
Journal of the Vol. 36, pp. 307-317, 2017

Nigerian Mathematical Society c©Nigerian Mathematical Society

ON THE GEOMETRIC ERGODICITY OF THE MIXTURE

AUTOREGRESSIVE MODEL

M. I. AKINYEMI1 AND G. N. BOSHNAKOV

ABSTRACT. Geometric ergodicity is very useful in establish-
ing mixing conditions and central limit results for parameter
estimates of a model. It also justifies the use of laws of large
numbers and forms part of the basis for exploring the asymptotic
theory of a model.
The class of mixture autoregressive (MAR) models provides a
flexible way to model various features of time series data and is
well suited for density forecasting. The MAR models are able
to capture many stylised properties of real data, such as multi-
modality, asymmetry and heterogeneity. We show here that the
MAR model is geometrically ergodic and by implication satisfies
the absolutely regular and strong mixing conditions.
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1. Introduction
Geometric ergodicity is very useful in establishing mixing conditions

and central limit results for parameter estimators of a model. It also
justifies the use of laws of large numbers and forms a basis for explor-
ing the asymptotic theory of the model. This further translates into
examining the consistency and asymptotic normality of the parameter
estimates of the model [22]. Detailed discussions on geometric ergodic-
ity and mixing conditions are given by [16], [21], [23], [5]. Furthermore,
[20] provide criteria for judging the strong ergodicity of regime-switching
diffusion processes. They considered processes in one dimensional space
and in multidimensional space separately.[12] stated sufficient condi-
tions for simultaneous geometric ergodicity of Markov chain classes. In
particular, they deal with non asymptotic computable bounds for the
geometric convergence rate of homogeneous ergodic Markov processes.
[19] derived sufficient conditions for geometric ergodicity of a general
class of asymmetric nonparametric stochastic processes with stochastic
volatility models with skewness driven by the hidden Markov Chain with
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switching.[9] showed that the Gibbs sampler of the Poisson change-point
model is geometrically ergodic. They prove that the transition kernel is
a trace-class operator, which implies geometric ergodicity of the sampler
and apply the sampler to a model for the quarterly driver fatality counts
for the state of Victoria, Australia. [18] showed the geometric ergodicity
of the block Gibbs Markov chain. They showed under mild conditions
that when a Bayesian version of the general linear mixed model is cre-
ated by adopting a conditionally conjugate prior distribution, a simple
block Gibbs sampler can be employed to explore the resulting intractable
posterior density. [14] provided explicit connections between the V -
geometric ergodicity of Markov kernel P on a measurable space X and
that of finite-rank non-negative sub-Markov kernels P̂k approximating
P .
Mixture models have over the years played a significant role in data

modelling especially in capturing the dynamics of financial time se-
ries [13] studied the class of mixed normal conditional heteroskedastic
(MixN- GARCH) models, which couples a mixed normal distributional
structure with GARCH-type dynamics.They introduced two different
flexible time-varying weight model structures. [6] proposed mixtures of
stable Paretian distributions for univariate asset returns. The model
lends itself to use in a multivariate context for portfolio selection. They
applied the model to out-of-sample risk forecasting exercise for seven ma-
jor FX and equity indices.[15] proposed the large margin mixture of AR
(LMMAR) models. They proposed methods which are applied on the
simulated time series data, electrocardiogram data, speech data for E-
set in English alphabet and electroencephalogram time series data. [17]
considered a class of mixtures of structured autoregressive (AR) models
and methods for sequential estimation within the said class. [26] pro-
posed the hierarchical Bayesian information criterion (HBIC) for model
selection in finite mixture models.
In this paper we show that the mixture autoregressive (MAR) model

is geometrically ergodic and, as a consequence, satisfies the absolutely
regular and strong mixing conditions.
The rest of this paper is structured as follows. In Section we describe

the class of MAR models and give some assumptions associated with it.
In Section we discuss the concepts of geometric ergodicity and mixing,
as well as the relationship between them. Finally, we show the geometric
ergodicity of the MAR model in Section .

