• Matthew Olayiwola Adewole Mountain Top University


We investigate the error contributed by semi discretization to the linear finite element solution of linear hyperbolic interface problems. With low regularity assumption on the solution across the interface,  almost optimal convergence rates in $L^2(\Omega)$ and $H^1(\Omega) $ norms are obtained. We do not assume that the interface could be fitted exactly. Numerical experiments are presented to support the theoretical results.

Author Biography

Matthew Olayiwola Adewole, Mountain Top University

Department of Computer Science and Mathematics, 



R. A. Adams, {it Sobolev spaces}, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.

M. O. Adewole, {it Almost optimal convergence of FEM-FDM for a linear parabolic interface problem}, Electron. Trans. Numer. Anal. textbf{46} 337--358, 2017.

M. O. Adewole and V. F. Payne, {it Convergence of a Finite Element Solution for a Nonlinear Parabolic Equation with Discontinuous Coefficient}, To appear in the Proceeding of International Conference on Contemporary Mathematics and the Real World, 2017.

I. Babuv{s}ka, {it The finite element method for elliptic equations with discontinuous coefficients}, Computing (Arch. Elektron. Rechnen) textbf{5} 207--213, 1970.

G. A. Baker, {it Error estimates for finite element methods for second order hyperbolic equations}, SIAM J. Numer. Anal. textbf{13} 564--576, 1976.

G. A. Baker and J. H. Bramble, {it Semidiscrete and single step fully discrete approximations for second order hyperbolic equations}, RAIRO Analyse Num$acute{mbox{e}}$rique textbf{13} 75--100, 1979.

G. A. Baker and V. A. Dougalis, {it On the ${L}^infty$-convergence of {G}alerkin approximations for second-order hyperbolic equations}, Math. Comp. textbf{34} 401--424, 1980.

L. M. Brekhovskikh, {it Waves in Layered Media}, Academic Press, New York, 1973.

Z. Chen and J. Zou, {it Finite element methods and their convergence for elliptic and parabolic interface problems}, Numer. Math. textbf{79} 175--202, 1998.

B. Deka, {it Finite element methods with numerical quadrature for elliptic problems with smooth interfaces}, J. Comput. Appl. Math. textbf{234} 605--612, 2010.

B. Deka and T. Ahmed, {it Convergence of finite element method for linear second-order wave equations with discontinuous coefficients}, Numer. Methods Partial Differential Equations textbf{29} (5) 1522--1542, 2013.

B. Deka and R. K. Sinha, {it Finite element methods for second order linear hyperbolic interface problems}, Appl. Math. Comput. textbf{218} 10922--10933, 2012.

T. Dupont, {it {$Lsp{2}$}-estimates for {G}alerkin methods for second order hyperbolic equations}, SIAM J. Numer. Anal. textbf{10} 880--889, 1973.

L. C. Evans, {it Partial differential equations}, Vol 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.

E. H. Georgoulis, O. Lakkis and C. Makridakis,{it A posteriori {$L^infty(L^2)$}-error bounds for finite element approximations to the wave equation}, IMA J. Numer. Anal. textbf{33} 1245--1264, 2013.

F. Hecht, {it New development in freefem++}, J. Numer. Math. textbf{20} 251--265, 2012.

S. Larsson and V. Thom'ee, {it Partial differential equations with numerical methods}, vol 45 of Texts in Applied Mathematics, Springer-Verlag, Berlin, 2003.

V. F. Payne and M. O. Adewole, {it Error Estimates for a nonlinear parabolic interface problem on a convex polygonal domain}, To appear in International Journal of Mathematical Analysis (IJMA).

J. Rauch, {it On convergence of the finite element method for the wave equation}, SIAM J. Numer. Anal. textbf{22} 245--249, 1985.

J. Sen Gupta, R. K. Sinha, G. M. M. Reddy and J. Jain, {it A posteriori error analysis of two-step backward differentiation formula finite element approximation for parabolic interface problems}, J. Sci. Comput. textbf{69} 406--429, 2016.

J. Sen Gupta, R. K. Sinha, G. M. M. Reddy and J. Jain, {it New interpolation error estimates and a posteriori error analysis for linear parabolic interface problems}, Numer. Methods Partial Differential Equations textbf{33} 570--598, 2017.

R. K. Sinha and B. Deka, {it An unfitted finite-element method for elliptic and parabolic interface problems}, IMA J. Numer. Anal. textbf{27} 529--549, 2007.

L. Song and C. Yang, {it Convergence of a second-order linearized BDF-IPDG for nonlinear parabolic equations with discontinuous coefficients}, J. Sci. Comput. textbf{70} 662--685, 2017.

C. Yang, {it Convergence of a linearized second-order BDF-FEM for

nonlinear parabolic interface problems}, Comput. Math. Appl. textbf{70} 265--281, 2015.



How to Cite

Adewole, M. O. (2018). ON FINITE ELEMENT METHOD FOR LINEAR HYPERBOLIC INTERFACE PROBLEMS. Journal of the Nigerian Mathematical Society, 37(1). Retrieved from https://ojs.ictp.it/jnms/index.php/jnms/article/view/170



Numerics and Modeling