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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF SOME SECOND-ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

S. J. OLALEYE1, G. AKINBO2, O. O. ADUROJA3, A. T. ADEMOLA4 AND O. A. ADESINA5

ABSTRACT. This paper investigates the asymptotic behaviour of solutions of some
second-order nonlinear ordinary, delay, and stochastic differential equations. The
order of these differential equations are reduced to a system of first order and em-
ployed to construct a suitable complete Lyapunov functions and functional. Standard
conditions are imposed on the nonlinear terms to obtain criteria that guarantee the
asymptotic behaviour of solutions of the considered equations. Examples are given
to illustrate the obtained results. Our results improve and extend some well-known
results in the literature.

1. INTRODUCTION

The study of problems that involve the behaviour of solutions of ordinary differential
equations (ODEs), delay or functional differential equations (DDEs or FDEs), and sto-
chastic differential equations (SDEs) has been dealt with by many outstanding authors;
see, for instance, Ademola and Ogundiran [7], Arnold [11], Balakrishnam [13], Burton
[14–16], Hale [21–23], Itô and Nishio [24], Kellert et al. [25], Lasalle [26], Liu and
Raffoul [28], Mao [31] and Yoshizawa [37].

Many differential equations of second order have been derived since the beginning
of the 18th century as models for problems of classical mechanics and other fields of
science. Consequently, the study of problems involving the asymptotic behaviour, ex-
istence and uniqueness of solutions of ordinary differential equations, delay differential
equations and stochastic differential equations have been dealt with by several authors
such as Abou-El-Ela et al.[1, 2], Ademola [3], Ademola et al.[4–6], Alaba and Ogun-
dare [8, 9], Cartwright and Littlewood [17], Ezeilo [18, 19], Levinson [27], Omeike et
al. [32], Tejumola [33], Tunç [34], Yeniçerioğlu [35, 36] and so on to mention but a
few.

From the literature, the most often used method to study the asymptotic behaviour of
solutions of differential equations is the second method of Lyapunov. See for instance,
Max [31], Lyapunov [29, 30], Itô and Nishio [24]. The major advantage of this method
is that the qualitative behaviour of solutions can be obtained and discussed without
any prior knowledge of the solutions. However, the construction of the Lyapunov
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functions remains a general problem due to the lack of a unique way of constructing
the functions.

So far, the study of second-order nonlinear ordinary differential equations, delay
differential equations and stochastic differential equations has led to some interesting
results. For instance, Graef et al. [20] studied the asymptotic behaviour of solutions of
a second-order nonlinear differential equation

(a1(t)x′)′+q1(t) f1(x)g1(x′) = r1(t).

In another interesting paper, Tunç [34] established sufficient criteria for the stability
and boundedness of solutions of non-autonomous differential equation of second order

x′′+a2(t)[ f2(x,x′)x′+g2(x,x′)x′]x′+b2(t)h2(x) = e2(t,x,x′).

Alaba and Ogundare [8] worked on the asymptotic behaviour of solutions of certain
second-order ordinary differential equations of the form

x′′+a3(t) f3(x,x′)x′+b3(t)g3(x) = e3(t,x,x′).

Next, we shift our attention to second-order nonlinear delay differential equations,
Ademola et al. [4] worked on the periodicity, stability, and boundedness of solutions
to the following nonlinear delay differential equation

x′′(t)+φ4(t) f4(x(t),x(t −ρ(t)),x′(t),x′(t −ρ(t)))+g4(x(t −ρ(t))) = p4(·),
where p4(·) = p4(t,x(t),x′(t)). We now consider second-order nonlinear stochastic
differential equations with Abou-El-Ela et al. [1, 2] where new results on stability and
boundedness of solutions of the equation of the type

x′′(t)+g5(x′(t))+bx(t −h)+ϑx(t)θ ′(t) = p5(t,x(t),x′(t −h))

was acquired. Ademola et al. [5] obtained new results on the stability and boundedness
of solutions to a certain second-order nonautonomous stochastic differential equation
of the form

x′′(t)+g6(x(t),x′(t))x′(t)+ f6(x(t))+ϑx(t)θ ′(t) = p6(t,x(t),x′(t)).

However, our interest is in the study of the asymptotic behaviour of solutions of the
differential equations

x′′(t)+g(t,x(t),x′(t))x′(t)+ f (x(t)) = p(t,x(t),x′(t)); (1.1)

x′′(t)+g(t,x(t),x′(t))x′(t)+ f (x(t −h)) = p(·); (1.2)
and

x′′(t)+g(t,x(t),x′(t))x′(t)+ f (x(t))+σx(t)ω ′(t) = p(·), (1.3)
where σ ,h, are positive constants with h being the delay constant, the functions, g ∈
C([R+×R×R,R), f ∈C(R,R), p(·) = p(t,x(t),
x′(t)), p ∈C(R+×R×R,R) are continuous functions, R+ = [0,∞),R= (−∞,∞) and
ω(t)∈Rm (an m−dimensional standard Brownian motion (or Wiener process) defined
on a probability space). The remaining parts of the paper are as follows, definitions
and some basic results on the asymptotic behaviour of solutions of vector ordinary,
delay, and stochastic differential equations are given in Section 2. We state and prove
the main results of this paper in Section 3, while examples are given in the last section.
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2. PRELIMINARIES

Consider the system
y′ = f (s,y), (2.1)

where y is an n−vector. Suppose that f (s,y) is continuous on R+×D, where D is a
connected open set in Rn. Let C be a class of solutions of equation (2.1) which remain
in D, y0(s) be an element of C and ∥ · ∥ denotes the Euclidean norm in Rn.

Definition 2.1. (See [37]) The solution y(s) ≡ 0 of equation (2.1) is stable, if for any
ε > 0 and any s0 ∈ R+, there exists a δ (ε,s0) > 0 such that ∥y(s;s0,y0,)∥ < ε for all
s ≥ s0 whenever ∥y0∥< δ (ε,s0).

Definition 2.2. The zero solution of equation (2.1) is asymptotically stable, if y(s)≡ 0
is stable and if there exists a δ0(s0) > 0 such that y(s;s0,y0)→ 0 as s → ∞ whenever
∥y0∥< δ0(s0).

