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QUASI-CENTRAL PRODUCT OF GROUPS AS A
GENERALIZATION OF CERTAIN PRODUCT OF GROUPS

A. IGUDA1, M. M. ZUBAIRU2, A. I. KIRI3 AND M. J. BASHIR4

ABSTRACT. In this paper we relaxed the condition [H,K] = {e} in
the definition of central product and come up with a new product
called quasi-central product. We claim and prove that every central
product is quasi-central product but not vice versa. We defined both
external and internal quasi-central products and further show that
the external and internal quasi-central products are isomorphic.

1. INTRODUCTION

Let G be a group and H and K be subgroups of G. The subgroups
H and K are said to be essentially disjoint in G if H ∩K = {e}. H
is said to be a complement of K in G if H and K are essentially dis-
joint and G = HK. A group G is said to be the internal direct prod-
uct (resp., internal semidirect product) of H and K if both H and K
are normal (resp., H is normal and K not necessary normal) and H
and K are complements in G. For two groups G1 and G2, the set
G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2} together with the binary op-
eration defined by (g1, g2)(g′1, g′2) = (g1g′1, g2g′2) is known to be
the external direct product of G1 and G2. Similarly if there exists
a homomorphism φ from G2 to the set of automorphisms of G1 (i.e.,
φ : G2 → Aut(G1)), then the set G1⋊φ G2 together with the binary op-
eration defined by (g1, g2)(g′1, g′2) = (g1φg2(g

′
1), g2g′2) is known to be

the external semidirect product of G1 and G2. It is well known that in
both direct and semidirect products, the external and internal products
are isomorphic. Moreover, if G = H⋊φ K (resp., if G = H ×K), then
G contains a normal subgroup isomorphic to H and a subgroup isomor-
phic to K (resp., G contains normal subgroups isomorphic to H and K),
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see [6, 10] for more details. A group G is an internal central product
of its subgroups H and K if G = HK, H ∩K is the center of G and
[H,K] = {e}, where [H,K] = {h−1k−1hk : h ∈ H,k ∈ K} (i.e., the set of
commutators of H and K).

Let G1 and G2 be groups and let A and B be the centers of G1 and
G2, respectively, such that there exists an isomorphism ϕ from A to
B. The external central product of G1 and G2 is given by G1oϕG2 =

{(g1, g2)N : g1 ∈ G1, g2 ∈ G2}, where N = {(a, ϕ(a−1)) : a ∈ A},
ϕ(a−1)∈B with operation defined by (g1, g2)N(g′1, g′2)N =(g1g′1, g2g′2)N,
for (g1, g2)N, (g′1, g′2)N ∈ G1oϕG2. As in the direct and semidirect
products of groups, the internal and external central products are also
isomorphic, for more detail results we refer the reader to [7]. Further,
if G = HoK, then G is generated by normal subgroups isomorphic to H
and K, and all elements of H commute with all elements of K.

Throughout this paper we shall write G and |G| to denote a group and
order of a group G, respectively. Further, e, H ≤G and Z(G) denote, the
identity, H is a subgroup of G and center of the group G, respectively.
Moreover, for two subgroups H and K of a group G, HK, H ⋊K and
HoK denote the internal direct product of H and K, the internal semi-
direct product of H and K and internal central product of H and K,
respectively. Similarly, G1 × G2, G1 ⋊ϕ G2 and G1oϕG2 denote the
external direct product of groups G1 and G2, the external semi-direct
product of groups G1 and G2 and external central product of groups G1
and G2, respectively. For basic concepts in product of groups and other
undefined terms, we refer the reader to [4, 6, 9, 10].

In 1852, Betti [8] defined what is now known as direct product of
groups, he used groups of substitution in his work. The concept of the
groups product in Betti’s paper was not very clear at that time. After the
modern definition of group, many results followed about direct prod-
uct of groups for example see [9, 10]. In 1937, Schur and Zassenhaus
showed that for a group G of order nm where n and m are co-prime, if
G has a normal subgroup H of order n then H has complement say K in
G [11].

