### On a quasilinear wave equation with memory and nonlinear source terms

#### Abstract

#### References

G. Andrews, On the existence of solutions to the equation $u_{tt}= u_{xxt}+ sigma(u_x)_x$, J. Differential Equations 35 (1980)

-231.

G. Andrews, J.M. Ball, Asymptotic behavior and changes in phase in one-dimensional nonlinear viscoelasticity, J. Differential Equations 44 (1982) 306 -341.

D.D. Ang, A.P.N. Dinh, On the strongly damped wave equation $u_{tt} -Delta u - Delta u_t + f(u) =0$ SIAM J. Math. Anal. 19 (1988) 1409 -1418.

D.D. Ang, A.P.N. Dinh, Strong solutions of a quasi-linear wave equation with nonlinear damping term,

SIAM J. Math. Anal. 19 (1988) 337 -347.

G. Chen, H Yue, S. Wang, The initial boundary value problem for quasilinear wave equation with viscous damping. J. Math. Anal. Appl. 331 (2007) 823-839

J. Clements, Existence theorems for a quasi-linear evolution equation, SIAM J. Appl. Math. 26 (1974) 745 -752.

V. Georgiev, and G. Todorova, Existence of a solution of the wave equation with nonlinear

damping and source term, J. Diļ¬erential Equations 109 (1994), 295 -308.

J.M. Greenberg, R.C. MacCamy, V.J. Mizel, On the existence, uniqueness and stability of solutions of the equation $sigma^{prime}(u_x)u_{xx} + lambda u_{xxt}=rho_0 u_{tt}$, J. Math. Mech. 17 (1968) 707 -728.

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations

of the form, Trans. Amer. Math. Soc. 192 (1974), 1 -21.

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear

wave equations, SIAM J. Math. Anal. 5 (1974), 138 -146.

Y. Yamada, some remarks on the equation $Y_{tt} -sigma(Y_x)Y_{xx} -Y_{xtx} = f $ Osaka J. Math. 17 (1980) 303 -323.

Z. Yang, Cauchy problem for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl. 320. (2006) 859-881

Z. Yang, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with nonlinear damping and source terms, Math. Methods Appl. Sci. 25 (2002) 795 -814.

Z. Yang, Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms, J. Math. Anal. App. 300 (2004) 218-243

Z. Yang, Blowup of solutions for a class of nonlinear evolution equations with nonlinear damping and source terms, Math. Methods Appl. Sci. 25 (2002) 825 -833.

Z. Yang, G. Chen, Global existence of solutions for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl. 285 (2003) 606 -620.

### Refbacks

- There are currently no refbacks.

Copyright (c) 2018 Journal of the Nigerian Mathematical Society

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.