Definition 2.3. A solution y(s;s0,y0) of equation (2.1) is bounded, if there exists a
δ > 0 such that ∥y(s;s0,y0)∥< δ , for all s ≥ 0, where δ may depend on each solution.

Definition 2.4. A solution y(s;s0,y0) of equation (2.1) is ultimately bounded for bound
E, if there exists a E > 0 and a T1 > 0 such that for every solution y(s;s0,y0) of equation
(2.1), ∥y(s;s0,y0)∥
< E, for all s ≥ s0+T1, where E is independent of the particular solution while T1 may
depend on each solution.

Lemma 2.5. (See [37]). Suppose that there exists a Lyaponuv function V (s,y) defined
on 0 ≤ s < ∞, ∥y∥< H, H > 0 which satisfies the following conditions

(i) V (s,0)≡ 0;
(ii) a(∥y∥)≤V (s,y), where a(ν) is continuous and increasing; and

(iii) V ′
(2.1)(s,y) ≤ 0, (the upper right-hand derivative of the function V along the

solution path of (2.1)).
Then the zero solution of the system (2.1) is stable.

Lemma 2.6. (See [37]). Suppose that there exists a Lyaponuv function V (s,y) defined
on 0 ≤ s < ∞, ∥y∥< H, H > 0 which satisfies the following conditions

(i) V (s,0)≡ 0;
(ii) a(∥y∥) ≤ V (s,y) ≤ b(∥y∥), where a(ν),b(ν) are continuous increasing and

a(ν)→ ∞ as ν → ∞; and
(iii) V ′

(2.1)(s,y)≤−c(∥y∥), where c(ν) is positive and continuous.
Then the zero solution of the system (2.1) is uniformly asymptotically stable.

Lemma 2.7. (See [37]) Suppose that there exists a non-negative Lyapunov function
V (s,y) on I ×Q such that V ′

(2.1)(s,y) ≤ −W (y), where W (y) is positive definite with
respect to a closed set Ω in the space Q. Moreover, suppose that f (s,y) of the system
(2.1) is bounded for all s when y belongs to an arbitrary compact set in Q and that
f (s,y) satisfies conditions

(a) f (s,y) tends to a function H(y) for y ∈ Q as s → ∞ and on any compact set in
Q this convergence is uniform. Consequently, H(y) is a continuous function
on Q; and



184 S. J. OLALEYE, G. AKINBO, O. O. ADUROJA, A. T. ADEMOLA AND O. A. ADESINA

(b) Corresponding to each ε > 0 and each y ∈ Q, there exists a δ (ε,z) > 0 and a
T (ε,z) > 0 such that if ∥y− z∥ < δ (ε,z) and s ≥ T (ε,z), we have ∥ f (s,y)−
(s,z)∥< ε

with respect to Q. Then, every bounded solution of (2.1) approaches the largest semi-
invariant set of the system

y′ = H(y) (2.2)
contained in Ω as s → ∞. In particular, if all solutions of (2.1) are bounded, every
solution of (2.1) approaches the largest semi-invariant set of (2.2) contained in Ω as
s →+∞.

Next, for y ∈ Rn, ∥y∥ is the norm of y, and a given r > 0, C denotes the space of
continuous functions mapping the interval [−r,0] into Rn and for ϕ ∈C,

∥ϕ∥= sup
−h≤θ≤0

|ϕ(θ)|.

CH will denote the set of ϕ ∈C such that ∥ϕ∥< H. For any continuous function y(u)
defined on −r ≤ u < A, A > 0, and any fixed s, 0 ≤ s < A, the symbol ys, will denote
the restriction of y(u) to the interval [s− r,s], i.e., y, is an element of C defined by
ys(θ) = y(s+ θ), −r ≤ θ ≤ 0. Let y′(s) denote the right-hand derivative of y(u) at
u = s, and consider the functional-differential equation

y′(s) = f (s,ys), (2.3)

where s ∈ R and the initial value ϕ : [−r,0]→ Rn with supremum norm, r > 0, CH is
an open ball of radius H in C;

CH := {ϕ ∈C([−r,0],Rn) : ∥ϕ∥< H}.
Definition 2.8. (See [37]). A function y(s0,ϕ) is said to be a solution of equation (2.3)
with initial condition ϕ ∈CH at s = s0, s0 ≥ 0, if there is a T > 0 such that y(s0,ϕ) is
a function from [s0 − r,s0 +T ) into Rn, with the properties

(i) ys(s0,ϕ) ∈ Rn for s0 ≤ s < s0 +T ;
(ii) ys(s0,ϕ) = ϕ; and

(iii) y(s0,ϕ) satisfies equation (2.3) for s0 ≤ s < s0 +T.

The definition of stability and boundedness can be given in the same way as for or-
dinary differential equations, that is, by replacing the initial value y0 and the solution
y(s;s0,y0) by ϕ and ys(s0,ϕ), respectively.

Definition 2.9. (See [37]) A functional V = V (s,ϕ) defined on s ∈ R+, ϕ ∈ CH is
called Lyapunov functional for the system (2.3) if

(i) a(∥ϕ∥) ≤ V (s,ϕ) ≤ b(∥ϕ∥), where a(ν) and b(ν) are continuous increasing
and a(ν)→ ∞ as ν → ∞; and

(ii) V ′
(2.3)(s,ϕ)≤−c(∥ϕ∥), where c(ν) is continuous and positive for ν > 0.

Definition 2.10. Let V (s,ϕ) be a continuous functional defined for s ≥ 0, ϕ ∈CH . The
derivative of this functional V along the solutions path of equation (2.3) is defined to
be

V ′
(2.3)(s,ϕ) = lim

δ→0+
sup

1
δ
[V (s+δ ,ys+δ (s,ϕ))−V (s,ys(s0,ϕ))],

where y(s0,ϕ) is the solution of equation (2.3) with ys0(s0,ϕ) = ϕ .
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Lemma 2.11. (See [37]). Let V : R+×CH → R be continuous and locally Lipschitz
in ϕ, V (s,0) = 0 and such that

(i) W1(|ϕ|)≤V (s,ϕ)≤W2(|ϕ|); and
(ii) V ′

(2.3)(s,ϕ)≤ 0, where Wi (i = 1,2) are wedges.
Then the solution ys of equation (2.3) is uniformly stable. If we defined

Ω = {ϕ ∈CH : V ′
(2.3)(ϕ) = 0},

then ys = 0 of equation (2.3) is asymptotically stable, provided that the largest invariant
set in Ω = {0}.