Furthermore, Neumann and Neumann [2], in 1950 defined another
product called central product as earlier defined in the introductory para-
graph. In this product, G is the central product of H and K only if H
and K generate G (i.e., G = HK), H ∩K = Z(G) and all the elements of
H commute with all elements of K (i.e., [H,K] = {e}). We have noticed
that the condition [H,K] = {e} in the definition of central product is too
strong. We ask a question that what if {e}⊊ [H,K] and H ∩K = Z(G),
can we still have G = HK? The answer to this question is that despite
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{e} ⊊ [H,K] and H ∩K = Z(G), we can still have G = HK. This is
what we are going to discuss in this paper.

To verify our claim we consider the dicyclic group of order 12, (i.e.,
Dic12 = ⟨h,k : h6 = k4 = e,h3 = k2,kh = h−1k⟩). It is easy to verify that
K = ⟨k : k4 = e⟩ and H = ⟨h : h6 = e⟩ are subgroups of Dic12. Moreover,
H∩K = {e,h3}= Z(Dic12). Notice that [H,K] = {e,h2,h4} ≠ {e}, thus
by definition G is not the central direct product of H and K. We further
notice also that the subgroups H and K are not essentially disjoint in
Dic12 and as such Dic12 is not a semidirect product of H and K. How-
ever, one can easily verify that G = HK. This counter example gives
us a group with two subgroups with their intersection the center of the
group and [H,K] not singleton set containing identity only, and yet their
product is the whole group. This example has proved our claim of su-
perfluousness of the condition [H,K] = {e}.

The condition [H,K] is not necessarily {e} is achievable when we can
find an element in H and another element in K which do not commute.
This means the set [H,K] contains some element apart from identity,
(i.e., {e} ⊂ [H,K] ). For example, in the dicyclic group of order 12, the
set [H,K] = {e,h2,h4}. This means the set of commutators of H and
K properly contained {e} (i.e., {e} ⊂ [H,K]). Therefore Dic12 cannot
be a central product of H and K, also since H and K are not essentially
disjoint in Dic12 then also Dic12 cannot be the semidirect product of H
and K.

Thus in this paper we relax the condition [H,K] = {e} of the definition
of central product and defined a new product called quasi-central prod-
uct. We claimed that every central product is quasi-central products but
not vice versa. We defined both external and internal quasi-central prod-
ucts and we further show that, the external and internal quasi-central
products are isomorphic.

2. INTERNAL QUASI-CENTRAL PRODUCT OF GROUPS

In this section we introduce the quasi-central product of groups and we
show that this product is a group. Now by virtue of the counter exam-
ple given in the previous section, we give the following non-vacuum
definition.

Definition 2.1. Let G be a group, H,K ≤ G. Then G is said to be the
internal quasi-central product of H and K if

(i) G = HK;
(ii) H ∩K ≤ Z(G);

(iii) H ◁G or K ◁G.
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We denote internal quasi-central product of H and K by HõK. As an
immediate consequence of the above definition, we have the following
result.

Theorem 2.2. Internal quasi-central product of two subgroups is a
group.

The following corollary follows from the above theorem.

Corollary 2.3. Every internal central product is internal quasi-central
product, but the converse is not necessarily true.

Proof. Let G be the internal central product of H and K, where H,K ≤
G. Thus, G = HK, H ∩K = Z(G) and [H,K] = {e}. To show G is
quasi central product of H and K, we only need to show either H ◁G or
K ◁G. To show H ◁G, let g ∈ G,h ∈ H then g = h′k′, for some h′ ∈ H
and k′ ∈ K. Notice that ghg−1 = h′k′h(h′k′)−1 = h′k′hk′−1h′−1. Now
since [H,K] = {e}, it means that k′hk′−1h′−1 = e, i.e., k′h = hk′. Thus,
h′k′hk′−1h′

−1 ∈ H. i.e., ghg′−1 ∈ H. Therefore H ◁G and as such G is
quasi central product of H and K, as required.

The counter example in section 1 disprove the converse. □

Corollary 2.4. Every internal semidirect product is internal quasi-central
product, but the converse is not necessarily true.

Proof. Suppose G is internal semidirect product of H and K. Thus,
G = HK, H ◁G and H ∩K = {e}. Notice that {e} ≤ Z(G) and as such
H ∩K = {e}. Therefore G = HõK.

The counter example in section 1 disprove the converse. □

Corollary 2.5. Every internal direct product is internal quasi-central
product, but the converse need not to be true.