2. Mixture Autoregressive (MAR) Model
The mixture autoregressive model of [24] is defined as follows.
Definition 1: A process {yt} is said to be a mixture autoregressive

(MAR) process if the conditional distribution function of yt given past
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information is given by

Ft|t−1(x) =

g∑
k=1

πkFk

(
x− φk,0 −

∑pk
i=1 φk,iyt−i

σk

)
, (0.1)

where g is a positive integer representing the number of components
in the model and the kth component of the model, for k = 1, . . . , g,
is specified by its mixing proportion πk > 0, scale parameter σk > 0,
autoregressive order pk, intercept φk,0, autoregressive coefficients φk,i,
i = 1, . . . , pk, and cumulative distribution function Fk(·). The mixing
proportions πk define a discrete distribution π, so

∑g
k=1 πk = 1.

We denote by MAR(g; p1, . . . , pg) a g-component MAR model whose
components are of orders p1, . . . , pg. The noise distribution functions Fk,
k = 1, . . . , g, are typically taken to be standard Gaussian [24] or (stan-
dardised) Student-t [25]. We will denote by fk(·) the corresponding prob-
ability density functions. It is also convenient to set p = max1≤k≤g pk
and φk,i = 0 for i > pk.
We do not discuss estimation theory in this paper but it can be de-

veloped under relatively mild conditions, usually met in practice. The
noise probability densities, fk(.), need to be continuous and positive ev-
erywhere, non-periodic and bounded on compacts sets for all k. Detailed
study of the asymptotic theory is given by [1].
A useful interpretation of the MAR model is that at each time t one of

g autoregressive-like equations is picked at random to generate yt. This
can be formalised by writing the MAR model as a random coefficient
autoregressive model [4]. Let {zt} be an i.i.d. sequence of random vari-
ables with distribution π (see Definition ), such that Pr{zt = k} = πk,
for k = 1, . . . , g. Then yt can be written as

yt = φzt,0 +

p∑
i=1

φzt,iyt−i + σztεzt(t) (0.2)

= μzt(yt) + σztεzt(t), (0.3)

where the noise variables {εk} are jointly independent and independent
of past ys, μzt(yt) = φzt,0 +

∑p
i=1 φzt,iyt−i, and the probability density

of εk(t) is fk(.), see [4] for further details see.
The conditional density of yt given zt and the past values of both yt

and zt is

fθ(yt | zt, zs, ys, s ≤ t− 1) =
1

σzt
fzt

(
yt − φzt,0 −

∑pzt
i=1 φzt,iyt−i

σzt

)
.

(0.4)

Define a vector Zt = [Zt,1, . . . , Zt,g]
′, such that Zt,k takes the value

one when zt = k and zero otherwise. Let also Yt = (yt, . . . , yt−p+1)
′.

Our results hold under the following somewhat more general assump-
tions about the process Zt [1].
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Assumptions A

(1) For each k ∈ {1, . . . , g}, {Zt,k : t ≥ 0} is an irreducible, aperiodic
Markov chain on a finite space S with probability distribution
π1, . . . , πg and transition probability matrix A = (aij). Hence,
Zt,k inherits the properties of {Zt}.

(2) The chain {Zt} is independent of the εt and for all i, j, P (zt = j |
zt−1 = i,Ft−1) = P (zt = j | zt−1 = i), where Ft−1 = σ{Yr, r ≤
t − 1}. This assumption means that the hidden process Zt is
independent of the past observations given its own past, i.e.
Zt,1.

Assumptions A(1) and A(2) are general conditions for hidden
Markov models (see [10] or [11] for examples). Furthermore, we
assume for the MAR model defined in Equation (0.2) that:

(3) The noise {εt} has probability density that is continuous and
positive everywhere.

(4) fk(y) is non-periodic and bounded on all compact sets for all k

Under Assumption A, it is possible to define an aperiodic S×R
p-valued

Markov chain

Qt = (Zt, Yt). (0.5)

The process {Zt, t > 0} in Equation (0.5) is a simple case of a hidden
Markov chain on a finite state space S = {0, 1} with stationary k-step
transition probability matrix. {Zt, t > 0} drives the dynamics of Yt.

