1)⟩

+
1

2

{
⟨(δP − α)Y2 − Y1, H(Y2)−H(Y1)⟩ − β⟨H(Y2)−H(Y1), H(Y2)−H(Y1)⟩

}
+ ⟨(αδP + βδP δH)X2 −X1, Y2 − Y1⟩,

Ω3 = Λϱ(t)⟨H(Y2)−H(Y1), H(Y2)−H(Y1)⟩

− Λ(1− ϱ′(t))

∫ t

t−ϱ(t)

⟨H(Y2σ)−H(Y1σ), H(Y2σ)−H(Y1σ)⟩

+ ⟨H(Y2)−H(Y1),

∫ t

t−ϱ(t)

JΨ (X2 −X1)(σ), H(Y2σ)−H(Y1σ)⟩dσ

+ ⟨α(X2 −X1),

∫ t

t−ϱ(t)

JΨ (X2 −X1)(σ), H(Y2σ)−H(Y1σ)⟩dσ

+ ⟨β(X2 −X1),

∫ t

t−ϱ(t)

JΨ (X2 −X1)(σ), H(Y2σ)−H(Y1σ)⟩dσ

and

Ω4 = [(α+βδH)∥X2−X1∥+δH∥Y2−Y1∥]∥P (t,X2, Y2)−P (t,X1, Y1)∥.

The following estimate exist by the same argument in [3],

Ψ(X2)− Ψ(X1) =

∫ 1

0

JΨ (X2 −X1)(r)dr

H(Y2)−H(Y1) =

∫ 1

0

JH(Y2 − Y1)(s)ds

(8)

where r = pX1 + (1 − p)X2, 0 ≤ p ≤ 1 and s = qY1 + (1 − q)Y2,
0 ≤ q ≤ 1.
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Using the hypotheses in Theorem 1 and (8), we get

Ω1 ≥
1

2
⟨(α + βδH)X2 −X1, δΨ (X2 −X1)⟩

+
1

2

{
⟨(δP − α)Y2 − Y1, δH(Y2 − Y1)⟩ − β⟨δH∆H(Y2 − Y1), (Y2 − Y1)⟩

}
.

Ω1 ≥ D5(∥X2 −X1∥2 + ∥Y2 − Y1∥2),

where D5 =
1
2
min{(α + βδH)δS, (δP − α)δH − βδH∆H}.

Ω2 ≥ ∥l1(αδP + βδP δH)(X2 −X1) + 2−1l−1
1 (Y2 − Y1)∥2

+ ⟨[2−1(α + βδH)δS − l21(αδP + βδP δH)
2](X2 −X1), (X2 −X1)⟩

+ ⟨{[2−1(δP − α)δH − βδH∆H ]− 4−1l−2
1 }(Y2 − Y1), (Y2 − Y1)⟩

Ω2 ≥ ∥l1(αδP + βδP δH)(X2 −X1) + 2−1l−1
1 (Y2 − Y1)∥2

+ {2−1(α + βδH)δS − l21(αδP + βδP δH)
2}∥X2 −X1∥2

+ {[2−1(δP − α)δH − βδH∆H ]− 4−1l−2
1 }∥Y2 − Y1∥2.

If we set

l21 =
1

2
min

{
(α + βδH)δS

(αδP + βδP δH)2
,

1

(δP − α)δH − βδH∆H

}
,

Ω2 ≥ 0, ∀ X, Y ∈ Rn.

In Ω3, we give the estimates for the following and using the fact
that 2|⟨P,Q⟩| ≤ (∥P∥2 + ∥Q∥2)

⟨H(Y2)−H(Y1),

∫ t

t−ϱ(t)

JΨ (X2 −X1)(σ), H(Y2σ)−H(Y1σ)⟩dσ

≤ 1

2
δH∆Sϱ(t)∥Y2 − Y1∥2

+
1

2
δH∆S

∫ t

t−ϱ(t)

⟨H(Y2σ)−H(Y1σ), H(Y2σ)−H(Y1σ)⟩dσ,

⟨α(X2 −X1),

∫ t

t−ϱ(t)