Proof. Suppose G is the internal direct product of H and K. Thus, G =
HK, H◁G, K◁G and H∩K. Notice that {e}≤ Z(G), as such H∩K =
{e}. Therefore G = HõK.

The counter example in section 1 disprove the converse. □

3. EXTERNAL QUASI-CENTRAL PRODUCT OF GROUPS

It is natural to ask similarly the definition of the external quasi-central
product of two groups. In this section we give the definition of the exter-
nal quasi-central product and we show that it is a group. Moreover we
show that both internal and external quasi-central products are isomor-
phic. But before we begin our investigation, let us recall the definition
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of the external central product of two groups. If G1 and G2 are groups
where A and B are the center of G1 and G2, respectively, such that there
exists an isomorphism ϕ from A to B. Then the external central product
of G1 and G2 is given by

G1oϕG2 = {(g1, g2)N : g1 ∈ G1,g2 ∈ G2},

where N = {(a, φ(a−1)) : a ∈ A} with operation defined by

(g1, g2)N(g′1, g′2)N = (g1g′1, g2g′2)N,

for (g1, g2)N, (g′1, g′2)N ∈ G1oϕG2. It is worth noting that N is a
normal subgroup of the direct product of A and B.

The next definition gives the definition of the external quasi-central
product of groups.

Definition 3.1. Let G1 and G2 be groups, A ≤ Z(G1) and B ≤ Z(G2) be
such that there exists an isomorphism ϕ : A → B. Let φ = πoτ where
τ : G2 → G2/B (defined by τ(g2) = g2B, for g2 ∈ G2) and π : G2/B →
Aut(G1) are homomorphisms. The external quasi-central product of G1
and G2 is defined by

{(g1, g2)N : g1 ∈ G1,g2 ∈ G2},

where N = {(a, ϕ(a−1)) : a ∈ A}, with operation defined by

(g1, g2)N(g′1, g′2)N = (g1φg2(g
′
1), g2g′2)N = (g′′1, g′′2)N,

where g′′1 = g1φg2(g
′
1) ∈ G1 and g′′2 = g2g′2 ∈ G2.

We denote the external quasi-central product of two groups G1 and
G2 by G = G1õφ G2.

Remarks 1. Since φ is a homomorphism of G2 into Aut(G1), then
φg2(φg′2

(g1)) = φg2g′2
(g1), for g1 ∈ G1 and g2,g′2 ∈ G2.

Theorem 3.2. External quasi-central product of two groups is a group.

Proof. Let G1 and G2 be groups with A ≤ Z(G1) and B ≤ Z(G2) such
that there exists an isomorphism ϕ : A → B and let N = {(a,ϕ(a−1)) :
a ∈ A ≤ Z(G1)}. Now, we show G = G1õφ G2 is a group.

It is very clear from the definition of the operation that G is closed
and associative.

Notice that for (g1, g2)N ∈ G, (g1,g2)NN = (g1, g2)N = N(g1, g2)
and notice also that e and f are identities in G1 and G2, respectively, as
such (e, f )N = N is the identity element in G.
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Now let g−1
1 be inverse of g1 ∈ G, g−1

2 be inverse of g2 ∈ G2, e ∈ G1
and f ∈ G2 be identities. Then notice that for (g1, g2)N ∈ G, we have:

(g1, g2)N(g1, g2)
−1N =(g1, g2)N(φg−1

2
(g−1

1 ), g−1
2 )N

=(g1φg2(φg−1
2
(g−1

1 )), g2g−1
2 )N

=(g1φg2g−1
2
(g−1

1 ), f )N = (g1g−1
1 , f )N

=(e, f )N = N.

Moreover,

(g1, g2)
−1N(g1, g2)N =(φg−1

2
(g−1

1 ), g−1
2 )N(g1, g2)N

=(φg−1
2
(g−1

1 (φg−1
2

g1)), g−1
2 g2)N

=(φg−1
2
(g−1

1 g1), f )N = (φg−1
2
(e), f )N

=(e, f )N = N.

This means that (φg−1
2
(g−1

1 ), g−1
2 )N is the inverse of (g1, g2)N in G.

Thus, every element in G has an inverse in G. Hence external quasi-
central product of groups is a group. □

Corollary 3.3. Every external central product is external quasi-central
product, but the converse may not be true.