3. Geometric Ergodicity
The chain {Yt} is called geometrically ergodic if there exists a positive

constant ρ < 1 such that

lim
t→+∞ ρ−t‖pt(y, ·)− π(·)‖ = 0, ∀y ∈ S. (0.6)

Recurrence, existence of an invariant probability measure and ϕ-irreducibility
properties are not generally easily verified for all models. [22] and [16]
suggested exploring the use of the drift condition for proving geometric
ergodicity. The following theorem is by [22, page 591] and [16, page
368].
Theorem 1: (Geometric ergodicity) Suppose that the Markov

process Yt is aperiodic and ϕ-irreducible. Suppose also that there exists
a petite set A, positive constants 0 < ρ < 1, ε > 0, M < ∞ and a
non-negative measurable function V ≥ 1 such that:

E[V (Yt) | yt−1 = y] ≤
{
ρV (y)− ε, if y ∈ Ac,

M, if y ∈ A.
(0.7)

Then Yt is geometrically ergodic.
The function V is said to be a drift criterion and is also referred to

as a test function [23].
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3.1. Geometric Ergodicity and β-mixing conditions
[7] and [5] showed that for an ergodic Markov chain Yt, of invariant

probability measure π,

βY (t) =

∫
‖P t(y, .)− π‖π(dy). (0.8)

The rate ρ in Equation (0.6) can be chosen independently of the initial
point. If Equation (0.6) holds then it follows that βY (t) = O(ρt). Then
{Yt} is stationary and geometrically ergodic and hence β-mixing. Thus,
β-mixing is a major consequence of geometric ergodicity.
Furthermore, β-mixing implies α-mixing [8]. Therefore, if the Markov

chain Yt is geometrically ergodic, then it is both β-mixing (absolutely
regular) and α-mixing (strong mixing) at a geometric rate.

4. Geometric Ergodicity of the MAR model
Let yt be a MAR process as defined in Definition , We show here

that Yt = (yt, . . . , yt−p+1)
′ is geometrically ergodic and by implication

β-mixing as well as α-mixing, at a geometric rate.
The following assumptions are made in addition to Assumption A in

Section .
Assumptions B

(1) For each z ∈ S, there exist ci(z), di(z) ∈ R
p, ci(z) ≥ 0, di(z) ≥

0, i = 1, . . . , p, such that for y = (y1, . . . , yp) the following in-
equalities hold:
(a) |μzt(y)| ≤

∑p
i=1 ci(z)|yi|+ o(‖y‖) as ‖y‖ → ∞ and

(b) σ2
zt(y) ≤

∑p
i=1 di(z)|y2i |+ o(‖y‖2) as ‖y‖ → ∞.

(2) The Foster-Lyapunov drift condition [22, 16] holds, that is, there
exists a real valued measure function V ≥ 1, such that for some
constants ε > 0, 0 < ρ < 1, M1 and a small set A = {y ∈ R :
‖y‖ ≤ M1}, the following holds:

E[V (Qt) | Qt−1 = q] ≤ ρV (q) for y ∈ Ac, (0.9)

sup
x∈A

E[V (Qt) | Qt−1 = q] < ∞ for y ∈ A. (0.10)

The following result is useful for the proof of our claim.
Lemma 1:[[16, Theorem 5.5.7]] For an aperiodic, ϕ-irreducible Markov

chain, all petite sets are small sets.
We now prove the following result for the chain Qt = (Zt, Yt) defined

in Equation (0.5).
Proposition 1: The Markov chain Qt = (Zt, Yt) is aperiodic and

ϕ-irreducible. Furthermore, for every compact set C ∈ R
p, S × C is a

small set.