JΨ (X2 −X1)(σ), H(Y2σ)−H(Y1σ)⟩dσ

≤ 1

2
α∆Sϱ(t)∥X2 −X1∥2

+
1

2
α∆S

∫ t

t−ϱ(t)

⟨H(Y2σ)−H(Y1σ), H(Y2σ)−H(Y1σ)⟩dσ
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and

⟨β(X2 −X1),

∫ t

t−ϱ(t)

JΨ (X2 −X1)(σ), H(Y2σ)−H(Y1σ)⟩dσ

≤ 1

2
β∆Sϱ(t)∥X2 −X1∥2

+
1

2
β∆S

∫ t

t−ϱ(t)

⟨H(Y2σ)−H(Y1σ), H(Y2σ)−H(Y1σ)⟩dσ.

Thus

Ω3 ≤
1

2
(α + β)∆Sϱ(t)∥X2 −X1∥2

+
1

2
(δH∆S + ΛδH∆H)ϱ(t)∥Y2 − Y1∥2

+ (δH∆S + α∆S + β∆S − 2Λ(1− ϱ′(t))

∫ t

t−ϱ(t)

⟨H(Y2σ)−H(Y1σ), H(Y2σ)−H(Y1σ)⟩dσ.

Using the assumption on ϱ(t) and ϱ′(t) and choosing

Λ =
(δH + α + β)∆S

2(1− υ)
> 0,

we have that

Ω3 ≤
1

2
(α + β)∆Sξ∥X2 −X1∥2

+
1

2

(
2δH∆S +

(δH + α + β)∆SδH∆H

2(1− υ)

)
ξ∥Y2 − Y1∥2.

Now combining estimates Ω1,Ω2,Ω3 and Ω4 for Ω̇(t), we get

Ω̇(t) ≤− 1

2

{
(α + βδH)δS − (α + β)∆Sξ

}
∥X2 −X1∥2

− 1

2

{
(δP − α)δH − βδH∆H − (2δH∆S +

(δH + α + β)∆SδH∆H

2(1− υ)
ξ

}
∥Y2 − Y1∥2

+

{
(α + βδH)∥X2 −X1∥+ δH∥Y2 − Y1∥

}
∥P (t,X2, Y2)− P (t,X1, Y1)∥.

If we choose

ξ < min

{
(α + βδH)δS
(α + β)∆S

;
(1− υ)[(δP − α)δH − βδH∆H ]

2δH∆S(1− υ) + (δH + α + β)∆SδH∆H

}
,

we have
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Ω̇(t) ≤−D6(∥X2 −X1∥2 + ∥Y2 − Y1∥2)

+ 2
1
2 δoD7

{
(∥X2 −X1∥2 + ∥Y2 − Y1∥2)

1
2 (∥X2 −X1∥2 + ∥Y2 − Y1∥2)

1
2

}
,

where D6 > 0, D7 > 0 are finite constants.

Ω̇(t) ≤ −(D6 − 2
1
2 δoD7)(∥X2 −X1∥2 + ∥Y2 − Y1∥2)

So that

Ω̇(t) ≤ −D8(∥X1 −X2∥2 + ∥Y1 − Y2∥2) (9)

where D8 = (D6 − 2
1
2 δoD7) provided δo < µ where µ is a suffi-

ciently small positive constant and the fact that Ω basically satisfy
the conditions of [Theorem A and Theorem B, [4]] and followed the
same reasoning in [20].
In view of (7), (9) implies that

Ω̇(t) ≤ −D9Ω, (10)

where D9 = D8D
−1
4 > 0.