Proof. Let G be external quasi central product of G1 and G2, then there
exists an isomorphism ϕ : A → B, where A ≤ Z(G1) and B ≤ Z(G2) and
N = {(a,ϕ(a−1)) : a∈ A}. Take τ : G2 →G2/B to be natural homomor-
phism, π : G2/B → Aut(G1) to be trivial homomorphism and φ = πoτ ,
then by Definition 3.1 G = G1õφ G2. The converse fails, see Example
3.6(d). □

Corollary 3.4. Every external semi-direct product is external quasi-
central product, but the converse may not be true.

Proof. Let G be external semi-direct product of the groups G1 and G2,
with e and f as identities of G1 and G2 respectively, then there exists a
homomorphism φ : G2 → Aut(G1). Take A = {e} ≤ Z(G1), B = { f} ≤
Z(G2) and N = {(e, f )}, then by Definition 3.1 we have

G = {(g1,g2)N : g1 ∈ G1,g2 ∈ G2}= G1õφ G2,

as required.
The converse fails, see Example 3.6(d). □

Corollary 3.5. Every external direct product is external quasi-central
product, but the converse is not necessarily true.
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Proof. From Definition 3.1, take B = { f}, and let φ be a trivial auto-
morphism then it follows that G1 ×G2 is G1õφ G2.

Example 3.6(d) disprove the converse. □

Now let us demonstrate with some example how we obtain external
quasi-central product of two groups.

Example 3.6. Let G1 = ⟨a : a4 = e⟩, G2 = ⟨b : b4 = f ⟩.
(a) G1 ×G2 = {(e, f ),(e,b),(e,b2),(e,b3),(a, f ),(a,b),

(a,b2),(a,b3),(a2, f ),(a2,b),(a2,b2),(a2,b3),(a3, f ),(a3,b),
(a3,b2),(a3,b3)}, where (g1,g2)(g′1,g

′
2) = (g1g′1,g2g′2) for g1,

g′1 ∈G1, and g2, g′2 ∈G2 (see appendix A1 for the multiplication
table of G1 ×G2).

It is easy to see from the multiplication table of G1 × G2
(see appendix A1) that, (a, f ) and (e,b) are of order 4 and that
(a, f )(e,b) = (e,b)(a, f ) = (a,b). More so, for all (x,y) ∈ G1×
G2, (x,y) = (an, f )(e,bm) for some 1 ≤ m,n ≤ 4. Therefore,
(a, f ) and (e,b) generates G1 ×G2.

Hence, G1×G2 = ⟨(a, f ),(e,b) : (a, f )4 =(e,b)4 =(e, f ) and (a, f )(e,b)=
(e,b)(a, f )⟩ ∼= Z4 ×Z4.

(b) Let ϕ : G2 → Aut(G1) be homomorphism. Then G1⋊ϕ G2 =

{(e, f ),(e,b),(e,b2),(e,b3),(a, f ),(a,b),(a,b2),(a,b3),(a2, f ),
(a2,b),(a2,b2),(a2,b3),(a3, f ),(a3,b),(a3,b2),(a3,b3)}, where
(g1,g2)(g′1,g

′
2) = (g1ϕg2(g

′
1),g2g′2) for g1, g′1 ∈ G1, g2, g′2 ∈ G2

(see appendix A2 for the multiplication table of G1⋊ϕ G2).
One can see from the multiplication table of G1⋊ϕ G2 (see

appendix A2) that, (a, f )2 = (a2, f ), (a, f )3 = (a3, f ), (a, f )4 =
(e, f ) and (a, f )(a3, f )= (a3, f )(a, f )= (e, f ). More so, (e,b)2 =
(e,b2), (e,b)3 =(e,b3), (e,b)4 =(e, f ), (e,b)(e,b3)= (e,b3)(e,b)=
(e, f ) and also (e,b)(a, f ) = (a3, f )(e,b).

Hence, G1⋊ϕ G2 = ⟨(a, f ),(e,b) : (a, f )4 =(e,b)4 =(e, f ) and (e,b)(a, f )=
(a3, f )(e,b)⟩ ∼= Z4⋊ϕ Z4.