Lemma 2.12. (See [37]). Let V (s,ϕ) be a continuous Lyaponuv functional on C
and let Ul denote the region such that V (s,ϕ) < l. Suppose that V (s,ϕ) ≥ 0 and
V ′

(2.3)(s,ϕ) ≤ 0 for all (s,ϕ) ∈ Ul and that there exists a constant K ≥ 0 such that
|ϕ(s0,ϕ0)| ≤K for all (s,ϕ)∈Ul . If E is the set of all points in Ul where V ′

(2.3)(s,ϕ)= 0
and M is the largest invariant set in E, then every solution of equation (2.3) with initial
value in Ul approaches M as s → ∞.

Finally, consider the nonautonomous n-dimensional stochastic differential equation.

dys = F(s,ys)ds+G(s,ys)dΩs, (2.4)

on s≥ s0 with initial value ys0 = y0, where F :R+×Rn →Rn and G :R+×Rn →Rn×m

are measurable functions, Ωs ∈ Rm (an m−dimensional Wiener process defined on a
probability space). Suppose that both F and G are sufficiently smooth for equation
(2.4) to have a unique continuous solution on s ≥ 0 which is denoted by y(s,y0), if
y(0) = 0, with further assumption that F(s,0) = 0,G(s,0) = 0 for all s ≥ 0.

Then, the stochastic differential equation (2.4) admits zero solution y(s,0)≡ 0.

Definition 2.13. The zero solution of the stochastic differential equation (2.4) is said
to be stochastically stable or stable in probability, if for every pair of ε ∈ (0,1) and
η > 0, ∃ a δ0 = δ0(ε,η) > 0 such that P{|y(s;y0)| < η , ∀ s ≥ 0} ≥ 1− ε, whenever
|y0|< δ0.

Definition 2.14. The zero solution of the stochastic differential equation (2.4) is said
to be stochastically asymptotically stable, if it is stochastically stable and in addition if
for every pair of ε ∈ (0,1) and η > 0, ∃ a δ0 = δ0(ε) > 0 such that Pr{ lim

s→∞
y(s;y0) =

0} ≥ 1− ε, whenever |y0|< δ0.

Definition 2.15. A solution y(s,s0,y0) of the stochastic differential equation (2.4) is
said to be stochastically bounded or bounded in probability if it satisfies Ey0∥y(s,y0)∥≤
C(s0,∥y0∥), for all s ≥ s0, where Ey0 denotes the expectation operator with respect to
the probability law associated with y0, C : R+×R+ → R+ is a constant depending on
s0 and y0.

Definition 2.16. The solution y(s,s0,y0) of the stochastic differential equation (2.4) is
said to be uniformly stochastically bounded, if it satisfies
Ey0∥y(s,y0)∥ ≤ C(∥y0∥), for all s ≥ s0, where Ey0 denotes the expectation operator
with respect to the probability law associated with y0, C : R+ → R+ is a constant
depending on y0.
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Let V ∈C1,2(R+,R+×Rn) denote the family of nonnegative functions V (s,y) (Lya-
punov function) defined on R+×Rn which are once continuously differentiable in s
and twice continuously differentiable in y. By Itô’s formula, we have

dV (s,y) = LV (s,y)ds+Vy(s,y)G(s,y)dω(s), (2.5)

where

LV (s,y) =
∂V (s,y)

∂ s
+

∂V (s,y)
∂y

F(s,y)

+
1
2

trace[GT (s,y)Vyy(s,y)G(s,y)],

Vy(s,y) =
(

∂V (s,y)
∂y1

, · · · , ∂V (s,y)
∂yn

)
and

Vyy(s,y) =
(

∂ 2V (s,y)
∂yi∂y j

)
n×n

, i, j = 1,2, · · · ,n.

Lemma 2.17. (See [31]). Assume that there exist V ∈C1,2(R+×Rn,R+) and a posi-
tive constant φ such that

(i) V (s,0) = 0;
(ii) V (s,y(s))> φ(∥y(s)∥); and

(iii) LV (s,y)≤ 0 for all (s,y) ∈ R+×Rn.
Then the zero solution of stochastic differential equation (2.4) is stochastically stable.

Lemma 2.18. (See [31]). Suppose that there exist V ∈C1,2(R+×Rn,R+) and positive
constants φ0,φ1,φ2 such that

(i) V (s,0) = 0;
(ii) φ0(∥y∥)≤V (s,y)≤ φ1(∥y∥),φ0(ν)→ ∞ as ν tends to infinity; and

(iii) LV (s,y)≤−φ2(∥y∥) for all (s,y) ∈ R+×Rn.

Then the zero solution of stochastic differential equation (2.4) is uniformly stochasti-
cally asymptotically stable in the large.

Assumption 2.19. (See [28]). Let V ∈ C1,2(R+×Rn,R+), and suppose that for any
solutions y(s0,y0) of stochastic differential equation (2.4) and for any fixed 0 ≤ s0 ≤
T < ∞, we have

Ey0
{∫ T

s0

V 2
yi
(s,y(s))G2

ik(s,y(s))ds
}
< ∞, (2.6)

where 1 ≤ i ≤ n, 1 ≤ k ≤ m.

Assumption 2.20. (See [28]). A special case of the general inequality (2.6) is the
following condition. Assume that there exists a function ρ(s) such that

|Vyi
(s,y(s))Gik(s,y(s))|< ρ(s), (2.7)

where y ∈ R2 1 ≤ i ≤ n, 1 ≤ k ≤ m, and for any fixed 0 ≤ s0 ≤ T < ∞,∫ T

s0

ρ
2(s)ds < ∞. (2.8)
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Lemma 2.21. (See [28]). Assume that there exists a Lyapunov function V (s,y(s)) ∈
C1,2(R+×Rn,R+), satisfying Assumption 2.19, such that, for all (s,y(s)) ∈R+×Rn,

(i) ∥y(s)∥ j ≤V (s,y(s))
(ii) LV (s,y(s))≤−α(s)∥y(s)∥k +ψ(s); and

(iii) V (s,y(s))−V k(s,y(s))≤ µ,

where α,ψ ∈C(R+;R+), j,k and µ are positive constants, j ≥ 1 and ψ is a non nega-
tive constant. Then the solutions of the stochastic differential equation (2.4) satisfy

Ey0∥y(s,y0)∥ ≤
[
V (s0,y0)e

−
∫ s

s0
α(ε)dε

+
∫ s

s0

(µα(u)

+ψ(u))e−
∫ s

u α(ε)dεdu
]1/ j

,

(2.9)

for all s ≥ s0.

