Numerical Solution of Generalized Emden-Fowler Equations by Some Approximation Techniques

Authors

  • Babatunde Morufu Yisa University of Ilorin, Ilorin, Nigeria.

Abstract

In this paper, we provide reliable approximations to the generalized Emden - Fowler equation using two semi - analytic methods; Adomian decomposition method and variational iteration method, and the recursive Tau method that employed Newton-Kantorovich approach. The three methods give very close results, with the semi - analytic methods giving results that agree completely with some existing results in the literature when certain parameters are fixed. The results are presented in both tabular and graphical forms.

Author Biography

Babatunde Morufu Yisa, University of Ilorin, Ilorin, Nigeria.

Department of Mathematics

References

begin{thebibliography}{99}

bibitem{issa2} Issa, K. and Adeniyi,R. B., A generalized scheme for the numerical solution of initial value problems in ordinary differential equations by the recursive formulation of Tau Method,{it Intl. Jour. of Pure and Appl. Math. }{textbf{88}}(1)(2013), 1-13.

bibitem{issa3} Issa, K. and Adeniyi,R. B., Extension of Generalized Recursive Tau Method to Non-

linear Ordinary Differential Equations, textit{Journal of Nigeria Mathematics Society},

textbf{35} 2016, 18-24.

bibitem{bi17} Biazar, J. and Hosseini, K., An Effective Modification of Adomian Decomposition Method for Solving Emden–Fowler Type Systems,textit{Natl. Acad. Sci. Lett.} url{DOI: 10.1007/s40009-017-0571-4}

bibitem{ra05} Ramos J. I., Linearization techniques for singular initial value problems of ordinary differential equations. textit{Appl Math. Comput} textbf{161}(2005), 525–542.

bibitem{ra08} Ramos J. I., Series approach to the Lane–Emden equation and comparison with the homotopy perturbation method, textit{Chaos Solitons Fractals} textbf{38}(2008), 400–408

bibitem{pa10} Parand K., Dehghan M., Rezaei A. R. and Ghaderi S. M., An approximation algorithm for the solution of the nonlinear Lane–Emden type equations arising in astrophysics using Hermite functions collocation method, {it Comput Phys Commun}, {textbf{181}}(2101), 1096–1108.

bibitem{si09} Singh O. P., Pandey R. K. and Singh V. K., An analytic algorithm of Lane–Emden type equations arising in astrophysics using modified homotopy analysis method. textit{Comput Phys Commun}

textbf{180}(2009), 1116–1124.

bibitem{he03} He J-H, Variational approach to the Lane–Emden equation. textit{Appl Math Comput} textbf{143}(2003), 539–541.

bibitem{be97} Berkorich, L. M. (1997), The Generalized Emden-Fowler Equation, textit{Sym. Nonlinear Math. Phy.} textbf{1}(1997), 155-163.

bibitem{O3} Ortiz, E.L. and H. Samara, An operational approach to the Tau Method for the numerical solution of non-linear differential equations, {it Computing}, {textbf{27}}(1981), 15-25.

bibitem{y} Yisa, B. M. and Adeniyi, R. B., Generalization of canonical polynomials for overdetermined $m-th$ order ordinary differential equations(ODEs), {it IJERT}, {textbf{1}(6)}(2012), 1-15.

bibitem{he16} Hermann, M. and Seravi, M., Nonlinear Ordinary Differential Equations, textit{Springer}(Indian) 2016.

bibitem{wa17} Wazwaz, A. M. Rach, R., Bougoffa L. and Duan, J. S. (2017), Solving the Two - Dimensional Lane- Emdem Type Equations of Higher Orders by the Adomian Decomposition Method, textit{CMES}, textbf{100}(6)(2017), 507-529.

bibitem{wa15} Wazwaz, A. M. (2015):Solving the Two - Dimensional Emdem-Fowler Type Equations of Third Order by the Variational Iteration Method, textit{Appl. Math. Info.Sci} textbf{9}(5)(2015), 2429-2436.