(c) Now if we let A = {e,a2} ≤ G1, B = { f ,b2} ≤ G2 and

π : A → B be defined by π(e) = f , π(a2) = b2,

and also let H = {(x,π(x−1)) : x ∈ A}= {(e, f ),(a2,b2)}.
Thus,

G1oG2 =(G1×G2)/H = {{(e, f ),(a2,b2)},{(a, f ),(a3,b2)},
{(a,b),(a3,b3)},{(a,b2),(a3, f )},{(a,b3),(a3,b)},
{(a2,b),(e,b3)},{(e,b),(a2,b3)},{(a2,b),(e,b2)}},
where (x1,y1)H(x2,y2)H = (x1x2,y1y2)H (x1,x2 ∈ G1, y1,y2 ∈
G2).
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Now, let E = {(e, f ),(a2,b2)}, β1 = {(a, f ),(a3,b2)}, β2 =
{(a,b),(a3,b3)}, β3 = {(a,b2),(a3, f )}, β4 = {(a,b3),(a3,b)},
β5 = {(a2,b),(e,b3)}, β6 = {(e,b),(a2,b3)} and β7 = {(a2,b),(e,b2)}.

The multiplication table of G1oG2 is as follows.
E β1 β2 β3 β4 β5 β6 β7
β1 β7 β5 E β6 β4 β2 β3
β2 β5 E β6 β7 β1 β3 β4
β3 E β6 β7 β5 β2 β4 β1
β4 β6 β7 β5 E β3 β1 β2
β5 β4 β1 β2 β3 β7 E β6
β6 β2 β3 β4 β1 E β7 β5
β7 β3 β4 β1 β2 β6 β5 E

It is easy to see from the above table that: β7 = β 2
1 , β3 = β 3

1 ,
β 4

1 = β 2
4 = E, β6 = β1β4, β2 = β 2

1 β4 and β1β7 = β7β1.
Hence, G1oG2 = ⟨β1,β4 : β 4

1 = β 2
4 =E and β1β4 = β4β1⟩ ∼= Z4×

Z2.
(d) Finally, let A, B, π and H be as defined in (3.6) and let ϕ : G2 →

Aut(G1) be homomorphism.
Then G1 õϕ G2 = (G1⋊ϕ G2)/H

= {{(e, f ),(a2,b2)},{(a, f ),(a3,b2)},
{(a,b),(a3,b3)},{(a,b2),(a3, f )}, {(a,b3),(a3,b)},{(a2,b),(e,b3)},
{(e,b),(a2,b3)},{(a2,b),(e,b2)}}, where (x1,y1)H(x2,y2)H =
(x1ϕy1(x2),y1y2)H, for all x1,x2 ∈G1, y1,y2 ∈G2. Now, let E =

{(e, f ),(a2,b2)}, β1 = {(a, f ),(a3,b2)}, β2 = {(a,b),(a3,b3)},
β3 = {(a,b2),(a3, f )}, β4 = {(a,b3),(a3,b)}, β5 = {(a2,b),(e,b3)},
β6 = {(e,b),(a2,b3)} and β7 = {(a2,b),(e,b2)}.

The multiplication table of G1 õϕ G2 is as follows:
E β1 β2 β3 β4 β5 β6 β7
β1 β7 β5 E β6 β4 β2 β3
β2 β6 β7 β5 E β1 β3 β4
β3 E β6 β7 β5 β2 β4 β1
β4 β5 E β6 β7 β3 β1 β2
β5 β2 β3 β4 β1 β7 E β6
β6 β4 β1 β2 β3 E β7 β5
β7 β3 β4 β1 β2 β6 β5 E

Now one can easily see from the table above that: β7 = β 2
1 ,

β3 = β 3
1 , β 4

1 = β 4
4 = E, β7 = β 2

4 , β2 = β 3
4 = β 2

1 β4, β6 = β1β4,
β5 = β 3

1 β4 and β4β1 = β3β4 = β
−1
1 β4.

Hence, G1 õϕ G2 = ⟨β1,β4 : β 4
1 =E, β 2

4 = β 2
1 , β4β1 = β

−1
1 β4⟩ ∼= Q8.

Remarks 2. • From the above example, one can easily see that:
i) If G = G1 ×G2 or G = G1⋊ϕ G2, then |G|= |G1||G2|.
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ii) If G = G1oϕG2 or G = G1õφ G2, then |G|= |G1||G2|/|G1∩G2|.