Lemma 2.22. (See [28]). Assume there exist a Lyapunov function V ∈ C1,2(R+ ×
Rn,R+), satisfying Assumption 2.20, such that for all (s,y(s)) ∈ R+×Rn,

(i) ∥y(s)∥ j ≤V (s,y(s))≤ ∥y(s)∥k;
(ii) LV (s,y(s))≤−α(s)∥y(s)∥ν +ψ(s); and

(iii) V (s,y(s))−V ν/k(s,y(s))≤ µ,

where α,ψ ∈C(R+;R+), j,k and ν are positive constants, j ≥ 1 and ψ is a non neg-
ative constant. Then the solutions of the stochastic differential equation (2.4) satisfy
inequality (2.9) for all s ≥ s0.

Corollary 2.23. (See [28]).
(a) Suppose all the hypotheses of Lemma 2.21 hold and in addition,∫ s

s0

(µα(u)+ψ(u))e−
∫ s

u α(ε)dεdu ≤ B, (2.10)

for all s ≥ s0 ≥ 0, for some positive constant B; then all solutions of stochastic
differential equation (2.4) are stochastically bounded.

(b) Again suppose all the hypotheses of Lemma 2.22 hold and in addition, if con-
dition (2.10) is satisfied; then all solutions of stochastic differential equation
(2.4) are uniformly stochastically bounded.

3. MAIN RESULTS

This section presents boundedness and the behaviour of solutions as t → ∞. The
equivalent system of equation (1.1) is

x′ = y, y′ = p(t,x,y)−g(t,x,y)y− f (x) (3.1)

where the functions f ,g and p are defined in Section 1. We define the Lyapunov
function V (x,y) =V as

2V = (a2 +b2)x2 +(b+1)y2 +2axy+ x f (x), (3.2)

for all a > 0, and b > 0 are constants.

Theorem 3.1. Further to the basic assumption on the functions g, f and p in equation
(1.1), suppose that a,b,b1,c,β are positive constants and that
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(i) g(t,x,y)≥ a;
(ii) f (0) = 0, b ≤ f (x)

x ≤ b1, for all x ̸= 0, f ′(x)≤ c for all x, b >
c

2a
; and

(iii) |p(t,x,y)| ≤ β for all t ≥ 0.
Then every solution of system (3.1) satisfies

x2(t)+ y2(t)≤ exp(−ηt)+
{

P1 +P2

∫ t

t0
|p(s,x,y)|exp

(
ηs
2

)
ds
}2

,

for all t ≥ t0, where the constant P1 = P1(λ0,λ2,λ3,λ7,a,b,x(t0,),
y(t0),δ1,δ2,)> 0 and the constant P2 = P2(λ1,λ3,λ4,λ5)> 0.

Theorem 3.2. Suppose that conditions (i) to (iii) of Theorem 3.1 hold, and in addition∫
∞

0 |p(t,x,y)|dt < β < ∞, for all t ≥ 0, x and y. Then every solution (x(t),y(t)) of the
system (3.1) satisfies

lim
t→∞

x(t) = 0; lim
t→∞

y(t) = 0. (3.3)

One influential lemma that is extremely important to the proofs of Theorems 3.1 and
3.2 will be stated and proved.

Lemma 3.3. Suppose all the conditions of Theorem 3.1 hold, then there exist positive
constants λ1 = λ1(b) and λ2 = λ2(a,b,b1) such that

λ1(x2 + y2)≤V ≤ λ2(x2 + y2) (3.4)

for all x and y. Furthermore, there exist positive constants λ3 = λ3(δ1,δ2) and λ4 =
λ4(a,b) such that along the solution path of system (3.1)

V ′
(3.1) ≤−λ3(x2 + y2)+λ4(x2 + y2)1/2|p(t,x,y)| ∀ x and y. (3.5)

Proof. Let (x(t),y(t)) be any solution of (3.1). From equation (3.2), it is clear that
V (0,0) = 0,for all t ≥ 0. Re-writing equation (3.2), we have

V =
1
2

{
(ax+ y)2 +

(
b2 +

f (x)
x

)
x2 +by2

}
.

Since (ax+ y)2 ≥ 0 for all x and y, and from hypothesis (ii) of Theorem 3.1, there
exists a positive constant d1 such that

V ≥ d1(x2 + y2) (3.6)

with d1 =
1
2 min{b2+b,b}. Applying the inequality |xy| ≤ 1

2(x
2+y2) on equation (3.2)

gives

V ≤ 1
2

([
a2 +

(
b2 +b1

)
+a
]
x2 +(b+1+a)y2

)
.

There exists a positive constant d2 such that

V ≤ d2(x2 + y2), (3.7)

where d2 := 1
2 max{a2 + b2 + a + b1,1 + a + b}. From inequalities (3.6) and (3.7),

inequality (3.4) is established with d1 and d2 equivalent to λ1 and λ2 respectively.
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Moreover, the time derivative of equation (3.2) along the system (3.1) gives

V(3.1) =−a
f (x)

x
x2 −

[
(b+1)g(t,x,y)−a

]
y2 −

[
ag(t,x,y)

+b
f (x)

x
− f ′(x)− (a2 +b2)

]
xy+

[
ax+(b+1)y

]
p(t,x,y).