Integrating (10) between to and t, we have that

Ω ≤ Ω(to) exp(−D9(t− to)), t ≥ to

which implies that Ω(t) → 0 as t → ∞.
By (7), it shows that

∥X2 −X1∥ → 0 and ∥Y2 − Y1∥ → 0 as t → ∞. □

NUMERICAL EXAMPLE

Consider the system (1) for n = 2 in the form,

Ẋ = H(Y )

Ẏ = −Φ(X, Y )Y − Ψ(X(t− ϱ(t)) + P (t,X, Y ),
(11)

where X =

(
x1

x2

)
, Y =

(
y1
y2

)
,

H(Y ) =

(
4y1 + 2
6y2 + 5

)
,

Ψ(X) =

(
3x1(t− ϱ(t)) + 0.002

1+12x1

4x2(t− ϱ(t)) + 0.002
1+16x2

)
,
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Φ(X, Y ) =

(
2 + x2

1 + y21 0
0 3 + x2

2 + y22

)
and P (t,X, Y ) =

( 1
1+t2+x2+y2

1
2+t2+x2+y2

)
.

Thus,

JH(X) =

(
4 0
0 6

)
and JΨ (X) =

(
12 + 3(−0.2 + t) 0

0 16 + 4(−0.2 + t)

)
.

Clearly, JH(X), JΨ (X) and Φ(X, Y ) are symmetric and commute
pairwise. That is,

JΨ (X)Φ(X, Y ) = Φ(X, Y )JΨ (X),

JH(X)JΨ (X) = JΨ (X)JH(X),

JH(X)Φ(X, Y ) = Φ(X, Y )JH(X).

We obtain the eigenvalues of the matrices JH(X), JΨ (X) and Φ(X, Y )
as follows

δH = 4 ≤ λi(JH(Y )) ≤ 6 = ∆H (i = 1, 2),

δS = 12 ≤ λi(JΨ (X)) ≤ 16 = ∆S (i = 1, 2)

and

δP = 2 ≤ λi(Φ(X, Y )) ≤ 3 = ∆P (i = 1, 2).

We choose α = 0.4, β = 0.06 and
δS − α− β = 11.54 > 0, δH − α− β △H δH = 2.16 > 0.

If we take ϱ(t) = 1
2t2+4

, then 0 ≤ 1
2t2+4

≤ ξ

and that ϱ′(t) = −4t
(2t2+4)2

≤ υ. We choose υ = 0.5, so that

ξ < min

{
3, 0.24

}
.

It follows that |ϱ(t)| ≤ 0.20, if the delay is increased beyond this
range a discontinuous function of t appears which may lead to chaos.
Thus, all the conditions of Theorem 1 are satisfied. Therefore, ev-

ery solution X(t) =

(
x1(t)
x2(t)

)
, Y (t) =

(
y1(t)
y2(t)

)
of (1) are

convergent as t → ∞.
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3. CONCLUSION

In this study, the convergence behaviour of solutions of certain
system of second order nonlinear delay differential equation was
carried out. New sufficient conditions on the convergence of solu-
tions of the system of delay differential equation was established
using the Lyapunov’s direct method. Numerical and geometrical
analysis were given in system (11) which satisfies all the conditions
of Theorem 1 and (6). This new result significantly improves those
available in the literature as well as contribute to the qualitative
theory of systems nonlinear delay differential equations.
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Figure 1. The plot of X = {x1(t), x2(t)} (in red
and blue) respectively and Y = {y1(t), y2(t)} (in
green and pink) respectively satisfying the conditions
of Theorem 1 and (6) if ϱ(t) = 0.1 as t → ∞.
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Figure 2. The plot of X = {x1(t), x2(t)} (in red
and blue) respectively and Y = {y1(t), y2(t)} (in
green and pink) respectively satisfying the conditions
of Theorem 1 and (6) if ϱ(t) = 0.24 as t → ∞.

Figure 1 and Figure 2 show that the solutions X = {x1(t), x2(t)}
and Y = {y1(t), y2(t)} are convergent and in Figure 3 chaotic func-
tion of t appear for ϱ(t) = 3.0 and Figure 4 show the vector plot
associated with the system (11) showing that the solutions are con-
verging.
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Figure 3. The solutions X = {x1(t), x2(t)} and
Y = {y1(t), y2(t)} are discontinuous and appear to
be chaotic if ϱ(t) = 3.0
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Figure 4. The vector plot associated with the sys-
tem (11) satisfying the conditions of Theorem 1 and
(6) together with several solutions of the system.
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