Now we are going to show that internal and external quasi-central
product of groups are isomorphic.

Theorem 3.7. Let G be internal quasi-central product of H and K with
H◁G or K◁G. Then G is isomorphic to external quasi-central product
of groups H ′ and K′, where H ∼= H ′ and K ∼= K′.

Proof. Let G be the internal quasi-central product of H and K, T =
(H ′⋊φ K′)/N, where N = {(a,π(a−1)) : a ∈ A ≤ Z(H ′)} and π : A →
B ≤ Z(K′) is an isomorphism. Define a mapping ϕ : G → T by

ϕ(g) = ϕ(hk) = (h′,k′)N

where g = hk ∈ G. Notice that (h1k1) = (h2k2) if and only if e =
(h1k1)

−1(h2k2) if and only if e = ((k−1
1 h−1

1 k1)k−1
1 )(h2k2) if and only

if
e = ((k−1

1 h−1
1 k1)(k−1

1 h2k1)k−1
1 k2)

if and only if

ϕ(e) = ϕ((k−1
1 h−1

1 k1)(k−1
1 h2k1)k−1

1 k2)

if and only if
N = ((φ

k
′−1
1

h′−1
1 φk′−1

1
h′2),k

′−1
1 k′2)N

if and only if N =((h′1,k
′
1)

−1(h′2,k
′
2))N if and only if (h′1,k

′
1)N =(h′2,k

′
2)N

if and only if ϕ(h1k1) = ϕ(h2k2). Therefore ϕ is well defined and in-
jective.

Moreover, for any (h′,k′)N ∈ T , there exists g = hk ∈ G such that
ϕ(g) = (h′,k′)N. Therefore ϕ is surjective. Furthermore, given g1,g2 ∈
G, notice that ϕ(g1g2)=ϕ(h1k1h2k2)=ϕ(h1(k1h2k−1

1 )k1k2)= (h′1φk′1
h′2,k

′
1k′2)N =

(h′1,k
′
1)N(h′2,k

′
2)N = ϕ(g1)ϕ(g2). Therefore ϕ is a homomorphism,

hence ϕ is an isomorphism, as required. □

Corollary 3.8. (see [6, Corollary 3.2.5]) Suppose G is a group, H and
K are subgroups of G with H normal, G = HK = KH and H ∩K =
{e}, then there exits a homomorphism ϕ : K → Aut(H) such that G is
isomorphic to the semi direct product of H⋊ϕ K.

Proof. The result follows from Corollary 2.4 and Theorem 3.7. □

Theorem 3.9. If G is external quasi central product of G1 and G2, then
G has normal subgroup isomorphic to G1 and a subgroup isomorphic
to G2.
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Proof. Let G = G1 õφ G2 with e and f as identity elements in G1 and
G2 respectively. Then for g ∈ G, g = (g1,g2)N, where g1 ∈ G1,g2 ∈ G2
and N = {(a,ϕ(a−1)) : a ∈ A = Z(G1)} with ϕ : A → B = Z(G2) an
isomorphism.

Now, let G′
1 = {(g1, f )N : g1 ∈ G1}. Notice that e ∈ G1 and as such

(e, f )N ∈ G′
1. Therefore G′

1 ̸= /0 and that for (g1, f )N, (g′1, f )N ∈ G′
1, it

is easy to see that (g1, f )N(g′1, f )−1N =(g′′1, f )N, where g′′1 = g1(g′1)
−1 ∈

G′
1. That is to say (g1, f )N(g′1, f )−1N ∈ G′

1.
Moreover, for (g1,g2)N ∈ G, (g′1, f )N ∈ G′

1, one can also easily see
that

(g1,g2)N(g′1, f )N(g1,g2)
−1N = (g1,g2)(g′1, f )(φg−1

2
(g−1

1 ),g−1
2 )N

= (g′′1, f )N,

where g′′1 = g1φg2(g
′
1g−1

1 ) ∈ G1.
Thus, (g1,g2)N(g′1, f )N(g1,g2)

−1N ∈ G′
1, which means that G′

1 ◁G.
Next, defined θ : G′

1 → G1 by θ((g1, f )N) = g1, then it is easy to see
that, θ is an isomorphism, as required.