(3.8)

Following the hypotheses (i) and (ii) of Theorem 3.1, equation (3.8) could be simplified
as

V ′
(3.1) ≤−abx2 −aby2 + c|xy|+

[
a|x|+(b+1)|y|

]
|p(t,x,y)|. (3.9)

Applying the inequality |xy| ≤ 1
2(x

2 + y2) and the fact that (|x|+ |y|)2 ≤ 2(x2 + y2) for
all x,y ∈ R, in inequality (3.9), there exist two positive constants d3 and d4 such that

V ′
(3.1) ≤−d3(x2 + y2)+d4(x2 + y2)1/2|p(t,x,y)| (3.10)

with d3 := ab− 1
2c and d4 :=

√
2max{a,b+1}. Inequality (3.10) establishes inequality

(3.5) with d3 and d4 equivalent to λ3 and λ4 respectively. □

Remarks 1. If p(t,x,y)≡ 0, inequality (3.10) becomes

V ′
(3.1) ≤−λ3(x2 + y2)≤ 0. (3.11)

Proof of Theorem 3.1. Let (x(t),y(t)) be any solution of the system (3.1). Recall from
equation (3.5) that V ′

(3.1) ≤−λ3(x2+y2)+λ4(x2+y2)1/2|p(t,x,y)|, for all t ≥ 0, x and
y. From inequalities (3.6) and (3.7), we have

(x2 + y2)1/2 ≤
(V

d1

)1/2
and −λ3(x2 + y2)≤−λ3

(V
d2

)
, (3.12)

where λ3 is a positive constant. Using inequalities (3.12) in (3.5), we have

V ′
(3.1) ≤−λ5V +λ6V 1/2|p(t,x,y)|, (3.13)

where λ5 :=
λ3

d2
> 0 and λ6 :=

λ4

(d1)1/2 > 0. Inequality (3.13) can be further written as

V ′
(3.1) ≤−2λ7V +λ6V 1/2|p(t,x,y)|, (3.14)

where λ7 :=
λ5

2
. Further simplification of inequality (3.14) gives

V ′
(3.1) +λ7V ≤ λ6V 1/2

[
|p(t,x,y)|−λ8V 1/2

]
, (3.15)

where λ8 :=
λ7

λ6
> 0. Inequality (3.15) can be written as

V ′
(3.1) +λ7V ≤ λ6V 1/2|p(t,x,y)|. (3.16)

Dividing inequality (3.16) by V 1/2 and from hypothesis (iii) of Theorem 3.1, we have
first order differential inequality

V ′
(3.1)V

−1/2 +λ7V 1/2 ≤ λ6β . (3.17)
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On multiplying inequality (3.17) by e
λ7
2 t and integrating from t0 to t, we have

V 1/2(t)≤ e−
λ7
2 t
[
V 1/2(t0)e

λ7
2 t0 +

λ6

2

∫ t

t0
βe

λ7
2 sds

]
. (3.18)

Using inequality (3.4) and (3.18), we obtain

x2(t)+ y2(t)≤ e−λ7t
[
P1 +P2

∫ t

t0
e

λ7
2 sds

]2
,

where P1 = λ2
λ1

(
x2(t0)+ y2(t0)

)1/2
e

λ7
2 t0 and P2 = λ6β

2λ1
. For convenience, let λ7 = η ,

then we have
x2(t)+ y2(t)≤ e−ηt

[
P1 +P2

∫ t

t0
e

ηs
2 ds
]2
. (3.19)

□

Remarks 2. If p(t,x,y) = 0, then inequality (3.19) reduces to x2(t)+y2(t)≤ λ9e−ηtP1
and x2(t)+y2(t)→ 0, as t → ∞, which established that, the zero solution of the system
(3.1) is asymptotically stable.

Proof of Theorem 3.2. Let (x(t),y(t)) be any solution of the system (3.1). Now from
inequality (3.5) and choosing (x2 + y2)1/2 ≥ λ10 where λ10 := 2βλ

−1
3 λ4 > 0 is a con-

stant, then inequality (3.5) becomes

V ′
(3.1) ≤−1

2
λ3(x2 + y2)≤ 0, for all x,y and t ≥ 0. (3.20)

Consider the set Ω1 = {X(t) = (x(t),y(t)) ∈ R2|V ′
(3.1)(t,X(t)) = 0}. Since equation

(1.1) can be written in the form X ′=F(X(t))+G(t,X(t)), where F(X(t))= (y,−g(t,x,y)y−
f (x))T and G(t,X(t))
= (0, p(t,x,y))T . Then by inequality (3.20), and the fact that
V ′

(3.1)(X(t))= 0 on Ω1 implies that x= y= 0, it follows that X ′= 0 has solution (X(t))T =

KT , where X(t) = (x(t),y(t)) ∈ R2 and K = (k1,k2). For X(t) ∈ R2 to remain in Ω1,
we must have k1 = k2 = 0. The largest invariant set in Ω1 is {0,0} so that by inequality
(3.6), (3.7) and (3.20), all assumptions of Lemma 2.7 holds with ϕ ≡ X(t)∈R2, hence
by Lemma 2.7, equation (3.3) is established. Hence the proof. □

Now we consider equation (1.2) and its equivalent system

x′ = y,

y′ = p(t,x,y)−g(t,x,y)y− f (x)+
∫ t

t−h
f ′(x(s))y(s)ds.

(3.21)

where 0 < h, is a constant to be determined. The main tool to be used in proving our
results is the continuously differentiable Lyapunov functional V = V (t,xt ,yt) defined
as

2V = b2x2 +by2 +(ax+ y)2 +2
∫ x

0
f (s)ds

+ γ

∫ 0

−h

∫ t

t+s
y2(θ)dθds,

(3.22)

where γ is a positive constant that will be determined later.
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Theorem 3.4. In addition to the basic assumption on the functions f ,g and p in equa-
tion (1.2), suppose that a,b,h,β ,P,Q are positive constants such that

(i) g(t,x,y)≥ a for all x and y;
(ii) f (0) = 0,b ≤ f (x)

x ≤ β for all x ̸= 0;
(iii) | f ′(x)| ≤ P for all x;
(iv) 0 < h where

h < min
{ ab

P(1+2a+b)
,

ab
P(2+a+2b)

}
; and (3.23)

(v) |p(t,x,y)| ≤ Q, Q < ∞.

Then every solution (xt ,yt) of the system (3.21) satisfies

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0. (3.24)

A lemma will be stated and proved which will be used in the proofs of our results.