Proof. For ease of notation, we will write the conditional probability

P (Yt | Z1 = z1, . . . , Zt = zt) as P (Y
(z)
t ).
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Let g(q, y | z) denote the joint density of Qt, Yt given Yt is in state z
and let z = (z1, . . . , zt) ∈ S′ and y = (y1, . . . , yt) ∈ S.
Denote the transition probabilities of moving between alternate states

of zt by pz0z1 , . . . , pzt−1zt > 0.
For any compact set C ⊂ R

p and A such that ϕ(A) > 0, we have by
[2, Lemma 1] and [21]∫

A
g(q, y | z)dϕ(q) > 0 and inf

y∈C

∫
A
g(q, y | z)dϕ(q) > 0. (0.11)

Hence, it is possible to write

P (Y
(z)
t ∈ A | Yt−p = q) =

∫
A
g(q, y | zt−p+1, . . . , zt)dϕ(y) > 0, ∀q.

It then follows that

P (Y
(z)
t ∈ A | Y0 = y) > 0 and inf

y∈C
P (Y

(z)
t ∈ A | Y0 = y) > 0,

which shows that Qt is ϕ-irreducible. Furthermore, for any compact set
C ∈ R

p,

inf
(z0,y)∈S×C

j∑
n=1

Pn((z0, y), S
′ ×A) > 0, (0.12)

implying that every compact subset of S ×C is a small set, which com-
pletes the proof. �

To verify the geometric ergodicity of the MAR model, we need to:

(1) Prove that the process Qt = (Zt, Yt) is ϕ-irreducible and aperi-
odic.

(2) Show the existence of a test function V (Qt) satisfying the drift
condition (Equation (0.9) above).

The two steps are summarized in the following theorem.
Theorem 2: Consider the aperiodic Markov Chain Qt = (Zt, Yt).

Let A be a small set and {Yt = (yt, . . . , yt−p+1)
′; t ≥ 0} be an aperiodic,

ϕ-irreducible process such that each yt is a MAR process defined by
Equation (0.3). Suppose that Assumption A and Assumption B are
satisfied and

sup
z

E

⎡
⎣ p∑
j=1

ci(Zt)cj(Zt) + E(ε2zt)di(Zt) | Zt−1 = z

⎤
⎦ < 1. (0.13)

Denote by π the unique invariant distribution of Yt and let πy(A) =
π(S ×A× R

p−1), A ∈ B(R).
Then

(1) {Yt; t ≥ 0} is geometrically ergodic with V (y) = 1 + ‖y‖2,
(2) {Yt; t ≥ 0} has a stationary distribution with finite second mo-

ments, i.e. Eπy [y
2
t ] < ∞,
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(3) {Yt; t ≥ 0} is β-mixing and hence strong mixing at geometric
rate.

Proof. We start by showing that the drift condition (Equation (0.9)) is
satisfied.
Let us choose δ > 0, such that

∑p
i=1 ξi + δ = 1, where

ξi = sup
z

E[

p∑
j=1

ci(z)cj(z)

+ E(ε2t )di(z) | Zt−1 = z] < 1.

Choose V (z, y) = 1 + ‖y2‖ to be the test function, V : S × Rp → R.
Since ξi > 0 and

∑p
i=1 ξi+ δ =

∑p
i=1(ξi+ δ/p), we also have ξi ≤ (1− δ

p)

for 1 ≤ i ≤ p.
Hence, by Equation (0.9) we have for y = (y1, . . . , yp),

E[V (Qt) | Qt−1 = q] = E[V (Qt) | Qt−1 = (z, y)]

= E[(μzt(y) + σztεt)
2 | Zt−1 = z] + 1

≤ Ez[(μzt(y) + σztεt)
2] +

p∑
i=2

y2i−1 + 1.

Let τi(z) =
∑p

j=1 ci(z)cj(z). From the last inequality and Assumption B
we get

E[V (Qt) | Qt−1 = q] ≤
p∑

i=1

Ez[τi(z) + Eε2ztdi(z)]y
2
i +

p∑
i=2

y2i−1

+ Ez[(2o(‖y‖
p∑

i=1

ciz)|yi|) + (o(‖y‖))2 + E(ε2t )(o(‖y‖2))2] + 1.