bibitem{na13} Nazari-Golshan A, Nourazar SS, Ghafoori-Fard H, Yildirim A, Campo A., A modified homotopy perturbation method coupled with the Fourier transform for nonlinear and singular Lane–Emden equations. textit{Appl Math Lett} textbf{26}(2013), 1018–1025

bibitem{wa11} Wazwaz A. M. The variational iteration method for solving systems of equations of Emden–Fowler type. textit{Int J Comput Math}, textbf{88}(2011), 3406–3415.

bibitem{bi16} Biazar J., Hosseini K., A modified Adomian decomposition method for singular initial value Emden–Fowler type equations, textit{Int J. Appl Math Res} textbf{5}(2016), 69–72.

bibitem{go00} Goenner, H. and Havas P., Exact solutions of the generalized Lane-Emden equation, textit{Jour. of Mathematical Physics},textbf{41}(10)(2000), 7029–7042.

bibitem{sha93} Shawagfeh, N. T., Non-perturbative approximate solution for Lane-Emden equation, textit{Journal of Mathematical Physics},textbf{34}(9)(1993), 4364–4369.

bibitem{wa01} Wazwaz, A.M., A new algorithm for solving differential equations of Lane-Emden type, textit{Applied Mathematics and Computation}, textbf{118},(2-3)(2001), 287–310.

bibitem{issa17} Issa, K., Adeniyi, R. B. and Yisa, B. M. (2017): Generalized Error Estimation of the Tau method in Ordinary Differential Equations, textit{J. Nig. Math.Soc.}, textbf{36}(2017), 113-137.

bibitem{mo14} Mohammadzadeh, R., Lakestani, M. and M. Dehghan, Collocation method for the numerical

solutions of Lane-Emden type equations using cubic Hermite spline functions, textit{Math. Method. Appl. Sci.} textbf{37} (9) (2014) 1303-1717.

bibitem{newton06} B. T. Polyak, Newton-Kantorovich method and its global convergence, textit{J. Math. Sci.}, textbf{133}(4)(2006), 1513-1523.

bibitem{wa14} Waleed M. A., Youssri H. Y. and Eid H. D., New Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives, textit{Computational Methods for Differential Equations}, textbf{2}(3), (2014), 171-185.

end{thebibliography}

end{document}

begin{thebibliography}{99}

item Berkorich, L.M. (1997): The Generalized Emden-Fowler Equation, Sym. Nonlinear Math. Phy. 1, 155-163

item Hermann, M. and Seravi, M. (2016): Nonlinear Ordinary Differential Equations, Springer (Indian)

item Issa, K., Adeniyi, R.B. and Yisa, B.M. (2017): Generalized Error Estimation of the Tau method in Ordinary Differential Equations, J. Nig. Math.Soc., 36, 113-137.

item Rach, R. Duan, J.S., and Wazwaz, A.M. Solving the Two - Dimensional Lane- Emdem Type Equations by the Adomian Decomposition Method J. Appl. Math. Stat., 3(1), 15-26

item Wazwaz, A.M. Rach, R., Bougoffa L. and Duan, J.S. (2017):Solving the Two - Dimensional Lane- Emdem Type Equations of Higher Orders by the Adomian Decomposition Method, CMES, 100(6), 507-529

item Wazwaz, A.M. (2015):Solving the Two - Dimensional Emdem-Fowler Type Equations of Third Order Order by the Variational Iteration Method, Appl. Math. Info.Sci 9(5), 2429-2436.

end{thebibliography}

Published

2018-09-25

How to Cite

Yisa, B. M. (2018). Numerical Solution of Generalized Emden-Fowler Equations by Some Approximation Techniques. Journal of the Nigerian Mathematical Society, 37(1). Retrieved from https://ojs.ictp.it/jnms/index.php/jnms/article/view/227

Issue

Section

Numerics and Modeling