Lemma 3.5. Suppose all the conditions of Theorem 3.4 holds, then there exist positive
constants λ11,λ12,λ13 such that

λ11(x2 + y2)≤V ≤ λ12(x2 + y2)+λ13

∫ t

t−h
y2(s)ds (3.25)

for all t ≥ 0, x and y. Moreover, there exist positive constants λ14 and λ15 such that
along the solution path of system (3.21)

V ′
(3.21) ≤−λ14(x2 + y2)+λ15(|x|+ |y|)|p(t,x,y)|. (3.26)

Proof. Let (xt ,yt) be any solution of (3.21). From equation (3.22) we have V (t,0,0) =
0 for all t ≥ 0. Also, the double integrals term in (3.22) is nonnegative, f (x)

x ≥ b for all
x ̸= 0, and (ax+ y)2 ≥ 0 for all x and y, there exists a positive constant λ11 = λ11(b)
such that

V ≥ λ11(x2 + y2), (3.27)

where λ11 := b
2 min{1+ b,1}. Applying the inequality |xy| ≤ 1

2(x
2 + y2) on equation

(3.22), since f (x)
x ≤ β for all x ̸= 0, there exist positive constants λ12 and λ13 such that

V ≤ λ12(x2 + y2)+λ13

∫ t

t−h
y2(s)ds, (3.28)

where λ12 = 1
2 max{(a2 + b2 + a+ β ),(a+ b+ 1)}, and λ13 = 1

2γ. Hence, from in-
equality (3.27) and (3.28), inequality (3.25) is established.
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Furthermore, the time derivative of the functional V defined by equation (3.22) along
the solution path of the system (3.21) is

V ′
(3.21) =−a

f (x)
x

x2 −
[
(b+1)g(t,x,y)−a

]
y2

−
[
b

f (x)
x

+ag(t,x,y)− (a2 +b2)
]
xy+

[
ax+(b+1)y

]
×

p(t,x,y)+
[
ax+(b+1)y

]∫ t

t−h
f ′(x(s))y(s)ds

+
γ

2

[
hy2 −

∫ t

t−h
y2(s)ds

]
.

(3.29)

Applying hypotheses (i)-(iii) of Theorem 3.4, and the obvious inequality |xy| ≤ 1
2(x

2+

y2) in equation (3.29), we have

V ′
(3.21) ≤−1

2
abx2 − 1

2
aby2 +

P
2

[
ax2 +(b+1)y2

]
h+

γ

2

[
hy2

−
∫ t

t−h
y2(s)ds

]
+

P
2
(a+b+1)

∫ t

t−h
y2(s)ds

− (W5 +W6)+max{a,b+1}(|x|+ |y|)|p(t,x,y)|,

(3.30)

where W5 :=
1
4

[
abx2 + 4(ag(t,x,y)− a2)xy+ aby2

]
and W6 :=

1
4

[
abx2 + 4(b

f (x)
x

−

b2)xy+ aby2
]
. Since W5 and W6, are quadratic expressions, it is not difficult to show

that
W5 =W6 ≥

1
4

ab
[
|x|− |y|

]2
≥ 0, (3.31)

for all x and y. Using estimate (3.31) in (3.30) we have

V ′
(3.21) ≤−1

2
abx2 − 1

2
aby2 +

h
2

[
(b+1)P+ γ

]
y2

+
1
2

[
γ − (a+b+1)P

]∫ t

t−h
y2(s)ds+

h
2
(aP+ γ)x2

+max{a,b+1}(|x|+ |y|)|p(t,x,y)|.

(3.32)

On choosing γ = (a+b+1)P > 0, there exist positive constants λ14 and λ15 such that

V ′ ≤−λ14(x2 + y2)+λ15(|x|+ |y|)|p(t,x,y)| (3.33)

for all x and y ̸= 0, where λ14 := 1
2 min

{
ab−(2a+b+1)hP, ab−(a+2b+2)hP

}
and λ15 :=

max{a,b+1}. □

Proof of Theorem 3.4. Let (xt ,yt) be any solution of the system (3.21). Since inequal-
ity (|x|+ |y|)2 ≤ 2(x2 + y2), then inequality (3.33) can be written as

V ′ ≤−λ14(x2 + y2)+λ16(x2 + y2)1/2, (3.34)

with λ16 =
√

2λ15Q. There exist positive constants λ17 and λ18 such that inequality
(3.34) becomes

V ′ ≤−λ17(x2 + y2)≤ 0, (3.35)
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for all t ≥ 0, x and y provided that (x2 + y2)1/2 ≥ λ18, where λ17 :=
1
2

λ14 and λ18 :=

2λ
−1
14 λ16. Now consider the set Ω2 =

{
Xt = (xt ,yt)∈R2 : V ′

(3.21)(t,Xt) = 0
}
. Since the

system (3.21) can be written as

X ′ = F(Xt)+G(t,Xt),

where

F(Xt) =

(
y,−g(t,x,y)y− f (x)+

∫ t

t−h
f ′(x(s))y(s)ds

)T

,

and
G(t,Xt) = (0, p(t,x,y))T .

From inequality (3.35), and the fact that V ′
(3.21)(t,Xt) = 0 on Ω2, implies that x = y = 0

and since f (0) = 0, it follows that X ′ = 0 has solution (xt ,yt)
T = (k1,k2)

T . For Xt ∈R2

to remain in Ω2, we must have k1 = k2 = 0. Since the largest invariant set in Ω2 is {0,0}
so that by inequality (3.27), (3.28) and (3.35), all assumptions of Lemma 2.12 holds
and hence by Lemma 2.12 equation (3.24) is established. □

Finally, we shift to stochastic differential equation (1.3) and consider the equivalent
system

x′ = y, y′ = p(t,x,y)−g(t,x,y)y− f (x)−σxω
′(t), (3.36)

where the functions f ,g and p are defined in Section 1. The continuously differentiable
Lyapunov function V = V (x(t),y(t)) employed is defined (3.2) for all a > 0,b > 0
constants.

Theorem 3.6. Suppose that a,b,σ ,β , and B0 are positive constants such that
(i) a ≤ g(t,x,y) for all x and y, g(t,0,0) = 0;

(ii) f (0) = 0,b ≤ f (x)
x ≤ β for all x ̸= 0;

(iii) 1
2σ2(b+1)< ab; and

(iv) |p(t,x,y)|< B0 for all t ≥ 0, x and y.
Then the solution (x(t),y(t)) of the stochastic differential system (3.36) is uniformly
stochastically bounded.