This can be written more concisely as

E[V (Qt) | Qt−1 = q] ≤
p∑

i=1

ξiy
2
1 +

p∑
i=2

y2i−1 + Ez[Lzt(y)] + 1,

where

Lzt(y) = (2o(‖y‖
p∑

i=1

ci(z))|yi|) + (o(‖y‖))2 + E(ε2t )(o(‖y‖2))2. (0.14)
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Furthermore, for δ > 0, it follows that

E[V (Qt) | Qt−1 = q] ≤ y1(1− δ

p
) +

p∑
i=2

y2i−1 + Ez[Lzt(y)] + 1

≤
p∑

i=1

y2i −
δ

p

p∑
i=1

y2i + Ez[Lzt(y)] + 1

≤
p∑

i=1

y2i −
δ

p

p∑
i=1

y2i + Ez[Lzt(y)] + 1 +
δ

p
− δ

p

= (1 +

p∑
i=1

y2i )−
δ

p
(1 +

p∑
i=1

y2i ) + Ez[Lzt(y)] +
δ

p

= V (z, y)− δ

p
(V (z, y)) + Ez[Lzt(y)] +

δ

p

= V (z, y)

[
1− δ

p
+

1

V (z, y)

[
Ez [Lzt(y)] +

δ

p

]]
.

However,
Ez [Lzt(y)]
V (z,y) → 0, δ/p

V (z,y) → 0 as ‖y‖ → ∞, so that we have

E[V (Qt) | Qt−1 = q] ≤ V (z, y)[1 − δ

p
+

δ/p

V (z, y)
] = V (z, y)(1 − δ

p
).

Now suppose that y ∈ Ac and there exists M1 > 1 such that ‖y‖ > M1

so that δ
p < ε < 1, ε is a strictly positive constant. Choose δ, p and

ρ such that 1 − δ
p < ρ < 1. It follows that the first part of Equation

(0.9) holds. Furthermore, since μzt(y) is locally bounded for y ∈ A, the
second part of Equation (0.9) holds, which concludes the proof of part
(1) of Theorem . Part (3) follows from Section .
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We prove part (2) of Theorem as follows. Using Assumptions B we
get

y2t ≤
[

p∑
i=1

ci(z)|yi−1|+ o(‖y‖) + (

p∑
i=1

di(z)|y2i−1|+ o‖y‖2) 1
2 εzt

]2

=

(
p∑

i=1

ci(z)|yi−1|+ o(‖y‖)
)2

+

p∑
i=1

di(z)|y2i−1|+ o‖y‖2)ε2zt
+ 2μzt(y)σztεzt

=

p∑
i=1

ci(z)|yi−1|cj(z)|yj−1|+ 2

p∑
i=1

ci(z)yi−1o(‖y‖)

+ (o‖y‖)2
p∑

i=1

di(z)|y2|+ o‖y‖2)ε2zt ] + 2μzt(y)σztεzt

=

p∑
i=1

(τi(z) + ε2ztdi(z)y
2
i−1)

+ 2

p∑
i=1

ci(z)yi−1o(‖y‖) + (o‖y‖)2 + o‖y‖2)ε2zt ]

+ 2μzt(y)σztεzt .

Since both yt−1 and zt are independent of εzt, after taking expectation
and setting Lzt(y) the same as in Equation (0.14), we get

Ey2t ≤
p∑

i=1

(τi(z) +Eε2ztdi(z))Ey2i−1 + Lzt(y).

Simplifying by pulling the yts together and solving for Ey2t we have

Ey2t ≤ Lzt(y)

1− [
∑p

i=1(τi(z) + Eε2ztdi(z))]
.

The proof of Theorem (1) and (3) indicates that the Foster criterion F1
and F2 of [23] holds. Hence, by [23, Theorem 2 and 1(iii)], there exists
a finite invariant measure π such that

Lzt(y)

1− [
∑p

i=1(τi(z) + Eε2ztdi(z))]
< ∞.

Therefore, Eπ(y
2
t ) < ∞, as required. �

4. CONCLUDING REMARKS

In this paper, we established the geometric ergodicity of the MAR model
and by implication have shown that it satisfies the absolutely regular (β-
mixing) and strong mixing (α-mixing) conditions. In addition, we have
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shown that the process {yt} has a stationary distribution with finite
second moments.
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