Now, suppose G′
2 = {(e,g2)N : g2 ∈ G2}. In a similar fashion one can

show that G′
2 is a subgroup of G which is isomorphic to G2. □

4. CONCLUDING REMARKS

We have successfully came up with a new product of groups called
quasi-central product. We have shown that every central product is
quasi-central product but not vice versa. Moreover, we defined both
external and internal quasi-central products and further show that the
external and internal quasi-central products are isomorphic.
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TABLE 1. Appendix A1

(e, f ) (e,b) (e,b2) (e,b3) (a, f ) (a,b) (a,b2) (a,b3) (a2, f ) (a2,b) (a2,b2) (a2,b3) (a3, f ) (a3,b) (a3,b2) (a3,b3)

(e,b) (e,b2) (e,b3) (e, f ) (a,b) (a,b2) (a,b3) (a, f ) (a2,b) (a2,b2) (a2,b3) (a2, f ) (a3,b) (a3,b2) (a3,b3) (a3, f )
(e,b2) (e,b3) (e, f ) (e,b) (a,b2) (a,b3) (a, f ) (a,b) (a2,b2) (a2,b3) (a2, f ) (a2,b) (a3,b2) (a3,b3) (a3, f ) (a3,b)
(e,b3) (e, f ) (e,b) (e,b2) (a,b3) (a, f ) (a,b) (a,b2) (a2,b3) (a2, f ) (a2,b) (a2,b2) (a3,b3) (a3, f ) (a3,b) (a3,b2)

(a, f ) (a,b) (a,b2) (a,b3) (a2, f ) (a2,b) (a2,b2) (a2,b3) (a3, f ) (a3,b) (a3,b2) (a3,b3) (e, f ) (e,b) (e,b2) (e,b3)

(a,b) (a,b2) (a,b3) (a, f ) (a2,b) (a2,b2) (a2,b3) (a2, f ) (a3,b) (a3,b2) (a3,b3) (a3, f ) (e,b) (e,b2) (e,b3) (e, f )
(a,b2) (a,b3) (a, f ) (a,b) (a2,b2) (a2,b3) (a2, f ) (a2,b) (a3,b2) (a3,b3) (a3, f ) (a3,b) (e,b2) (e,b3) (e. f ) (e,b)
(a,b3) (a, f ) (a,b) (a,b2) (a2,b3) (a2, f ) (a2,b) (a2,b2) (a3,b3) (a3, f ) (a3,b) (a3,b2) (e,b3) (e, f ) (e,b) (e,b2)

(a2, f ) (a2,b) (a2,b2) (a2,b3) (a3, f ) (a3,b) (a3,b2) (a3,b3) (e, f ) (e,b) (e,b2) (e,b3) (a, f ) (a,b) (a,b2) (a,b3)

(a2,b) (a2,b2) (a2,b3) (a2, f ) (a3,b) (a3,b2) (a3,b3) (a3, f ) (e,b) (e,b2) (e,b3) (e, f ) (a,b) (a,b2) (a,b3) (a, f )
(a2,b2) (a2,b3) (a2, f ) (a2,b) (a3,b2) (a3,b3) (a3, f ) (a3,b) (e,b2) (e,b3) (e, f ) (e,b) (a,b2) (a,b3) (a, f ) (a,b)
(a2,b3) (a2, f ) (a2,b) (a2,b2) (a3,b3) (a3, f ) (a3,b) (a3,b2) (e,b3) (e, f ) (e,b) (e,b2) (a,b3) (a, f ) (a,b) (a,b2)

(a3, f ) (a3,b) (a3,b2) (a3,b3) (e, f ) (e,b) (e,b2) (e,b3) (a, f ) (a,b) (a,b2) (a,b3) (a2, f ) (a2,b) (a2,b2) (a2,b3)

(a3,b) (a3,b2) (a3,b3) (a3, f ) (e,b) (e,b2) (e,b3) (e, f ) (a,b) (a,b2) (a,b3) (a, f ) (a2,b) (a2,b2) (a2,b3) (a2, f )
(a3,b2) (a3,b3) (a3, f ) (a3,b) (a2,b2) (a2,b3) (a2, f ) (a2,b) (a,b2) (a,b3) (a, f ) (a,b) (e,b2) (e,b3) (e, f ) (e,b)
(a3,b3) (a3, f ) (a3,b) (a3,b2) (e,b3) (e, f ) (e,b) (e,b2) (a,b3) (a, f ) (a,b) (a,b2) (a2,b3) (a2, f ) (a2,b) (a2,b2)