Theorem 3.7. Suppose that all hypotheses of Theorem 3.6 hold. In addition, if hy-
potheses

∫
∞

0 |p(t,x,y)|dt < ∞ is satisfied, for all t ≥ 0, x and y. Then every solution
(x(t),y(t)) of the system (3.36) satisfies

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0. (3.37)

The proof of the following lemma will be used in the proofs of Theorems 3.6 and
3.7.

Lemma 3.8. Suppose all the conditions of Theorem 3.6 holds, then there exist positive
constants λ19 and λ20 such that along the solution path of (3.36)

λ19(x2 + y2)≤V ≤ λ20(x2 + y2) (3.38)

for all x and y. In addition, there exists positive constants λ21 and λ22 such that

LV(3.36)(x,y)≤−λ21(x2 + y2)+λ22(|x|+ |y|)|p(t,x,y)| (3.39)
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for all t ≥ 0,x and y.

Proof. See the proof in Lemma (3.3) which establishes estimate (3.38) with d1 and d2
equivalent to λ19 and λ20 respectively. Furthermore, from equation (2.5), we find that

LV(3.36) =−1
2

[
a

f (x)
x

− 1
2

σ
2(b+1)

]
x2

− 1
2

[
(b+1)g(t,x,y)−a

]
y2 +[ax+(b+1)y]p(·)−W7,

(3.40)

where

W7 :=
1
2

{[
a

f (x)
x

− 1
2

σ
2(b+1)

]
x2 +2

[
b

f (x)
x

+ag(t,x,y)

− (a2 +b2 + f ′(x))
]
xy+

[
(b+1)g(t,x,y)−a

]
y2
}
.

Noting that W7 is quadratic, it is not difficult to show that

W7 ≥
1
2

[√[
a

f (x)
x

− 1
2

σ2(b+1)
]
|x|

−
√[

(b+1)g(t,x,y)−a
]
|y|
]2

≥ 0,

(3.41)

for all x and y. Using estimate (3.41), hypotheses (i) and (ii) of Theorem 3.6 in equation
(3.40), we have

LV(3.36) ≤−1
2

[
ab− 1

2
σ

2(b+1)
]
x2 − 1

2
aby2 +[ax+(b+1)y]p(t,x,y).

Using the hypotheses of Theorem 3.6 there exist positive constants d7 and d8 such that

LV(3.36) ≤−d7(x2 + y2)+d8(|x|+ |y|)|p(t,x,y)| (3.42)

for all t ≥ 0, x and y, where d7 := 1
2 max

{
ab− 1

2σ2(b+1),ab
}

and d8 := max
{

a,b+

1
}
. Hence, inequality (3.42) establishes inequality (3.39) with d7 ≡ λ21 and d8 ≡ λ22

respectively. □

Proof of Theorem 3.6. Let (x(t),y(t)) be any solution of the system (3.36). Re-writing
inequality (3.39), noting hypotheses (iv) of Theorem 3.6, we have

LV(3.36) ≤−1
2

λ21(x2 + y2)− 1
2

λ21

[
(|x|−B0λ

−1
21 λ22)

2

+(|y|−B0λ
−1
21 λ22)

2
]
+λ24

for t ≥ 0,x and y where λ24 := B2
0λ

−1
21 λ 2

22. Since λ21,λ22 and B0 are positive constants
and of course (|x| −B0λ

−1
21 λ22)

2 +(|y| −B0λ
−1
21 λ22)

2 ≥ 0, for all x and y, then there
exists positive constants λ23 such that

LV(3.36)(x,y)≤−λ23(x2 + y2)+λ24, (3.43)
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for t ≥ 0,x and y, where λ23 = 1
2λ21. Therefore, condition (ii) of Lemma 2.22 is

satisfied with α(t) = λ23, ψ(t) = λ24, r = 2. Similarly, from inequality (3.6), hy-
potheses (i) and (iii) of Lemma 2.22 hold with j = k = 2 so that µ = 0. Also, from
inequality (2.10) of Corollary 2.23, for µ = 0∫ t

t0

[
(µα(u)+ψ(u))e−

∫ t
u α(s)ds

]
du = λ

−1
23 λ24

[
1− e−λ23(t−t0)

]
≤ λ

−1
23 λ24

(3.44)

for t ≥ t0 ≥ 0. Inequality (3.44) satisfies (2.10) of Corollary 2.23 with B = λ24λ
−1
23 > 0.

Furthermore, from equation (2.6) and (3.2) there exits a positive constant λ25 such that

|Vyi(t,x,y)Gik(t,x,y)|= |σx||[ax+(b+1)y]| ≤ λ25(x2 + y2), (3.45)

where λ25 := 1
2σ max{2a+b+1,b+1}. Similarly from estimate (2.8) of Assumption

2.20 and inequality (3.45), we have

λ
2
25

∫ T

t0

(
x2(t)+ y2(t)

)2dt < ∞ (3.46)

for any fixed 0 ≤ t0 ≤ T < ∞. In conclusion, using inequality (3.45) in (2.9), we have

EX0∥X(t,X0)∥ ≤
[
λ26(x2

0 + y2
0)+λ24λ

−1
23

]1/2
(3.47)

for all t ≥ t0. All hypotheses of Lemma 2.22 are satisfied and inequality (2.10) holds
so that hypotheses of Corollary 2.23 (b) hold, by Corollary 2.23 (b) all solutions
(x(t),y(t)) of the system (3.36) are uniformly bounded. □

Proof of Theorem 3.7. Let (x(t),y(t)) be any solution of the system (3.36). Since
(|x|+ |y|)≤

√
2(x2+y2)1/2 and choosing (x2+y2)1/2 ≥ d9 where d9 = 23/2d−1

7 d8B0 >
0 is a constant, then inequality (3.42) becomes

LV(3.36)(x,y)≤−d10(x2 + y2)≤ 0 (3.48)

for all t ≥ 0, x and y where d10 :=
1
2

d7. Now, from the proof of Theorem 3.6 the
uniform boundedness of solutions of system (3.36) has been established.

Consider the set Ω3 := {X(t) = (x(t),y(t)) ∈ R2|LV(3.36) = 0}, and since system
(3.36) can be written in the form

X ′(t) = A(t)X(t)+X(t)ω ′(t)+G(t,X(t)),

where

X(t) :=
(

x
y

)
, A(t) :=

(
0 1

− f (x)
x

−g(t,x,y)

)
, ω :=

(
0 0

−σ 0

)
and

G(t,X(t)) := (0, p(t,x,y))T .

By inequality (3.48), and the fact that LV(3.36)(X(t)) = 0 on Ω3 implies that, x = y = 0,
since f (0) = 0, g(t,0,0) = 0, it follows that A(t)X(t) = 0, X(t)ω ′(t) = 0, so that
X ′ = 0 has solution X(t)T = KT , where X(t) = (x(t),y(t)) ∈ R2 and K = (k1,k2). For
X(t) ∈ R2 to remain in Ω3, we must have k1 = k2 = 0. The largest invariant set of
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course in Ω3 is {0,0} so that by inequality (3.6), (3.7) and (3.48), all assumptions of
Lemma 2.12 hold true and hence estimate (3.37) is established, which complete the
proof of Theorem 3.7. □

4. EXAMPLES

In this section, we shall present examples of ordinary, delay, and stochastic differen-
tial equations to illustrate applications of the results obtained in the previous section.

Example 4.1. Consider the second-order nonlinear non-autonomous ordinary differ-
ential equation

x′′+(3+2t + |cos(xx′)|)x′+(x+ sinx) = [1+ t + xx′]−1. (4.1)

Equation (4.1) is equivalent to system

x′ = y,

y′ = (1+ t + xy)−1 − (x+ sinx)− (3+2t + |cos(xy)|)y.
(4.2)

Compare systems (3.1) and (4.2), the following relations hold:

(i) The function g(t,x,x′) := 3+2t + |cos(xy)|. And since |cos(xy)| ≥ 0 for all x
and y, it follows from hypothesis (i) of Theorem 3.1 that

g(t,x,y) = 3+2t + |cos(xy)| ≥ a = 3 ∀ t ≥ 0.

(ii) The function f (x) := x+ sinx, clearly f (0) = 0. From hypothesis (ii) of The-

orem 3.1
f (x)

x
= 1+

sinx
x

, x ̸= 0. Since −0.2 ≤ sinx
x

≤ 1 for all x ̸= 0 it
follows that

0.8 = b ≤ f (x)
x

= 1+
sin(x)

x
≤ b1 = 2, x ̸= 0.

The behaviour of function f (x),
f (x)

x
and the bounds on

f (x)
x

are shown in

Figure 1. Again f ′(x) = 1+cosx ≤ c = 2 for all x. Also, from items (i) and (ii)

we find that b >
c

2a
implies that 1 >

1
3
. Figure 2 shows the paths of cosx, f ′(x)

and the upper bound of the function f ′(x).

(iii) The function p(t,x,y) :=
1

1+ t + xy
. And of course since 1 + t + |xy| ≥ 1,

|p(t,x,y)| ≤ β = 1, for all t ≥ 0,x and y. Hence, since all the hypotheses
of Theorem 3.1 are satisfied, then the solution (x(t),y(t)) of system (4.2) is
bounded.

(iv) In addition, the function
∞∫
0

1
1+ t + |xy|

dt < β < ∞ for all t ≥ 0, x and y.

Then every solution (x(t),y(t)) of the system (4.2) satisfies

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0.
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FIGURE 1. Paths and behaviour of f (x),
f (x)

x
and the bounds on

f (x)
x

FIGURE 2. Behaviour of cosx and f ′(x) on [−6π,6π].
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Example 4.2. Suppose f (x(t)) = f (x(t −h)) in equation (4.1), we have the following
second-order nonlinear non-autonomous delay differential equation

x′′+(3+2t + |cos(xx′)|)x′+[(x−h)+ sin(x−h)] = (1+ t + xx′)−1. (4.3)

Equation (4.3) is equivalent to a system of first-order delay differential equation

x′ = y, y′ = (1+ t + xy)−1 − (3+2t + |cos(xy)|)y

− (x+ sinx)+
∫ t

t−h
(y(s)+ cos(s))y(s)ds

(4.4)

Recall our considered second-order DDE

x′′(t)+g(t,x(t),x′(t))x′(t)+ f (x(t −h)) = p(t,x(t),x′(t)).

As in Example 4.1, the functions g, f and p of equation (4.4) satisfy conditions of
Theorem 3.4. Then every solution (x(t),y(t)) of the system (4.4) satisfies

lim
t→∞

x(t) = 0; lim
t→∞

y(t) = 0.

Example 4.3. Consider the second-order nonlinear non-autonomous stochastic differ-
ential equation

x′′+(3+2t + |cos(xx′)|)x′+(x+ sinx)+0.11xω
′(t)

= (1+ t + xx′)−1.
(4.5)

Equation (4.5) is equivalent to system

x′ = y,

y′ = (1+ t + xy)−1 − (x+ sinx)− (3+2t + |cos(xy)|)y
−0.11xω

′(t).

(4.6)

Now from system (3.36) and (4.6), we have the following relations:
(i) The function g(t,x,x′) = 3+ 2t + |cos(xy)|. And since |cos(xy)| ≥ 0 for all x

and y, it follows from hypothesis (i) of Theorem 3.6.

g(t,x,y) = 3+2t + |cos(xy)| ≥ a = 3, t ≥ 0, x and y.

(ii) The function f (x) = x + sinx, x ̸= 0. From hypothesis (ii) of Theorem 3.6
f (x)

x
= 1+

sinx
x

, x ̸= 0. It follows that
f (x)

x
= 1+

sin(x)
x

≥ b = 0.8. Thus,

0.8 = b ≤ f (x)
x

= 1+
sin(x)

x
≤ β = 2 x ̸= 0.

And of course hypothesis (iii) of Theorem 3.6 is satisfied
(iii) The function p(t,x,y) = [1+ t +xy]−1. And since 1+ t + |xy| ≥ 1, t ≥ 0, x and

y, then |p(t,x,y)| ≤ B0 = 1 for all t ≥ 0,x and y.
Items (i) to (iii) fulfill all hypotheses of Theorem 3.6, hence by Theorem

3.6 solution (x(t),y(t)) of the stochastic differential system (4.6) is uniformly
stochastically bounded. In addition to Theorem 3.6
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(iv) The function
∞∫
0

1
1+ t + |xy|

dt < β < ∞ for all t ≥ 0, x and y.

Then every solution (x(t),y(t)) of the system (4.6) satisfies

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0.
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