TABLE 2. Appendix A2

(e, f ) (e,b) (e,b2) (e,b3) (a, f ) (a,b) (a,b2) (a,b3) (a2, f ) (a2,b) (a2,b2) (a2,b3) (a3, f ) (a3,b) (a3,b2) (a3,b3)

(e,b) (e,b2) (e,b3) (e, f ) (a3,b) (a3,b2) (a3,b3) (a3, f ) (a2,b) (a2,b2) (a2,b3) (a2, f ) (a,b) (a,b2) (a,b3) (a, f )
(e,b2) (e,b3) (e, f ) (e,b) (a3,b2) (a3,b3) (a3, f ) (a3,b) (a2,b2) (a2,b3) (a2, f ) (a2,b) (a,b2) (a,b3) (a, f ) (a,b)
(e,b3) (e, f ) (e,b) (e,b2) (a,b3) (a, f ) (a,b) (a,b2) (a2,b3) (a2, f ) (a2,b) (a2,b2) (a3,b3) (a3, f ) (a3,b) (a3,b2)

(a, f ) (a,b) (a,b2) (a,b3) (a2, f ) (a2,b) (a2,b2) (a2,b3) (a3, f ) (a3,b) (a3,b2) (a3,b3) (e, f ) (e,b) (e,b2) (e,b3)

(a,b) (a,b2) (a,b3) (a, f ) (e,b) (e,b2) (e,b3) (e, f ) (a3,b) (a3,b2) (a3,b3) (a3, f ) (a2,b) (a2,b2) (a2,b3) (a2, f )
(a,b2) (a,b3) (a, f ) (a,b) (e,b2) (e,b3) (e, f ) (e,b) (a3,b2) (a3,b3) (a3, f ) (a3,b) (a2,b2) (a2,b3) (a2. f ) (a2,b)
(a,b3) (a, f ) (a,b) (a,b2) (a2,b3) (a2, f ) (a2,b) (a2,b2) (a3,b3) (a3, f ) (a3,b) (a3,b2) (e,b3) (e, f ) (e,b) (e,b2)

(a2, f ) (a2,b) (a2,b2) (a2,b3) (a3, f ) (a3,b) (a3,b2) (a3,b3) (e, f ) (e,b) (e,b2) (e,b3) (a, f ) (a,b) (a,b2) (a,b3)

(a2,b) (a2,b2) (a2,b3) (a2, f ) (a,b) (a,b2) (a,b3) (a, f ) (e,b) (e,b2) (e,b3) (e, f ) (a3,b) (a3,b2) (a3,b3) (a3, f )
(a2,b2) (a2,b3) (a2, f ) (a2,b) (a,b2) (a,b3) (a, f ) (a,b) (e,b2) (e,b3) (e, f ) (e,b) (a3,b2) (a3,b3) (a3, f ) (a3,b)
(a2,b3) (a2, f ) (a2,b) (a2,b2) (a3,b3) (a3, f ) (a3,b) (a3,b2) (e,b3) (e, f ) (e,b) (e,b2) (a,b3) (a, f ) (a,b) (a,b2)

(a3, f ) (a3,b) (a3,b2) (a3,b3) (e, f ) (e,b) (e,b2) (e,b3) (a, f ) (a,b) (a,b2) (a,b3) (a2, f ) (a2,b) (a2,b2) (a2,b3)

(a3,b) (a3,b2) (a3,b3) (a3, f ) (a2,b) (a2,b2) (a2,b3) (a2, f ) (a,b) (a,b2) (a,b3) (a, f ) (e,b) (e,b2) (e,b3) (e, f )
(a3,b2) (a3,b3) (a3, f ) (a3,b) (a2,b2) (a2,b3) (a2, f ) (a2,b) (a,b2) (a,b3) (a, f ) (a,b) (e,b2) (e,b3) (e, f ) (e,b)
(a3,b3) (a3, f ) (a3,b) (a3,b2) (e,b3) (e, f ) (e,b) (e,b2) (a,b3) (a, f ) (a,b) (a,b2) (a2,b3) (a2, f ) (a2,b) (a2,b2)
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